Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Gut Microbiota and Colorectal Cancer Risk Factors

Author(s): Hadi Feizi, Mohammad Ahangarzadeh Rezaee, Reza Ghotaslou, Mohammad Sadrkabir, Farhad Jadidi-Niaragh, Pourya Gholizadeh, Sepehr Taghizadeh, Khudaverdi Ghanbarov, Mehdi Yousefi and Hossein Samadi Kafil*

Volume 24, Issue 8, 2023

Published on: 17 October, 2022

Page: [1018 - 1034] Pages: 17

DOI: 10.2174/1389201023666221005103340

Price: $65

conference banner
Abstract

Colorectal cancer is a type of gut cancer originating either from the rectum or colon. Genetic and environmental factors, such as the gut microbiome, play pivotal roles in colorectal cancer incidence rates. Therefore, we aimed to review the risk factors of CRC comprising gut bacteriomes and their intra-interactions with each other in the context of CRC development. Gut microbiota alteration, especially bacteriome alteration as the dominant player, seems to be the common feature amongst all risk factors. Although it is not quite obvious whether these alterations are the causes or the consequences of the tumorigenesis risk factors, they are common and almost universal among CRC-affected individuals. In addition, bacterial genotoxicity, biofilm formation, oxidative stress, bacterial metabolome, and dysbiosis are assessed in CRC development. The present study suggests that gut microbial alterations could be the key intermediate, as a cause or a consequence, between most risk factors of CRC and the way they promote or contribute to CRC development.

Keywords: colorectal cancer, gut microbiota, bacterial metabolome, microbial alteration, dysbiosis

Next »
[1]
Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol., 2019, 14(2), 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[2]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[3]
Geneve, N.; Kairys, D.; Bean, B.; Provost, T.; Mathew, R.; Taheri, N. Colorectal cancer screening. Prim. Care, 2019, 46(1), 135-148.
[http://dx.doi.org/10.1016/j.pop.2018.11.001] [PMID: 30704654]
[4]
Gholizadeh, P.; Mahallei, M.; Pormohammad, A.; Varshochi, M.; Ganbarov, K.; Zeinalzadeh, E.; Yousefi, B.; Bastami, M.; Tanomand, A.; Mahmood, S.S.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb. Pathog., 2019, 127, 48-55.
[http://dx.doi.org/10.1016/j.micpath.2018.11.031] [PMID: 30503960]
[5]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[6]
Wong, M.C.; Ding, H.; Wang, J.; Chan, P.S.; Huang, J. Prevalence and risk factors of colorectal cancer in Asia. Intest. Res., 2019, 17(3), 317-329.
[http://dx.doi.org/10.5217/ir.2019.00021] [PMID: 31085968]
[7]
Laffin, M.R.; Tayebi Khosroshahi, H.; Park, H.; Laffin, L.J.; Madsen, K.; Kafil, H.S.; Abedi, B.; Shiralizadeh, S.; Vaziri, N.D. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: Microbial analysis from a randomized placebo-controlled trial. Hemodial. Int., 2019, 23(3), 343-347.
[http://dx.doi.org/10.1111/hdi.12753] [PMID: 30924310]
[8]
Mattiuzzi, C.; Sanchis, F.; Lippi, G. Concise update on colorectal cancer epidemiology. Ann. Transl. Med., 2019, 7(21), 609.
[http://dx.doi.org/10.21037/atm.2019.07.91] [PMID: 32047770]
[9]
Lawrence, G.W.; Begley, M.; Cotter, P.D.; Guinane, C.M. Potential use of biotherapeutic bacteria to target colorectal cancer associated taxa. Int. J. Mol. Sci., 2020, 21(3), 924.
[http://dx.doi.org/10.3390/ijms21030924] [PMID: 32019270]
[10]
Wong, M.C.; Huang, H.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.J. Differences in incidence and mortality trends of colorectal cancer, worldwide, based on sex, age, and anatomic location. Clin. Gastroenterol. Hepatol., 2020, 19(5), 955-966.e61.
[PMID: 32088300]
[11]
Wang, X.; O’Connell, K.; Jeon, J.; Song, M.; Hunter, D.; Hoffmeister, M.; Lin, Y.; Berndt, S.; Brenner, H.; Chan, A.T.; Chang, J.; Gong, J.; Gunter, M.J.; Harrison, T.A.; Hayes, R.B.; Joshi, A.; Newcomb, P.; Schoen, R.; Slattery, M.L.; Vargas, A.; Potter, J.D.; Le Marchand, L.; Giovannucci, E.; White, E.; Hsu, L.; Peters, U.; Du, M. Combined effect of modifiable and non-modifiable risk factors for colorectal cancer risk in a pooled analysis of 11 population-based studies. BMJ Open Gastroenterol., 2019, 6(1), e000339.
[http://dx.doi.org/10.1136/bmjgast-2019-000339] [PMID: 31875139]
[12]
Cornish, A.J.; Law, P.J.; Timofeeva, M.; Palin, K.; Farrington, S.M.; Palles, C.; Jenkins, M.A.; Casey, G.; Brenner, H.; Chang, J.; Hoffmeister, M.; Kirac, I.; Maughan, T.; Brezina, S.; Gsur, A.; Cheadle, J.P.; Aaltonen, L.A.; Tomlinson, I.; Dunlop, M.G.; Houlston, R.S. Modifiable pathways for colorectal cancer: A mendelian randomisation analysis. Lancet Gastroenterol. Hepatol., 2020, 5(1), 55-62.
[http://dx.doi.org/10.1016/S2468-1253(19)30294-8] [PMID: 31668584]
[13]
Demb, J.; Earles, A.; Martínez, M.E.; Bustamante, R.; Bryant, A.K.; Murphy, J.D.; Liu, L.; Gupta, S. Risk factors for colorectal cancer significantly vary by anatomic site. BMJ Open Gastroenterol., 2019, 6(1), e000313.
[http://dx.doi.org/10.1136/bmjgast-2019-000313] [PMID: 31523441]
[14]
Jeon, J.; Du, M.; Schoen, R.E.; Hoffmeister, M.; Newcomb, P.A.; Berndt, S.I.; Caan, B.; Campbell, P.T.; Chan, A.T.; Chang-Claude, J.; Giles, G.G.; Gong, J.; Harrison, T.A.; Huyghe, J.R.; Jacobs, E.J.; Li, L.; Lin, Y.; Le Marchand, L.; Potter, J.D.; Qu, C.; Bien, S.A.; Zubair, N.; Macinnis, R.J.; Buchanan, D.D.; Hopper, J.L.; Cao, Y.; Nishihara, R.; Rennert, G.; Slattery, M.L.; Thomas, D.C.; Woods, M.O.; Prentice, R.L.; Gruber, S.B.; Zheng, Y.; Brenner, H.; Hayes, R.B.; White, E.; Peters, U.; Hsu, L. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors. Gastroenterology, 2018, 154(8), 2152-2164.e19.
[http://dx.doi.org/10.1053/j.gastro.2018.02.021] [PMID: 29458155]
[15]
Alexander, J.L.; Scott, A.J.; Pouncey, A.L.; Marchesi, J.; Kinross, J.; Teare, J. Colorectal carcinogenesis: An archetype of gut microbiota host interaction. Ecancermedicalscience, 2018, 12, 865.
[http://dx.doi.org/10.3332/ecancer.2018.865] [PMID: 30263056]
[16]
Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(11), 690-704.
[http://dx.doi.org/10.1038/s41575-019-0209-8] [PMID: 31554963]
[17]
Bundgaard, C.; Baandrup, U.T.; Nielsen, L.P.; Sørensen, S. The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non malignant tissue. BMC Cancer, 2019, 19(1), 399.
[http://dx.doi.org/10.1186/s12885-019-5571-y] [PMID: 31035942]
[18]
Karkman, A.; Lehtimäki, J.; Ruokolainen, L. The ecology of human microbiota: Dynamics and diversity in health and disease. Ann. N. Y. Acad. Sci., 2017, 1399(1), 78-92.
[http://dx.doi.org/10.1111/nyas.13326] [PMID: 28319653]
[19]
Scarpellini, E.; Ianiro, G.; Attili, F.; Bassanelli, C.; De Santis, A.; Gasbarrini, A. The human gut microbiota and virome: Potential therapeutic implications. Dig. Liver Dis., 2015, 47(12), 1007-1012.
[http://dx.doi.org/10.1016/j.dld.2015.07.008] [PMID: 26257129]
[20]
Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol., 2016, 14(8), e1002533.
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[21]
Matijašić M.; Meštrović T.; Paljetak, H.Č.; Perić M.; Barešić A.; Verbanac, D. Gut microbiota beyond bacteria mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int. J. Mol. Sci., 2020, 21(8), E2668.
[http://dx.doi.org/10.3390/ijms21082668] [PMID: 32290414]
[22]
Van Belleghem, J.D. Dąbrowska, K.; Vaneechoutte, M.; Barr, J.J.; Bollyky, P.L. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses, 2018, 11(1), E10.
[http://dx.doi.org/10.3390/v11010010] [PMID: 30585199]
[23]
Lee, G.H.; Malietzis, G.; Askari, A.; Bernardo, D.; Al-Hassi, H.O.; Clark, S.K. Is right-sided colon cancer different to left-sided colorectal cancer? - A systematic review. Eur. J. Surg. Oncol., 2015, 41(3), 300-308.
[http://dx.doi.org/10.1016/j.ejso.2014.11.001] [PMID: 25468456]
[24]
IDF Diabetes Atlas-Global picture 2019.
[25]
Zhu, B.; Wu, X.; Wu, B.; Pei, D.; Zhang, L.; Wei, L. The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. PLoS One, 2017, 12(4), e0176068.
[http://dx.doi.org/10.1371/journal.pone.0176068] [PMID: 28423026]
[26]
Luo, S.; Li, J.Y.; Zhao, L.N.; Yu, T.; Zhong, W.; Xia, Z.S.; Shan, T.D.; Ouyang, H.; Yang, H.S.; Chen, Q.K. Diabetes mellitus increases the risk of colorectal neoplasia: An updated meta-analysis. Clin. Res. Hepatol. Gastroenterol., 2016, 40(1), 110-123.
[http://dx.doi.org/10.1016/j.clinre.2015.05.021] [PMID: 26162991]
[27]
Ali Khan, U.; Fallah, M.; Tian, Y.; Sundquist, K.; Sundquist, J.; Brenner, H.; Kharazmi, E. Personal history of diabetes as important as family history of colorectal cancer for risk of colorectal cancer: A nationwide cohort study. Am. J. Gastroenterol., 2020, 115(7), 1103-1109.
[http://dx.doi.org/10.14309/ajg.0000000000000669] [PMID: 32618661]
[28]
Bertakis, K.D.; Azari, R.; Helms, L.J.; Callahan, E.J.; Robbins, J.A. Gender differences in the utilization of health care services. J. Fam. Pract., 2000, 49(2), 147-152.
[PMID: 10718692]
[29]
Sung, H. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2020, 71(3), 209-249.
[30]
White, A.; Ironmonger, L.; Steele, R.J.C.; Ormiston, N.; Crawford, C.; Seims, A. A review of sex related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer, 2018, 18(1), 906.
[http://dx.doi.org/10.1186/s12885-018-4786-7] [PMID: 30236083]
[31]
Wong, M.C.S.; Huang, J.; Huang, J.L.W.; Pang, T.W.Y.; Choi, P.; Wang, J.; Chiang, J.I.; Jiang, J.Y. Global prevalence of colorectal neoplasia: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol., 2020, 18(3), 553-561.e10.
[http://dx.doi.org/10.1016/j.cgh.2019.07.016] [PMID: 31323383]
[32]
Brändstedt, J.; Wangefjord, S.; Nodin, B.; Eberhard, J.; Jirström, K.; Manjer, J. Associations of hormone replacement therapy and oral contraceptives with risk of colorectal cancer defined by clinicopathological factors, beta-catenin alterations, expression of cyclin D1, p53, and microsatellite-instability. BMC Cancer, 2014, 14(1), 371.
[http://dx.doi.org/10.1186/1471-2407-14-371] [PMID: 24885829]
[33]
Amitay, E.L.; Carr, P.R.; Jansen, L.; Alwers, E.; Roth, W.; Herpel, E.; Kloor, M.; Bläker, H.; Chang, J.; Brenner, H.; Hoffmeister, M. Postmenopausal hormone replacement therapy and colorectal cancer risk by molecular subtypes and pathways. Int. J. Cancer, 2020, 147(4), 1018-1026.
[http://dx.doi.org/10.1002/ijc.32868] [PMID: 31943160]
[34]
Santos, D.J.S.; Palomares, N.B.; Normando, D.; Quintão, C.C.A. Race versus ethnicity: differentiate to better apply. Dental Press J. Orthod., 2010, 15(3), 121-124.
[http://dx.doi.org/10.1590/S2176-94512010000300015]
[35]
Murphy, C.C.; Wallace, K.; Sandler, R.S.; Baron, J.A. Racial disparities in incidence of young onset colorectal cancer and patient survival. Gastroenterology, 2019, 156(4), 958-965.
[http://dx.doi.org/10.1053/j.gastro.2018.11.060] [PMID: 30521807]
[36]
Fedewa, S.A.; Flanders, W.D.; Ward, K.C.; Lin, C.C.; Jemal, A.; Goding Sauer, A.; Doubeni, C.A.; Goodman, M. Racial and ethnic disparities in interval colorectal cancer incidence: A population based cohort study. Ann. Intern. Med., 2017, 166(12), 857-866.
[http://dx.doi.org/10.7326/M16-1154] [PMID: 28531909]
[37]
Williams, C.D.; Satia, J.A.; Adair, L.S.; Stevens, J.; Galanko, J.; Keku, T.O.; Sandler, R.S. Dietary patterns, food groups, and rectal cancer risk in Whites and African Americans. Cancer Epidemiol. Biomarkers Prev., 2009, 18(5), 1552-1561.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-1146] [PMID: 19423533]
[38]
Royston, K.J.; Adedokun, B.; Olopade, O.I. Race, the microbiome and colorectal cancer. World J. Gastrointest. Oncol., 2019, 11(10), 773-787.
[http://dx.doi.org/10.4251/wjgo.v11.i10.773] [PMID: 31662819]
[39]
Laiyemo, A.O.; Doubeni, C.; Pinsky, P.F.; Doria-Rose, V.P.; Bresalier, R.; Lamerato, L.E.; Crawford, E.D.; Kvale, P.; Fouad, M.; Hickey, T.; Riley, T.; Weissfeld, J.; Schoen, R.E.; Marcus, P.M.; Prorok, P.C.; Berg, C.D. Race and colorectal cancer disparities: Health care utilization vs different cancer susceptibilities. J. Natl. Cancer Inst., 2010, 102(8), 538-546.
[http://dx.doi.org/10.1093/jnci/djq068] [PMID: 20357245]
[40]
Grady, W.M. Genetic testing for high risk colon cancer patients. Gastroenterology, 2003, 124(6), 1574-1594.
[http://dx.doi.org/10.1016/S0016-5085(03)00376-7] [PMID: 12761718]
[41]
Henrikson, N.B.; Webber, E.M.; Goddard, K.A.; Scrol, A.; Piper, M.; Williams, M.S.; Zallen, D.T.; Calonge, N.; Ganiats, T.G.; Janssens, A.C.; Zauber, A.; Lansdorp, I.; van Ballegooijen, M.; Whitlock, E.P. Family history and the natural history of colorectal cancer: Systematic review. Genet. Med., 2015, 17(9), 702-712.
[http://dx.doi.org/10.1038/gim.2014.188] [PMID: 25590981]
[42]
Roos, V.H.; Mangas, C.; Rodriguez, M.; Medina, L.; Steyerberg, E.W.; Bossuyt, P.M.M.; Dekker, E.; Jover, R.; van Leerdam, M.E. Effects of family history on relative and absolute risks for colorectal cancer: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol., 2019, 17(13), 2657-2667.e9.
[http://dx.doi.org/10.1016/j.cgh.2019.09.007] [PMID: 31525516]
[43]
Mehraban Far, P.; Alshahrani, A.; Yaghoobi, M. Quantitative risk of positive family history in developing colorectal cancer: A meta-analysis. World J. Gastroenterol., 2019, 25(30), 4278-4291.
[http://dx.doi.org/10.3748/wjg.v25.i30.4278] [PMID: 31435179]
[44]
Safiri, S.; Sepanlou, S.G.; Ikuta, K.S.; Bisignano, C.; Salimzadeh, H.; Delavari, A.; Ansari, R.; Roshandel, G.; Merat, S.; Fitzmaurice, C.; Force, L.M.; Nixon, M.R.; Abbastabar, H.; Abegaz, K.H.; Afarideh, M.; Ahmadi, A.; Ahmed, M.B.; Akinyemiju, T.; Alahdab, F.; Ali, R.; Alikhani, M.; Alipour, V.; Aljunid, S.M.; Almadi, M.A.H.; Almasi-Hashiani, A.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amini, S.; Anber, N.H.; Ansari-Moghaddam, A.; Arabloo, J.; Arefi, Z.; Asghari Jafarabadi, M.; Azadmehr, A.; Badawi, A.; Baheiraei, N.; Bärnighausen, T.W.; Basaleem, H.; Behzadifar, M.; Behzadifar, M.; Belayneh, Y.M.; Berhe, K.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Biondi, A.; Bjørge, T.; Borzì, A.M.; Bosetti, C.; Bou-Orm, I.R.; Brenner, H.; Briko, A.N.; Briko, N.I.; Carreras, G.; Carvalho, F.; Castañeda-Orjuela, C.A.; Cerin, E.; Chiang, P.P-C.; Chido-Amajuoyi, O.G.; Daryani, A.; Davitoiu, D.V.; Demoz, G.T.; Desai, R.; Dianati nasab, M.; Eftekhari, A.; El Sayed, I.; Elbarazi, I.; Emamian, M.H.; Endries, A.Y.; Esmaeilzadeh, F.; Esteghamati, A.; Etemadi, A.; Farzadfar, F.; Fernandes, E.; Fernandes, J.C.; Filip, I.; Fischer, F.; Foroutan, M.; Gad, M.M.; Gallus, S.; Ghaseni-Kebria, F.; Ghashghaee, A.; Gorini, G.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hasanpour-Heidari, S.; Hasanzadeh, A.; Hassanipour, S.; Hay, S.I.; Hoang, C.L.; Hostiuc, M.; Househ, M.; Ilesanmi, O.S.; Ilic, M.D.; Innos, K.; Irvani, S.S.N.; Islami, F.; Jaca, A.; Jafari Balalami, N.; Jafari delouei, N.; Jafarinia, M.; Jahani, M.A.; Jakovljevic, M.; James, S.L.; Javanbakht, M.; Jenabi, E.; Jha, R.P.; Joukar, F.; Kasaeian, A.; Kassa, T.D.; Kassaw, M.W.; Kengne, A.P.; Khader, Y.S.; Khaksarian, M.; Khalilov, R.; Khan, E.A.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khosravi Shadmani, F.; Khubchandani, J.; Kim, D.; Kisa, A.; Kisa, S.; Kocarnik, J.M.; Komaki, H.; Kopec, J.A.; Koyanagi, A.; Kuipers, E.J.; Kumar, V.; La Vecchia, C.; Lami, F.H.; Lopez, A.D.; Lopukhov, P.D.; Lunevicius, R.; Majeed, A.; Majidinia, M.; Manafi, A.; Manafi, N.; Manda, A-L.; Mansour-Ghanaei, F.; Mantovani, L.G.; Mehta, D.; Meier, T.; Meles, H.G.; Mendoza, W.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Mir, S.M.; Mirzaei, H.; Mohammad, K.A.; Mohammad Gholi Mezerji, N.; Mohammadian-Hafshejani, A.; Mohammadoo-Khorasani, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moossavi, M.; Moradi, G.; Moradpour, F.; Moradzadeh, R.; Nahvijou, A.; Naik, G.; Najafi, F.; Nazari, J.; Negoi, I.; Nguyen, C.T.; Nguyen, T.H.; Ningrum, D.N.A.; Ogbo, F.A.; Olagunju, A.T.; Olagunju, T.O.; Pana, A.; Pereira, D.M.; Pirestani, M.; Pourshams, A.; Poustchi, H.; Qorbani, M.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rahmati, M.; Rajati, F.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C; Renzaho, A.M.N.; Rezaei, N.; Rezapour, A.; Saad, A.M.; Saadatagah, S.; Saddik, B.; Salehi, F.; Salehi Zahabi, S.; Salz, I.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sarveazad, A.; Satpathy, M.; Schneider, I.J.C.; Sekerija, M.; Shaahmadi, F.; Shabaninejad, H.; Shamsizadeh, M.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Sheikhbahaei, S.; Shirkoohi, R.; Siddappa Malleshappa, S.K.; Silva, D.A.S.; Sisay, M.; Smarandache, C-G.; Soofi, M.; Soreide, K.; Soshnikov, S.; Starodubov, V.I.; Subart, M.L.; Sullman, M.J.M.; Tabarés-Seisdedos, R.; Taherkhani, A.; Tesfay, B.; Topor-Madry, R.; Traini, E.; Tran, B.X.; Tran, K.B.; Ullah, I.; Uthman, O.A.; Vacante, M.; Vahedian-Azimi, A.; Valli, A.; Varavikova, E.; Vujcic, I.S.; Westerman, R.; Yazdi-Feyzabadi, V.; Yisma, E.; Yu, C.; Zadnik, V.; Zahirian Moghadam, T.; Zaki, L.; Zandian, H.; Zhang, Z-J.; Murray, C.J.L.; Naghavi, M.; Malekzadeh, R The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol. Hepatol., 2019, 4(12), 913-933.
[http://dx.doi.org/10.1016/S2468-1253(19)30345-0] [PMID: 31648977]
[45]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[46]
Vuik, F.E.; Nieuwenburg, S.A.; Bardou, M.; Lansdorp-Vogelaar, I.; Dinis-Ribeiro, M.; Bento, M.J.; Zadnik, V.; Pellisé, M.; Esteban, L.; Kaminski, M.F.; Suchanek, S.; Ngo, O.; Májek, O.; Leja, M.; Kuipers, E.J.; Spaander, M.C. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut, 2019, 68(10), 1820-1826.
[http://dx.doi.org/10.1136/gutjnl-2018-317592] [PMID: 31097539]
[47]
Low, E.E.; Demb, J.; Liu, L.; Earles, A.; Bustamante, R.; Williams, C.D.; Provenzale, D.; Kaltenbach, T.; Gawron, A.J.; Martinez, M.E.; Gupta, S. Risk factors for early-onset colorectal cancer. Gastroenterology, 2020, 159(2), 492-501.e7.
[http://dx.doi.org/10.1053/j.gastro.2020.01.004] [PMID: 31926997]
[48]
Dyson, J.K.; Rutter, M.D. Colorectal cancer in inflammatory bowel disease: What is the real magnitude of the risk? World J. Gastroenterol., 2012, 18(29), 3839-3848.
[http://dx.doi.org/10.3748/wjg.v18.i29.3839] [PMID: 22876036]
[49]
Herrinton, L.J.; Liu, L.; Levin, T.R.; Allison, J.E.; Lewis, J.D.; Velayos, F. Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010. Gastroenterology, 2012, 143(2), 382-389.
[http://dx.doi.org/10.1053/j.gastro.2012.04.054] [PMID: 22609382]
[50]
Komaki, Y.; Komaki, F.; Yamada, A.; Micic, D.; Ido, A.; Sakuraba, A. Risk of cancers in patients with pediatric inflammatory bowel diseases: A systematic review and meta-analysis. J. Pediatr., 2021, 229, 102-117.e36.
[http://dx.doi.org/10.1016/j.jpeds.2020.08.087] [PMID: 32898579]
[51]
Choi, Y.J.; Lee, D.H.; Han, K.D.; Yoon, H.; Shin, C.M.; Park, Y.S.; Kim, N. Adult height in relation to risk of cancer in a cohort of 22,809,722 Korean adults. Br. J. Cancer, 2019, 120(6), 668-674.
[http://dx.doi.org/10.1038/s41416-018-0371-8] [PMID: 30778143]
[52]
Abar, L.; Vieira, A.R.; Aune, D.; Sobiecki, J.G.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.C.; Chan, D.S.M.; Schlesinger, S.; Norat, T. Height and body fatness and colorectal cancer risk: An update of the WCRF-AICR systematic review of published prospective studies. Eur. J. Nutr., 2018, 57(5), 1701-1720.
[http://dx.doi.org/10.1007/s00394-017-1557-1] [PMID: 29080978]
[53]
Onyeaghala, G.; Lutsey, P.L.; Demerath, E.W.; Folsom, A.R.; Joshu, C.E.; Platz, E.A.; Prizment, A.E. Association between greater leg length and increased incidence of colorectal cancer: The atherosclerosis risk in communities (ARIC) study. Cancer Causes Control, 2019, 30(8), 791-797.
[http://dx.doi.org/10.1007/s10552-019-01192-0] [PMID: 31165420]
[54]
Mahmood, S.; MacInnis, R.J.; English, D.R.; Karahalios, A.; Lynch, B.M. Domain-specific physical activity and sedentary behaviour in relation to colon and rectal cancer risk: A systematic review and meta-analysis. Int. J. Epidemiol., 2017, 46(6), 1797-1813.
[http://dx.doi.org/10.1093/ije/dyx137] [PMID: 29025130]
[55]
Robsahm, T.E.; Aagnes, B.; Hjartåker, A.; Langseth, H.; Bray, F.I.; Larsen, I.K. Body mass index, physical activity, and colorectal cancer by anatomical subsites: A systematic review and meta-analysis of cohort studies. Eur. J. Cancer Prev., 2013, 22(6), 492-505.
[http://dx.doi.org/10.1097/CEJ.0b013e328360f434] [PMID: 23591454]
[56]
Griswold, M.G.; Fullman, N.; Hawley, C.; Arian, N.; Zimsen, S.R.M.; Tymeson, H.D.; Venkateswaran, V.; Tapp, A.D.; Forouzanfar, M.H.; Salama, J.S.; Abate, K.H.; Abate, D.; Abay, S.M.; Abbafati, C.; Abdulkader, R.S.; Abebe, Z.; Aboyans, V.; Abrar, M.M.; Acharya, P.; Adetokunboh, O.O.; Adhikari, T.B.; Adsuar, J.C.; Afarideh, M.; Agardh, E.E.; Agarwal, G.; Aghayan, S.A.; Agrawal, S.; Ahmed, M.B.; Akibu, M.; Akinyemiju, T.; Akseer, N.; Asfoor, D.H.A.; Al-Aly, Z.; Alahdab, F.; Alam, K.; Albujeer, A.; Alene, K.A.; Ali, R.; Ali, S.D.; Alijanzadeh, M.; Aljunid, S.M.; Alkerwi, A.; Allebeck, P.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Ammar, W.; Amoako, Y.A.; Amul, G.G.H.; Andrei, C.L.; Angus, C.; Ansha, M.G.; Antonio, C.A.T.; Aremu, O.; Ärnlöv, J.; Artaman, A.; Aryal, K.K.; Assadi, R.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.; Awasthi, A.; Ayele, H.T.; Ayer, R.; Ayuk, T.B.; Azzopardi, P.S.; Badali, H.; Badawi, A.; Banach, M.; Barker-Collo, S.L.; Barrero, L.H.; Basaleem, H.; Baye, E.; Bazargan-Hejazi, S.; Bedi, N.; Béjot, Y.; Belachew, A.B.; Belay, S.A.; Bennett, D.A.; Bensenor, I.M.; Bernabe, E.; Bernstein, R.S.; Beyene, A.S.; Beyranvand, T.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bililign, N.; Birlik, S.M.; Birungi, C.; Bizuneh, H.; Bjerregaard, P.; Bjørge, T.; Borges, G.; Bosetti, C.; Boufous, S.; Bragazzi, N.L.; Brenner, H.; Butt, Z.A.; Cahuana-Hurtado, L.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Catalá-López, F.; Chang, J-C.; Charlson, F.J.; Chattopadhyay, A.; Chaturvedi, P.; Chowdhury, R.; Christopher, D.J.; Chung, S-C.; Ciobanu, L.G.; Claro, R.M.; Conti, S.; Cousin, E.; Criqui, M.H.; Dachew, B.A.; Dargan, P.I.; Daryani, A.; Das Neves, J.; Davletov, K.; De Castro, F.; De Courten, B.; De Neve, J-W.; Degenhardt, L.; Demoz, G.T.; Des Jarlais, D.C.; Dey, S.; Dhaliwal, R.S.; Dharmaratne, S.D.; Dhimal, M.; Doku, D.T.; Doyle, K.E.; Dubey, M.; Dubljanin, E.; Duncan, B.B.; Ebrahimi, H.; Edessa, D.; El Sayed Zaki, M.; Ermakov, S.P.; Erskine, H.E.; Esteghamati, A.; Faramarzi, M.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Felisbino-Mendes, M.S.; Fernandes, E.; Ferrari, A.J.; Ferri, C.P.; Fijabi, D.O.; Filip, I.; Finger, J.D.; Fischer, F.; Flaxman, A.D.; Franklin, R.C.; Futran, N.D.; Gallus, S.; Ganji, M.; Gankpe, F.G.; Gebregergs, G.B.; Gebrehiwot, T.T.; Geleijnse, J.M.; Ghadimi, R.; Ghandour, L.A.; Ghimire, M.; Gill, P.S.; Ginawi, I.A.; Giref, A.Z.Z.; Gona, P.N.; Gopalani, S.V.; Gotay, C.C.; Goulart, A.C.; Greaves, F.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Gvs, M.; Hafezi-Nejad, N.; Hagos, T.B.; Hailu, G.B.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Heibati, B.; Henok, A.; Heredia-Pi, I.; Hernández-Llanes, N.F.; Herteliu, C.; Hibstu, D.T.T.; Hoogar, P.; Horita, N.; Hosgood, H.D.; Hosseini, M.; Hostiuc, M.; Hu, G.; Huang, H.; Husseini, A.; Idrisov, B.; Ileanu, B.V.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jackson, M.D.; Jakovljevic, M.; Jalu, M.T.; Jayatilleke, A.U.; Jha, R.P.; Jonas, J.B.; Jozwiak, J.J.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kapil, U.; Kasaeian, A.; Kassa, T.D.D.; Katikireddi, S.V.; Kawakami, N.; Kebede, S.; Kefale, A.T.; Keiyoro, P.N.; Kengne, A.P.; Khader, Y.; Khafaie, M.A.; Khalil, I.A.; Khan, M.N.; Khang, Y-H.; Khater, M.M.; Khubchandani, J.; Kim, C-I.; Kim, D.; Kim, Y.J.; Kimokoti, R.W.; Kisa, A.; Kivimäki, M.; Kochhar, S.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Krishan, K.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.S.; Kumar, P.; Lafranconi, A.; Lakshmana Balaji, A.; Lalloo, R.; Lallukka, T.; Lam, H.; Lami, F.H.; Lan, Q.; Lang, J.J.; Lansky, S.; Larsson, A.O.; Latifi, A.; Leasher, J.L.; Lee, P.H.; Leigh, J.; Leinsalu, M.; Leung, J.; Levi, M.; Li, Y.; Lim, L-L.; Linn, S.; Liu, S.; Lobato-Cordero, A.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Macarayan, E.R.K.; Machado, I.E.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mapoma, C.C.; Martinez-Raga, J.; Maulik, P.K.; Mazidi, M.; Mckee, M.; Mehta, V.; Meier, T.; Mekonen, T.; Meles, K.G.; Melese, A.; Memiah, P.T.N.; Mendoza, W.; Mengistu, D.T.; Mensah, G.A.; Meretoja, T.J.; Mezgebe, H.B.; Miazgowski, T.; Miller, T.R.; Mini, G.; Mirica, A.; Mirrakhimov, E.M.; Moazen, B.; Mohammad, K.A.; Mohammadifard, N.; Mohammed, S.; Monasta, L.; Moraga, P.; Morawska, L.; Mousavi, S.M.; Mukhopadhyay, S.; Musa, K.I.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Nansseu, J.R.; Nayak, M.S.D.P.; Nejjari, C.; Neupane, S.; Neupane, S.P.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Nguyen, T.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Noubiap, J.J.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Oommen, A.M.; Oren, E.; Orpana, H.M.; Ortega-Altamirano, D.D.V.; Ortiz, J.R.; Ota, E.; Owolabi, M.O.; Oyekale, A.S.; PA, M.; Pana, A.; Park, E-K.; Parry, C.D.H.; Parsian, H.; Patle, A.; Patton, G.C.; Paudel, D.; Petzold, M.; Phillips, M.R.; Pillay, J.D.; Postma, M.J.; Pourmalek, F.; Prabhakaran, D.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, A.; Rahman, M.; Rahman, M.A.; Rai, R.K.; Rajsic, S.; Raju, S.B.; Ram, U.; Rana, S.M.; Ranabhat, C.L.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C. Jr; Reis, C.; Renzaho, A.M.N.; Rezai, M.S.; Roever, L.; Ronfani, L.; Room, R.; Roshandel, G.; Rostami, A.; Roth, G.A.; Roy, A.; Sabde, Y.D.; Saddik, B.; Safiri, S.; Sahebkar, A.; Salama, J.S.; Saleem, Z.; Salomon, J.A.; Salvi, S.S.; Sanabria, J.; Sanchez-Niño, M.D.; Santomauro, D.F.; Santos, I.S.; Santric Milicevic, M.M.M.; Sarker, A.R.; Sarmiento-Suárez, R.; Sarrafzadegan, N.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Saxena, S.; Saylan, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwendicke, F.; Sepanlou, S.G.; Shaikh, M.A.; Sharif, M.; She, J.; Sheikh, A.; Shen, J.; Shiferaw, M.S.; Shigematsu, M.; Shiri, R.; Shishani, K.; Shiue, I.; Shukla, S.R.; Sigfusdottir, I.D.; Silva, D.A.S.; Silva, N.T.D.; Silveira, D.G.A.; Sinha, D.N.; Sitas, F.; Soares Filho, A.M.; Soofi, M.; Sorensen, R.J.D.; Soriano, J.B.; Sreeramareddy, C.T.; Steckling, N.; Stein, D.J.; Sufiyan, M.B.; Sur, P.J.; Sykes, B.L.; Tabarés-Seisdedos, R.; Tabuchi, T.; Tavakkoli, M.; Tehrani-Banihashemi, A.; Tekle, M.G.; Thapa, S.; Thomas, N.; Topor-Madry, R.; Topouzis, F.; Tran, B.X.; Troeger, C.E.; Truelsen, T.C.; Tsilimparis, N.; Tyrovolas, S.; Ukwaja, K.N.; Ullah, I.; Uthman, O.A.; Valdez, P.R.; Van Boven, J.F.M.; Vasankari, T.J.; Venketasubramanian, N.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vos, T.; Wagnew, F.W.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; Westerman, R.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Wyper, G.M.A.; Xu, G.; Yamada, T.; Yano, Y.; Ye, P.; Yimer, E.M.; Yip, P.; Yirsaw, B.D.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Zachariah, G.; Zaidi, Z.; Zamani, M.; Zhang, X.; Zodpey, S.; Mokdad, A.H.; Naghavi, M.; Murray, C.J.L.; Gakidou, E. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2018, 392(10152), 1015-1035.
[http://dx.doi.org/10.1016/S0140-6736(18)31310-2] [PMID: 30146330]
[57]
Kafil, H.S.; Mobarez, A.M. Assessment of biofilm formation by enterococci isolates from urinary tract infections with different virulence profiles. J. King Saud Univ. Sci., 2015, 27(4), 312-317.
[http://dx.doi.org/10.1016/j.jksus.2014.12.007]
[58]
Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and beverages and colorectal cancer risk: A systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol., 2017, 28(8), 1788-1802.
[http://dx.doi.org/10.1093/annonc/mdx171] [PMID: 28407090]
[59]
McNabb, S.; Harrison, T.A.; Albanes, D.; Berndt, S.I.; Brenner, H.; Caan, B.J.; Campbell, P.T.; Cao, Y.; Chang-Claude, J.; Chan, A.; Chen, Z.; English, D.R.; Giles, G.G.; Giovannucci, E.L.; Goodman, P.J.; Hayes, R.B.; Hoffmeister, M.; Jacobs, E.J.; Joshi, A.D.; Larsson, S.C.; Le Marchand, L.; Li, L.; Lin, Y.; Männistö, S.; Milne, R.L.; Nan, H.; Newton, C.C.; Ogino, S.; Parfrey, P.S.; Petersen, P.S.; Potter, J.D.; Schoen, R.E.; Slattery, M.L.; Su, Y.R.; Tangen, C.M.; Tucker, T.C.; Weinstein, S.J.; White, E.; Wolk, A.; Woods, M.O.; Phipps, A.I.; Peters, U. Meta-analysis of 16 studies of the association of alcohol with colorectal cancer. Int. J. Cancer, 2020, 146(3), 861-873.
[http://dx.doi.org/10.1002/ijc.32377] [PMID: 31037736]
[60]
Choi, Y.J.; Myung, S.K.; Lee, J.H. Light alcohol drinking and risk of cancer: A meta-analysis of cohort studies. Cancer Res. Treat., 2018, 50(2), 474-487.
[http://dx.doi.org/10.4143/crt.2017.094] [PMID: 28546524]
[61]
Bosetti, C.; Santucci, C.; Gallus, S.; Martinetti, M.; La Vecchia, C. Aspirin and the risk of colorectal and other digestive tract cancers: An updated meta-analysis through 2019. Ann. Oncol., 2020, 31(5), 558-568.
[http://dx.doi.org/10.1016/j.annonc.2020.02.012] [PMID: 32272209]
[62]
Ye, X.; Fu, J.; Yang, Y.; Chen, S. Dose-risk and duration-risk relationships between aspirin and colorectal cancer: A meta-analysis of published cohort studies. PLoS One, 2013, 8(2), e57578.
[http://dx.doi.org/10.1371/journal.pone.0057578] [PMID: 23451245]
[63]
Din, F.V.; Theodoratou, E.; Farrington, S.M.; Tenesa, A.; Barnetson, R.A.; Cetnarskyj, R.; Stark, L.; Porteous, M.E.; Campbell, H.; Dunlop, M.G. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut, 2010, 59(12), 1670-1679.
[http://dx.doi.org/10.1136/gut.2009.203000] [PMID: 20844293]
[64]
Zhang, L.; Zou, H.; Zhao, Y.; Hu, C.; Atanda, A.; Qin, X.; Jia, P.; Jiang, Y.; Qi, Z. Association between blood circulating vitamin D and colorectal cancer risk in Asian countries: A systematic review and dose-response meta-analysis. BMJ Open, 2019, 9(12), e030513.
[http://dx.doi.org/10.1136/bmjopen-2019-030513] [PMID: 31874870]
[65]
He, Y.; Timofeeva, M.; Farrington, S.M.; Vaughan-Shaw, P.; Svinti, V.; Walker, M.; Zgaga, L.; Meng, X.; Li, X.; Spiliopoulou, A.; Jiang, X.; Hyppönen, E.; Kraft, P.; Kiel, D.P.; Hayward, C.; Campbell, A.; Porteous, D.; Vucic, K.; Kirac, I.; Filipovic, M.; Harris, S.E.; Deary, I.J.; Houlston, R.; Tomlinson, I.P.; Campbell, H.; Theodoratou, E.; Dunlop, M.G. Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: A large Mendelian randomisation study. BMC Med., 2018, 16(1), 142.
[http://dx.doi.org/10.1186/s12916-018-1119-2] [PMID: 30103784]
[66]
Ekmekcioglu, C.; Haluza, D.; Kundi, M. 25-hydroxyvitamin D status and risk for colorectal cancer and type 2 diabetes mellitus: A systematic review and meta-analysis of epidemiological studies. Int. J. Environ. Res. Public Health, 2017, 14(2), E127.
[http://dx.doi.org/10.3390/ijerph14020127] [PMID: 28134804]
[67]
Smolińska, K.; Paluszkiewicz, P. Risk of colorectal cancer in relation to frequency and total amount of red meat consumption. Systematic review and meta-analysis. Arch. Med. Sci., 2010, 6(4), 605-610.
[http://dx.doi.org/10.5114/aoms.2010.14475] [PMID: 22371807]
[68]
Alexander, D.D.; Weed, D.L.; Miller, P.E.; Mohamed, M.A. Red meat and colorectal cancer: A quantitative update on the state of the epidemiologic science. J. Am. Coll. Nutr., 2015, 34(6), 521-543.
[http://dx.doi.org/10.1080/07315724.2014.992553] [PMID: 25941850]
[69]
Etemadi, A.; Abnet, C.C.; Graubard, B.I.; Beane-Freeman, L.; Freedman, N.D.; Liao, L.; Dawsey, S.M.; Sinha, R. Anatomical subsite can modify the association between meat and meat compounds and risk of colorectal adenocarcinoma: Findings from three large US cohorts. Int. J. Cancer, 2018, 143(9), 2261-2270.
[http://dx.doi.org/10.1002/ijc.31612] [PMID: 29873077]
[70]
Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Boeing, H.; Schlesinger, S. Food groups and risk of colorectal cancer. Int. J. Cancer, 2018, 142(9), 1748-1758.
[http://dx.doi.org/10.1002/ijc.31198] [PMID: 29210053]
[71]
Tsubono, Y.; Otani, T.; Kobayashi, M.; Yamamoto, S.; Sobue, T.; Tsugane, S. No association between fruit or vegetable consumption and the risk of colorectal cancer in Japan. Br. J. Cancer, 2005, 92(9), 1782-1784.
[http://dx.doi.org/10.1038/sj.bjc.6602566] [PMID: 15856039]
[72]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[73]
Ramakrishna, B.S. The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol., 2007, 41(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1097/MCG.0b013e31802fba68]
[74]
Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol., 2018, 16(9), 540-550.
[http://dx.doi.org/10.1038/s41579-018-0041-0] [PMID: 29937540]
[75]
Feng, Q.; Chen, W-D.; Wang, Y-D. Gut microbiota: An integral moderator in health and disease. Front. Microbiol., 2018, 9, 151-151.
[http://dx.doi.org/10.3389/fmicb.2018.00151] [PMID: 29515527]
[76]
Gholizadeh, P.; Eslami, H.; Kafil, H.S. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed. Pharmacother., 2017, 89, 918-925.
[http://dx.doi.org/10.1016/j.biopha.2017.02.102] [PMID: 28292019]
[77]
Pormohammad, A.; Mohtavinejad, N.; Gholizadeh, P.; Dabiri, H.; Salimi Chirani, A.; Hashemi, A.; Nasiri, M.J. Global estimate of gastric cancer in Helicobacter pylori-infected population: A systematic review and meta-analysis. J. Cell. Physiol., 2019, 234(2), 1208-1218.
[http://dx.doi.org/10.1002/jcp.27114] [PMID: 30132888]
[78]
Levi, L. Bacterial genotoxins: An interface between infection and cancer biology. 2015.
[79]
Martin, O.C.B.; Frisan, T. Bacterial genotoxin-induced DNA damage and modulation of the host immune microenvironment. Toxins (Basel), 2020, 12(2), E63.
[http://dx.doi.org/10.3390/toxins12020063] [PMID: 31973033]
[80]
Martin, O.C.B.; Bergonzini, A.; Lopez Chiloeches, M.; Paparouna, E.; Butter, D.; Theodorou, S.D.P.; Haykal, M.M.; Boutet-Robinet, E.; Tebaldi, T.; Wakeham, A.; Rhen, M.; Gorgoulis, V.G.; Mak, T.; Pateras, I.S.; Frisan, T. Influence of the microenvironment on modulation of the host response by typhoid toxin. Cell Rep., 2021, 35(1), 108931.
[http://dx.doi.org/10.1016/j.celrep.2021.108931] [PMID: 33826883]
[81]
He, Z.; Gharaibeh, R.Z.; Newsome, R.C.; Pope, J.L.; Dougherty, M.W.; Tomkovich, S.; Pons, B.; Mirey, G.; Vignard, J.; Hendrixson, D.R.; Jobin, C. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 2019, 68(2), 289-300.
[http://dx.doi.org/10.1136/gutjnl-2018-317200] [PMID: 30377189]
[82]
Rosadi, F.; Fiorentini, C.; Fabbri, A. Bacterial protein toxins in human cancers. Pathog. Dis., 2016, 74(1), ftv105.
[http://dx.doi.org/10.1093/femspd/ftv105] [PMID: 26534910]
[83]
Martin, O.C.B.; Bergonzini, A.; D’Amico, F.; Chen, P.; Shay, J.W.; Dupuy, J.; Svensson, M.; Masucci, M.G.; Frisan, T. Infection with genotoxin-producing Salmonella enterica synergises with loss of the tumour suppressor APC in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cell. Microbiol., 2019, 21(12), e13099.
[http://dx.doi.org/10.1111/cmi.13099] [PMID: 31414579]
[84]
Hernández-Luna, M.A.; López-Briones, S.; Luria-Pérez, R. The four horsemen in colon cancer. J. Oncol., 2019, 2019, 5636272.
[http://dx.doi.org/10.1155/2019/5636272] [PMID: 31662752]
[85]
Cuevas-Ramos, G.; Petit, C.R.; Marcq, I.; Boury, M.; Oswald, E.; Nougayrède, J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11537-11542.
[http://dx.doi.org/10.1073/pnas.1001261107] [PMID: 20534522]
[86]
Wilson, M.R.; Jiang, Y.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carrá, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D.; Engelward, B.P.; Garrett, W.S.; Balbo, S.; Balskus, E.P. The human gut bacterial genotoxin colibactin alkylates DNA. Science, 2019, 363(6428), eaar7785.
[http://dx.doi.org/10.1126/science.aar7785] [PMID: 30765538]
[87]
Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; Paganelli, F.L.; Geurts, M.H.; Beumer, J.; Mizutani, T.; Miao, Y.; van der Linden, R.; van der Elst, S.; Garcia, K.C.; Top, J.; Willems, R.J.L.; Giannakis, M.; Bonnet, R.; Quirke, P.; Meyerson, M.; Cuppen, E.; van Boxtel, R.; Clevers, H. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 2020, 580(7802), 269-273.
[http://dx.doi.org/10.1038/s41586-020-2080-8] [PMID: 32106218]
[88]
Hartl, K.; Sigal, M. Microbe-driven genotoxicity in gastrointestinal carcinogenesis. Int. J. Mol. Sci., 2020, 21(20), 7439.
[http://dx.doi.org/10.3390/ijms21207439] [PMID: 33050171]
[89]
Li, S.; Konstantinov, S.R.; Smits, R.; Peppelenbosch, M.P. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol. Med., 2017, 23(1), 18-30.
[http://dx.doi.org/10.1016/j.molmed.2016.11.004] [PMID: 27986421]
[90]
Chew, S.S.; Tan, L.T.; Law, J.W.; Pusparajah, P.; Goh, B.H.; Ab Mutalib, N.S.; Lee, L.H. Targeting gut microbial biofilms-A key to hinder colon carcinogenesis? Cancers (Basel), 2020, 12(8), E2272.
[http://dx.doi.org/10.3390/cancers12082272] [PMID: 32823729]
[91]
Jasemi, S.; Emaneini, M.; Fazeli, M.S.; Ahmadinejad, Z.; Nomanpour, B.; Sadeghpour Heravi, F.; Sechi, L.A.; Feizabadi, M.M. Toxigenic and non-toxigenic patterns I, II and III and biofilm-forming ability in Bacteroides fragilis strains isolated from patients diagnosed with colorectal cancer. Gut Pathog., 2020, 12(1), 28.
[http://dx.doi.org/10.1186/s13099-020-00366-5] [PMID: 32518594]
[92]
Tomkovich, S.; Dejea, C.M.; Winglee, K.; Drewes, J.L.; Chung, L.; Housseau, F.; Pope, J.L.; Gauthier, J.; Sun, X.; Mühlbauer, M.; Liu, X.; Fathi, P.; Anders, R.A.; Besharati, S.; Perez-Chanona, E.; Yang, Y.; Ding, H.; Wu, X.; Wu, S.; White, J.R.; Gharaibeh, R.Z.; Fodor, A.A.; Wang, H.; Pardoll, D.M.; Jobin, C.; Sears, C.L. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest., 2019, 129(4), 1699-1712.
[http://dx.doi.org/10.1172/JCI124196] [PMID: 30855275]
[93]
Drewes, J.L.; White, J.R.; Dejea, C.M.; Fathi, P.; Iyadorai, T.; Vadivelu, J.; Roslani, A.C.; Wick, E.C.; Mongodin, E.F.; Loke, M.F.; Thulasi, K.; Gan, H.M.; Goh, K.L.; Chong, H.Y.; Kumar, S.; Wanyiri, J.W.; Sears, C.L. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes, 2017, 3(1), 34.
[http://dx.doi.org/10.1038/s41522-017-0040-3] [PMID: 29214046]
[94]
Tomkovich, S.; Gharaibeh, R.Z.; Dejea, C.M.; Pope, J.L.; Jiang, J.; Winglee, K.; Gauthier, J.; Newsome, R.C.; Yang, Y.; Fodor, A.A.; Schmittgen, T.D.; Sears, C.L.; Jobin, C. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. mSystems, 2020, 5(1), e00451-e19.
[http://dx.doi.org/10.1128/mSystems.00451-19] [PMID: 31937674]
[95]
Miller, A.L.; Bessho, S.; Grando, K.; Tükel, Ç. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases. Front. Immunol., 2021, 12, 638867.
[http://dx.doi.org/10.3389/fimmu.2021.638867] [PMID: 33717189]
[96]
Zińczuk, J.; Maciejczyk, M.; Zaręba, K.; Romaniuk, W.; Markowski, A.; Kędra, B.; Zalewska, A.; Pryczynicz, A.; Matowicka-Karna, J.; Guzińska-Ustymowicz, K. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. Can malondialdehyde and catalase be markers of colorectal cancer advancement? Biomolecules, 2019, 9(10), E637.
[http://dx.doi.org/10.3390/biom9100637] [PMID: 31652642]
[97]
Basak, D.; Uddin, M.N.; Hancock, J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers (Basel), 2020, 12(11), E3336.
[http://dx.doi.org/10.3390/cancers12113336] [PMID: 33187272]
[98]
Aceto, G.M.; Catalano, T.; Curia, M.C. Molecular aspects of colorectal adenomas: The interplay among microenvironment, oxidative stress, and predisposition. BioMed Res. Int., 2020, 2020, 1726309.
[http://dx.doi.org/10.1155/2020/1726309] [PMID: 32258104]
[99]
Crespo-Sanjuán, J.; Calvo-Nieves, M.D.; Aguirre-Gervás, B.; Herreros-Rodríguez, J.; Velayos-Jiménez, B.; Castro-Alija, M.J.; Muñoz-Moreno, M.F.; Sánchez, D.; Zamora-González, N.; Bajo-Grañeras, R.; García-Centeno, R.M.; Largo Cabrerizo, M.E.; Bustamante, M.R.; Garrote-Adrados, J.A. Early detection of high oxidative activity in patients with adenomatous intestinal polyps and colorectal adenocarcinoma: Myeloperoxidase and oxidized low-density lipoprotein in serum as new markers of oxidative stress in colorectal cancer. Lab. Med., 2015, 46(2), 123-135.
[http://dx.doi.org/10.1309/LMZJJU6BC86WUDHW] [PMID: 25918191]
[100]
Janion, K. Szczepańska, E.; Nowakowska-Zajdel, E.; Strzelczyk, J.; Copija, A. Selected oxidative stress markers in colorectal cancer patients in relation to primary tumor location-A preliminary research. Medicina (Kaunas), 2020, 56(2), E47.
[http://dx.doi.org/10.3390/medicina56020047] [PMID: 31972987]
[101]
Ju, H.Q.; Lu, Y.X.; Chen, D.L.; Zuo, Z.X.; Liu, Z.X.; Wu, Q.N.; Mo, H.Y.; Wang, Z.X.; Wang, D.S.; Pu, H.Y.; Zeng, Z.L.; Li, B.; Xie, D.; Huang, P.; Hung, M.C.; Chiao, P.J.; Xu, R.H. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Natl. Cancer Inst., 2019, 111(6), 584-596.
[http://dx.doi.org/10.1093/jnci/djy160] [PMID: 30534944]
[102]
Wang, Y.; Chen, Y.; Zhang, X.; Lu, Y.; Chen, H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods, 2020, 75, 104248.
[http://dx.doi.org/10.1016/j.jff.2020.104248]
[103]
Huycke, M.M.; Moore, D.R. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic. Biol. Med., 2002, 33(6), 818-826.
[http://dx.doi.org/10.1016/S0891-5849(02)00977-2] [PMID: 12208369]
[104]
Cheng, W.T.; Kantilal, H.K.; Davamani, F. The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malays. J. Med. Sci., 2020, 27(4), 9-21.
[http://dx.doi.org/10.21315/mjms2020.27.4.2] [PMID: 32863742]
[105]
Fang, Y.; Yan, C.; Zhao, Q.; Xu, J.; Liu, Z.; Gao, J.; Zhu, H.; Dai, Z.; Wang, D.; Tang, D. The roles of microbial products in the development of colorectal cancer: A review. Bioengineered, 2021, 12(1), 720-735.
[http://dx.doi.org/10.1080/21655979.2021.1889109] [PMID: 33618627]
[106]
Nguyen, T.T.; Ung, T.T.; Kim, N.H.; Jung, Y.D. Role of bile acids in colon carcinogenesis. World J. Clin. Cases, 2018, 6(13), 577-588.
[http://dx.doi.org/10.12998/wjcc.v6.i13.577] [PMID: 30430113]
[107]
Rhen, M. Salmonella and reactive oxygen species: A love-hate relationship. J. Innate Immun., 2019, 11(3), 216-226.
[http://dx.doi.org/10.1159/000496370] [PMID: 30943492]
[108]
Ding, S.; Hu, C.; Fang, J.; Liu, G. The protective role of probiotics against colorectal cancer. Oxid. Med. Cell. Longev., 2020, 2020, 8884583.
[http://dx.doi.org/10.1155/2020/8884583] [PMID: 33488940]
[109]
Hu, Y.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Yu, B. The bidirectional interactions between resveratrol and gut microbiota: An insight into oxidative stress and inflammatory bowel disease therapy. BioMed Res. Int., 2019, 2019, 5403761-5403761.
[http://dx.doi.org/10.1155/2019/5403761] [PMID: 31179328]
[110]
Horak, I.; Engelbrecht, G.; van Rensburg, P.J.J.; Claassens, S. Microbial metabolomics: Essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides. J. Appl. Microbiol., 2019, 127(2), 326-343.
[http://dx.doi.org/10.1111/jam.14218] [PMID: 30739384]
[111]
Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(4), 223-237.
[http://dx.doi.org/10.1038/s41575-019-0258-z] [PMID: 32076145]
[112]
Peng, Y.; Nie, Y.; Yu, J.; Wong, C.C. Microbial metabolites in colorectal cancer: Basic and clinical implications. Metabolites, 2021, 11(3), 159.
[http://dx.doi.org/10.3390/metabo11030159] [PMID: 33802045]
[113]
Catalán, M.; Ferreira, J.; Carrasco-Pozo, C. The microbiota-derived metabolite of quercetin, 3,4-dihydroxyphenylacetic acid prevents malignant transformation and mitochondrial dysfunction induced by hemin in colon cancer and normal colon epithelia cell lines. Molecules, 2020, 25(18), E4138.
[http://dx.doi.org/10.3390/molecules25184138] [PMID: 32927689]
[114]
van der Hee, B.; Wells, J.M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol., 2021, 29(8), 700-712.
[http://dx.doi.org/10.1016/j.tim.2021.02.001] [PMID: 33674141]
[115]
Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc., 2021, 80(1), 37-49.
[http://dx.doi.org/10.1017/S0029665120006916] [PMID: 32238208]
[116]
Nakkarach, A.; Foo, H.L.; Song, A.A.; Mutalib, N.E.A.; Nitisinprasert, S.; Withayagiat, U. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb. Cell Fact., 2021, 20(1), 36.
[http://dx.doi.org/10.1186/s12934-020-01477-z] [PMID: 33546705]
[117]
Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine, 2021, 66, 103293.
[http://dx.doi.org/10.1016/j.ebiom.2021.103293] [PMID: 33813134]
[118]
Wu, X.; Wu, Y.; He, L.; Wu, L.; Wang, X.; Liu, Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer, 2018, 9(14), 2510-2517.
[http://dx.doi.org/10.7150/jca.25324] [PMID: 30026849]
[119]
Wang, X.; Wang, J.; Rao, B.; Deng, L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp. Ther. Med., 2017, 13(6), 2848-2854.
[http://dx.doi.org/10.3892/etm.2017.4367] [PMID: 28587349]
[120]
Ohara, T.; Mori, T. Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition. Anticancer Res., 2019, 39(9), 4659-4666.
[http://dx.doi.org/10.21873/anticanres.13647] [PMID: 31519564]
[121]
He, X.; Zhao, S.; Li, Y. Faecalibacterium prausnitzii: A next-generation probiotic in gut disease improvement. Can. J. Infect. Dis. Med. Microbiol., 2021, 2021, 6666114.
[http://dx.doi.org/10.1155/2021/6666114]
[122]
La Rosa, S.L.; Leth, M.L.; Michalak, L.; Hansen, M.E.; Pudlo, N.A.; Glowacki, R.; Pereira, G.; Workman, C.T.; Arntzen, M.Ø.; Pope, P.B.; Martens, E.C.; Hachem, M.A.; Westereng, B. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat. Commun., 2019, 10(1), 905.
[http://dx.doi.org/10.1038/s41467-019-08812-y] [PMID: 30796211]
[123]
Pichler, M.J.; Yamada, C.; Shuoker, B.; Alvarez-Silva, C.; Gotoh, A.; Leth, M.L.; Schoof, E.; Katoh, T.; Sakanaka, M.; Katayama, T.; Jin, C.; Karlsson, N.G.; Arumugam, M.; Fushinobu, S.; Abou Hachem, M. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun., 2020, 11(1), 3285.
[http://dx.doi.org/10.1038/s41467-020-17075-x] [PMID: 32620774]
[124]
Kibi, M.; Nishiumi, S.; Kobayashi, T.; Kodama, Y.; Yoshida, M. GC/MS and LC/MS-based tissue metabolomic analysis detected increased levels of antioxidant metabolites in colorectal cancer. Kobe J. Med. Sci., 2019, 65(1), E19-E27.
[PMID: 31341153]
[125]
Garza, D.R.; Taddese, R.; Wirbel, J.; Zeller, G.; Boleij, A.; Huynen, M.A.; Dutilh, B.E. Metabolic models predict bacterial passengers in colorectal cancer. Cancer Metab., 2020, 8(1), 3-3.
[http://dx.doi.org/10.1186/s40170-020-0208-9] [PMID: 32055399]
[126]
Long, Z.; Zhou, J.; Xie, K.; Wu, Z.; Yin, H.; Daria, V.; Tian, J.; Zhang, N.; Li, L.; Zhao, Y.; Wang, F.; Wang, M.; Cui, Y. Metabolomic markers of colorectal tumor with different clinicopathological features. Front. Oncol., 2020, 10, 981-981.
[http://dx.doi.org/10.3389/fonc.2020.00981] [PMID: 32626659]
[127]
Potrykus, M.; Czaja-Stolc, S.; Stankiewicz, M. Kaska, Ł.; Małgorzewicz, S. Intestinal microbiota as a contributor to chronic inflammation and its potential modifications. Nutrients, 2021, 13(11), 3839.
[http://dx.doi.org/10.3390/nu13113839] [PMID: 34836095]
[128]
Rakoff-Nahoum, S.; Medzhitov, R. Toll-like receptors and cancer. Nat. Rev. Cancer, 2009, 9(1), 57-63.
[http://dx.doi.org/10.1038/nrc2541] [PMID: 19052556]
[129]
Wang, Q.; Zhang, X.; Xiao, T.; Pan, C.; Liu, X.; Zhao, Y. Prognostic role of Toll-like receptors in cancer: A meta-analysis. Ther. Clin. Risk Manag., 2018, 14, 1323-1330.
[http://dx.doi.org/10.2147/TCRM.S171341] [PMID: 30104878]
[130]
Basith, S.; Manavalan, B.; Yoo, T.H.; Kim, S.G.; Choi, S. Roles of toll-like receptors in cancer: A double-edged sword for defense and offense. Arch. Pharm. Res., 2012, 35(8), 1297-1316.
[http://dx.doi.org/10.1007/s12272-012-0802-7] [PMID: 22941474]
[131]
Fukata, M.; Abreu, M.T. Role of toll-like receptors in gastrointestinal malignancies. Oncogene, 2008, 27(2), 234-243.
[http://dx.doi.org/10.1038/sj.onc.1210908] [PMID: 18176605]
[132]
McCall, K.D.; Muccioli, M.; Benencia, F. Toll-Like Receptors Signaling in the Tumor Microenvironment.Tumor Microenvironment: Signaling Pathways – Part A; Birbrair, A., Ed.; Springer International Publishing: Cham, 2020, pp. 81-97.
[http://dx.doi.org/10.1007/978-3-030-35582-1_5]
[133]
Negi, S.; Das, D.K.; Pahari, S.; Nadeem, S.; Agrewala, J.N. Potential role of gut microbiota in induction and regulation of innate immune memory. Front. Immunol., 2019, 10, 2441-2441.
[http://dx.doi.org/10.3389/fimmu.2019.02441] [PMID: 31749793]
[134]
Rezasoltani, S.; Ghanbari, R.; Looha, M.A.; Mojarad, E.N.; Yadegar, A.; Stewart, D.; Aghdaei, H.A.; Zali, M.R. Expression of main toll-like receptors in patients with different types of colorectal polyps and their relationship with gut microbiota. Int. J. Mol. Sci., 2020, 21(23), 8968.
[http://dx.doi.org/10.3390/ijms21238968] [PMID: 33255933]
[135]
Kordahi, M.C.; Stanaway, I.B.; Avril, M.; Chac, D.; Blanc, M.P.; Ross, B.; Diener, C.; Jain, S.; McCleary, P.; Parker, A.; Friedman, V.; Huang, J.; Burke, W.; Gibbons, S.M.; Willis, A.D.; Darveau, R.P.; Grady, W.M.; Ko, C.W.; DePaolo, R.W. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host Microbe, 2021, 29(10), 1589-1598.e6.
[http://dx.doi.org/10.1016/j.chom.2021.08.013] [PMID: 34536346]
[136]
Hooks, K.B.; O’Malley, M.A. Dysbiosis and its discontents. MBio, 2017, 8(5), e01492-e17.
[http://dx.doi.org/10.1128/mBio.01492-17] [PMID: 29018121]
[137]
Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol., 2014, 16(7), 1024-1033.
[http://dx.doi.org/10.1111/cmi.12308] [PMID: 24798552]
[138]
Wilkins, L.J.; Monga, M.; Miller, A.W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep., 2019, 9(1), 12918.
[http://dx.doi.org/10.1038/s41598-019-49452-y] [PMID: 31501492]
[139]
Ogunrinola, G.A.; Oyewale, J.O.; Oshamika, O.O.; Olasehinde, G.I. The human microbiome and its impacts on health. Int. J. Microbiol., 2020, 2020, 8045646.
[http://dx.doi.org/10.1155/2020/8045646] [PMID: 32612660]
[140]
Tiffany, C.R.; Bäumler, A.J. Dysbiosis: From fiction to function. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(5), G602-G608.
[http://dx.doi.org/10.1152/ajpgi.00230.2019] [PMID: 31509433]
[141]
Aries, V.; Crowther, J.S.; Drasar, B.S.; Hill, M.J.; Williams, R.E. Bacteria and the aetiology of cancer of the large bowel. Gut, 1969, 10(5), 334-335.
[http://dx.doi.org/10.1136/gut.10.5.334] [PMID: 5771664]
[142]
Mo, Z.; Huang, P.; Yang, C.; Xiao, S.; Zhang, G.; Ling, F.; Li, L. Meta-analysis of 16S rRNA microbial data identified distinctive and predictive microbiota dysbiosis in colorectal carcinoma adjacent tissue. mSystems, 2020, 5(2), e00138-e20.
[http://dx.doi.org/10.1128/mSystems.00138-20] [PMID: 32291348]
[143]
Liu, W.; Zhang, R.; Shu, R.; Yu, J.; Li, H.; Long, H.; Jin, S.; Li, S.; Hu, Q.; Yao, F.; Zhou, C.; Huang, Q.; Hu, X.; Chen, M.; Hu, W.; Wang, Q.; Fang, S.; Wu, Q. Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. BioMed Res. Int., 2020, 2020, 7828392.
[http://dx.doi.org/10.1155/2020/7828392] [PMID: 32083132]
[144]
DeDecker, L.; Coppedge, B.; Avelar-Barragan, J.; Karnes, W.; Whiteson, K. Microbiome distinctions between the CRC carcinogenic pathways. Gut Microbes, 2021, 13(1), 1854641.
[http://dx.doi.org/10.1080/19490976.2020.1854641] [PMID: 33446008]
[145]
Janati, A.I.; Karp, I.; Laprise, C.; Sabri, H.; Emami, E. Detection of Fusobaterium nucleatum in feces and colorectal mucosa as a risk factor for colorectal cancer: A systematic review and meta-analysis. Syst. Rev., 2020, 9(1), 276.
[http://dx.doi.org/10.1186/s13643-020-01526-z] [PMID: 33272322]
[146]
Geravand, M.; Fallah, P.; Yaghoobi, M.H.; Soleimanifar, F.; Farid, M.; Zinatizadeh, N.; Yaslianifard, S. Investigation of enterococcus faecalis population in patients with polyp and colorectal cancer in comparison of healthy individuals. Arq. Gastroenterol., 2019, 56(2), 141-145.
[http://dx.doi.org/10.1590/s0004-2803.201900000-28] [PMID: 31460576]
[147]
Balamurugan, R.; Rajendiran, E.; George, S.; Samuel, G.V.; Ramakrishna, B.S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J. Gastroenterol. Hepatol., 2008, 23(8 Pt 1), 1298-1303.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05490.x] [PMID: 18624900]
[148]
Zamani, S.; Taslimi, R.; Sarabi, A.; Jasemi, S.; Sechi, L.A.; Feizabadi, M.M. Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front. Cell. Infect. Microbiol., 2020, 9(449), 449.
[http://dx.doi.org/10.3389/fcimb.2019.00449] [PMID: 32010637]
[149]
Pasquereau-Kotula, E.; Martins, M.; Aymeric, L.; Dramsi, S. Significance of Streptococcus gallolyticus subsp. gallolyticus association with colorectal cancer. Front. Microbiol., 2018, 9, 614-614.
[http://dx.doi.org/10.3389/fmicb.2018.00614] [PMID: 29666615]
[150]
Long, X.; Wong, C.C.; Tong, L.; Chu, E.S.H.; Ho Szeto, C.; Go, M.Y.Y.; Coker, O.O.; Chan, A.W.H.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol., 2019, 4(12), 2319-2330.
[http://dx.doi.org/10.1038/s41564-019-0541-3] [PMID: 31501538]
[151]
Veziant, J.; Gagnière, J.; Jouberton, E.; Bonnin, V.; Sauvanet, P.; Pezet, D.; Barnich, N.; Miot-Noirault, E.; Bonnet, M. Association of colorectal cancer with pathogenic Escherichia coli: Focus on mechanisms using optical imaging. World J. Clin. Oncol., 2016, 7(3), 293-301.
[http://dx.doi.org/10.5306/wjco.v7.i3.293] [PMID: 27298769]
[152]
Cheng, Y.; Ling, Z.; Li, L. The intestinal microbiota and colorectal cancer. Front. Immunol., 2020, 11(3100), 615056.
[http://dx.doi.org/10.3389/fimmu.2020.615056] [PMID: 33329610]
[153]
Song, M.; Chan, A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol., 2019, 17(2), 275-289.
[http://dx.doi.org/10.1016/j.cgh.2018.07.012] [PMID: 30031175]
[154]
Tsuruya, A.; Kuwahara, A.; Saito, Y.; Yamaguchi, H.; Tsubo, T.; Suga, S.; Inai, M.; Aoki, Y.; Takahashi, S.; Tsutsumi, E.; Suwa, Y.; Morita, H.; Kinoshita, K.; Totsuka, Y.; Suda, W.; Oshima, K.; Hattori, M.; Mizukami, T.; Yokoyama, A.; Shimoyama, T.; Nakayama, T. Ecophysiological consequences of alcoholism on human gut microbiota: Implications for ethanol-related pathogenesis of colon cancer. Sci. Rep., 2016, 6(1), 27923-27923.
[http://dx.doi.org/10.1038/srep27923] [PMID: 27295340]
[155]
Mutlu, E.A.; Gillevet, P.M.; Rangwala, H.; Sikaroodi, M.; Naqvi, A.; Engen, P.A.; Kwasny, M.; Lau, C.K.; Keshavarzian, A. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(9), G966-G978.
[http://dx.doi.org/10.1152/ajpgi.00380.2011] [PMID: 22241860]
[156]
Bishehsari, F.; Magno, E.; Swanson, G.; Desai, V.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Alcohol and gut-derived inflammation. Alcohol Res., 2017, 38(2), 163-171.
[PMID: 28988571]
[157]
Diao, X.Y.; Peng, T.; Kong, F.G.; Huang, J.G.; Han, S.; Shang, Y.S.; Liu, H. Alcohol consumption promotes colorectal cancer by altering intestinal permeability. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9370-9377.
[PMID: 33015778]
[158]
Scherübl, H. Alcohol use and gastrointestinal cancer risk. Visc. Med., 2020, 36(3), 175-181.
[http://dx.doi.org/10.1159/000507232] [PMID: 32775347]
[159]
Huang, C.; Shi, G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J. Transl. Med., 2019, 17(1), 225.
[http://dx.doi.org/10.1186/s12967-019-1971-7] [PMID: 31307469]
[160]
Yang, J.; Yu, J. The association of diet, gut microbiota and colorectal cancer: What we eat may imply what we get. Protein Cell, 2018, 9(5), 474-487.
[http://dx.doi.org/10.1007/s13238-018-0543-6] [PMID: 29713943]
[161]
Yang, Y.; Jobin, C. Novel insights into microbiome in colitis and colorectal cancer. Curr. Opin. Gastroenterol., 2017, 33(6), 422-427.
[http://dx.doi.org/10.1097/MOG.0000000000000399] [PMID: 28877044]
[162]
Hnatyszyn, A.; Hryhorowicz, S. Kaczmarek-Ryś M.; Lis, E.; Słomski, R.; Scott, R.J.; Pławski, A. Colorectal carcinoma in the course of inflammatory bowel diseases. Hered. Cancer Clin. Pract., 2019, 17(1), 18-18.
[http://dx.doi.org/10.1186/s13053-019-0118-4] [PMID: 31338130]
[163]
Gutiérrez-Salmerón, M.; Lucena, S.R.; Chocarro-Calvo, A.; García-Martínez, J.M.; Martín Orozco, R.M.; García-Jiménez, C. Remodelling of colorectal cancer cell signalling by microbiota and immunity in diabetes. Endocr. Relat. Cancer, 2021, 28(6), R173-R190.
[http://dx.doi.org/10.1530/ERC-20-0315] [PMID: 33852432]
[164]
Sánchez-Alcoholado, L.; Ordóñez, R.; Otero, A.; Plaza-Andrade, I.; Laborda-Illanes, A.; Medina, J.A.; Ramos-Molina, B.; Gómez-Millán, J.; Queipo-Ortuño, M.I. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int. J. Mol. Sci., 2020, 21(18), 6782.
[http://dx.doi.org/10.3390/ijms21186782] [PMID: 32947866]
[165]
Ortiz-Alvarez, L.; Xu, H.; Martinez-Tellez, B. Influence of exercise on the human gut microbiota of healthy adults: A systematic review. Clin. Transl. Gastroenterol., 2020, 11(2), e00126-e00126.
[http://dx.doi.org/10.14309/ctg.0000000000000126] [PMID: 32463624]
[166]
Guraya, S.Y. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review. World J. Gastroenterol., 2015, 21(19), 6026-6031.
[http://dx.doi.org/10.3748/wjg.v21.i19.6026] [PMID: 26019469]
[167]
Ali Khan, U.; Fallah, M.; Sundquist, K.; Sundquist, J.; Brenner, H.; Kharazmi, E. Risk of colorectal cancer in patients with diabetes mellitus: A Swedish nationwide cohort study. PLoS Med., 2020, 17(11), e1003431.
[http://dx.doi.org/10.1371/journal.pmed.1003431] [PMID: 33186354]
[168]
Onyoh, E.F.; Hsu, W.F.; Chang, L.C.; Lee, Y.C.; Wu, M.S.; Chiu, H.M. The rise of colorectal cancer in Asia: Epidemiology, screening, and management. Curr. Gastroenterol. Rep., 2019, 21(8), 36.
[http://dx.doi.org/10.1007/s11894-019-0703-8] [PMID: 31289917]
[169]
Ashktorab, H.; Ahuja, S.; Kannan, L.; Llor, X.; Ellis, N.A.; Xicola, R.M.; Laiyemo, A.O.; Carethers, J.M.; Brim, H.; Nouraie, M. A meta-analysis of MSI frequency and race in colorectal cancer. Oncotarget, 2016, 7(23), 34546-34557.
[http://dx.doi.org/10.18632/oncotarget.8945] [PMID: 27120810]
[170]
Araghi, M.; Soerjomataram, I.; Bardot, A.; Ferlay, J.; Cabasag, C.J.; Morrison, D.S.; De, P.; Tervonen, H.; Walsh, P.M.; Bucher, O.; Engholm, G.; Jackson, C.; McClure, C.; Woods, R.R.; Saint-Jacques, N.; Morgan, E.; Ransom, D.; Thursfield, V.; Møller, B.; Leonfellner, S.; Guren, M.G.; Bray, F.; Arnold, M. Changes in colorectal cancer incidence in seven high-income countries: A population-based study. Lancet Gastroenterol. Hepatol., 2019, 4(7), 511-518.
[http://dx.doi.org/10.1016/S2468-1253(19)30147-5] [PMID: 31105047]
[171]
Song, X.; Gong, X.; Zhang, T.; Jiang, W. Height and risk of colorectal cancer: A meta-analysis. Eur. J. Cancer Prev., 2018, 27(6), 521-529.
[http://dx.doi.org/10.1097/CEJ.0000000000000390] [PMID: 28683006]
[172]
Nebbia, M.; Yassin, N.A.; Spinelli, A. Colorectal cancer in inflammatory bowel disease. Clin. Colon Rectal Surg., 2020, 33(5), 305-317.
[http://dx.doi.org/10.1055/s-0040-1713748] [PMID: 32968366]
[173]
Syriopoulou, E.; Morris, E.; Finan, P.J.; Lambert, P.C.; Rutherford, M.J. Understanding the impact of socioeconomic differences in colorectal cancer survival: Potential gain in life-years. Br. J. Cancer, 2019, 120(11), 1052-1058.
[http://dx.doi.org/10.1038/s41416-019-0455-0] [PMID: 31040385]
[174]
Coughlin, S.S. Social determinants of colorectal cancer risk, stage, and survival: A systematic review. Int. J. Colorectal Dis., 2020, 35(6), 985-995.
[http://dx.doi.org/10.1007/s00384-020-03585-z] [PMID: 32314192]
[175]
Aune, D.; Lau, R.; Chan, D.S.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology, 2011, 141(1), 106-118.
[http://dx.doi.org/10.1053/j.gastro.2011.04.013] [PMID: 21600207]
[176]
Shaw, E.; Farris, M.S.; Stone, C.R.; Derksen, J.W.G.; Johnson, R.; Hilsden, R.J.; Friedenreich, C.M.; Brenner, D.R. Effects of physical activity on colorectal cancer risk among family history and body mass index subgroups: A systematic review and meta-analysis. BMC Cancer, 2018, 18(1), 71.
[http://dx.doi.org/10.1186/s12885-017-3970-5] [PMID: 29325535]
[177]
Botteri, E.; Borroni, E.; Sloan, E.K.; Bagnardi, V.; Bosetti, C.; Peveri, G.; Santucci, C.; Specchia, C.; van den Brandt, P.; Gallus, S.; Lugo, A. Smoking and colorectal cancer risk, overall and by molecular subtypes: A meta-analysis. Am. J. Gastroenterol., 2020, 115(12), 1940-1949.
[http://dx.doi.org/10.14309/ajg.0000000000000803] [PMID: 32773458]
[178]
Yang, C.; Wang, X.; Huang, C.H.; Yuan, W.J.; Chen, Z.H. Passive smoking and risk of colorectal cancer: A meta-analysis of observational studies. Asia Pac. J. Public Health, 2016, 28(5), 394-403.
[http://dx.doi.org/10.1177/1010539516650724] [PMID: 27217428]
[179]
Ma, Y.; Yang, Y.; Wang, F.; Zhang, P.; Shi, C.; Zou, Y.; Qin, H. Obesity and risk of colorectal cancer: A systematic review of prospective studies. PLoS One, 2013, 8(1), e53916.
[http://dx.doi.org/10.1371/journal.pone.0053916] [PMID: 23349764]
[180]
Lei, X.; Song, S.; Li, X.; Geng, C.; Wang, C. Excessive body fat at a young age increases the risk of colorectal cancer: A systematic review and meta-analysis. Nutr. Cancer, 2021, 73(9), 1601-1612.
[PMID: 32791859]
[181]
Nan, H.; Hutter, C.M.; Lin, Y.; Jacobs, E.J.; Ulrich, C.M.; White, E.; Baron, J.A.; Berndt, S.I.; Brenner, H.; Butterbach, K.; Caan, B.J.; Campbell, P.T.; Carlson, C.S.; Casey, G.; Chang-Claude, J.; Chanock, S.J.; Cotterchio, M.; Duggan, D.; Figueiredo, J.C.; Fuchs, C.S.; Giovannucci, E.L.; Gong, J.; Haile, R.W.; Harrison, T.A.; Hayes, R.B.; Hoffmeister, M.; Hopper, J.L.; Hudson, T.J.; Jenkins, M.A.; Jiao, S.; Lindor, N.M.; Lemire, M.; Le Marchand, L.; Newcomb, P.A.; Ogino, S.; Pflugeisen, B.M.; Potter, J.D.; Qu, C.; Rosse, S.A.; Rudolph, A.; Schoen, R.E.; Schumacher, F.R.; Seminara, D.; Slattery, M.L.; Thibodeau, S.N.; Thomas, F.; Thornquist, M.; Warnick, G.S.; Zanke, B.W.; Gauderman, W.J.; Peters, U.; Hsu, L.; Chan, A.T. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA, 2015, 313(11), 1133-1142.
[http://dx.doi.org/10.1001/jama.2015.1815] [PMID: 25781442]
[182]
Keum, N.; Aune, D.; Greenwood, D.C.; Ju, W.; Giovannucci, E.L. Calcium intake and colorectal cancer risk: Dose-response meta-analysis of prospective observational studies. Int. J. Cancer, 2014, 135(8), 1940-1948.
[http://dx.doi.org/10.1002/ijc.28840] [PMID: 24623471]
[183]
Bristow, S.M.; Bolland, M.J.; MacLennan, G.S.; Avenell, A.; Grey, A.; Gamble, G.D.; Reid, I.R. Calcium supplements and cancer risk: A meta-analysis of randomised controlled trials. Br. J. Nutr., 2013, 110(8), 1384-1393.
[http://dx.doi.org/10.1017/S0007114513001050] [PMID: 23601861]
[184]
Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; Hercberg, S.; Mondot, S.; Lantz, O.; Quintana-Murci, L.; Albert, M.L.; Duffy, D.; Srour, B.; Touvier, M. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr., 2020, 112(1), 195-207.
[http://dx.doi.org/10.1093/ajcn/nqaa063] [PMID: 32369545]
[185]
Iebba, V.; Totino, V.; Gagliardi, A.; Santangelo, F.; Cacciotti, F.; Trancassini, M.; Mancini, C.; Cicerone, C.; Corazziari, E.; Pantanella, F.; Schippa, S. Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiol., 2016, 39(1), 1-12.
[PMID: 26922981]
[186]
Raskov, H.; Burcharth, J.; Pommergaard, H-C. Linking gut microbiota to colorectal cancer. J. Cancer, 2017, 8(17), 3378-3395.
[http://dx.doi.org/10.7150/jca.20497] [PMID: 29151921]
[187]
Villéger, R.; Lopès, A.; Veziant, J.; Gagnière, J.; Barnich, N.; Billard, E.; Boucher, D.; Bonnet, M. Microbial markers in colorectal cancer detection and/or prognosis. World J. Gastroenterol., 2018, 24(22), 2327-2347.
[http://dx.doi.org/10.3748/wjg.v24.i22.2327] [PMID: 29904241]
[188]
Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci., 2019, 76(3), 473-493.
[http://dx.doi.org/10.1007/s00018-018-2943-4] [PMID: 30317530]
[189]
Yachida, S.; Mizutani, S.; Shiroma, H.; Shiba, S.; Nakajima, T.; Sakamoto, T.; Watanabe, H.; Masuda, K.; Nishimoto, Y.; Kubo, M.; Hosoda, F.; Rokutan, H.; Matsumoto, M.; Takamaru, H.; Yamada, M.; Matsuda, T.; Iwasaki, M.; Yamaji, T.; Yachida, T.; Soga, T.; Kurokawa, K.; Toyoda, A.; Ogura, Y.; Hayashi, T.; Hatakeyama, M.; Nakagama, H.; Saito, Y.; Fukuda, S.; Shibata, T.; Yamada, T. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med., 2019, 25(6), 968-976.
[http://dx.doi.org/10.1038/s41591-019-0458-7] [PMID: 31171880]
[190]
Yang, J.; McDowell, A.; Kim, E.K.; Seo, H.; Lee, W.H.; Moon, C.M.; Kym, S.M.; Lee, D.H.; Park, Y.S.; Jee, Y.K.; Kim, Y.K. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med., 2019, 51(10), 1-15.
[http://dx.doi.org/10.1038/s12276-019-0313-4] [PMID: 31582724]
[191]
Liu, X.; Cheng, Y.; Shao, L.; Ling, Z. Alterations of the predominant fecal microbiota and disruption of the gut mucosal barrier in patients with early-stage colorectal cancer. BioMed Res. Int., 2020, 2020, 2948282.
[http://dx.doi.org/10.1155/2020/2948282] [PMID: 32280686]
[192]
Buc, E.; Dubois, D.; Sauvanet, P.; Raisch, J.; Delmas, J.; Darfeuille-Michaud, A.; Pezet, D.; Bonnet, R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One, 2013, 8(2), e56964.
[http://dx.doi.org/10.1371/journal.pone.0056964] [PMID: 23457644]
[193]
Eklöf, V.; Löfgren-Burström, A.; Zingmark, C.; Edin, S.; Larsson, P.; Karling, P.; Alexeyev, O.; Rutegård, J.; Wikberg, M.L.; Palmqvist, R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer, 2017, 141(12), 2528-2536.
[http://dx.doi.org/10.1002/ijc.31011] [PMID: 28833079]
[194]
Boleij, A.; Hechenbleikner, E.M.; Goodwin, A.C.; Badani, R.; Stein, E.M.; Lazarev, M.G.; Ellis, B.; Carroll, K.C.; Albesiano, E.; Wick, E.C.; Platz, E.A.; Pardoll, D.M.; Sears, C.L. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis., 2015, 60(2), 208-215.
[http://dx.doi.org/10.1093/cid/ciu787] [PMID: 25305284]
[195]
Viljoen, K.S.; Dakshinamurthy, A.; Goldberg, P.; Blackburn, J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One, 2015, 10(3), e0119462.
[http://dx.doi.org/10.1371/journal.pone.0119462] [PMID: 25751261]
[196]
Thomas, A.M.; Jesus, E.C.; Lopes, A.; Aguiar, S., Jr; Begnami, M.D.; Rocha, R.M.; Carpinetti, P.A.; Camargo, A.A.; Hoffmann, C.; Freitas, H.C.; Silva, I.T.; Nunes, D.N.; Setubal, J.C.; Dias-Neto, E. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front. Cell. Infect. Microbiol., 2016, 6, 179.
[http://dx.doi.org/10.3389/fcimb.2016.00179] [PMID: 28018861]
[197]
Zhou, Y.; He, H.; Xu, H.; Li, Y.; Li, Z.; Du, Y.; He, J.; Zhou, Y.; Wang, H.; Nie, Y. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget, 2016, 7(49), 80794-80802.
[http://dx.doi.org/10.18632/oncotarget.13094] [PMID: 27821805]
[198]
Mangifesta, M.; Mancabelli, L.; Milani, C.; Gaiani, F.; de’Angelis, N.; de’Angelis, G.L.; van Sinderen, D.; Ventura, M.; Turroni, F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci. Rep., 2018, 8(1), 13974.
[http://dx.doi.org/10.1038/s41598-018-32413-2] [PMID: 30228361]
[199]
Zhang, H.; Chang, Y.; Zheng, Q.; Zhang, R.; Hu, C.; Jia, W. Altered intestinal microbiota associated with colorectal cancer. Front. Med., 2019, 13(4), 461-470.
[http://dx.doi.org/10.1007/s11684-019-0695-7] [PMID: 31250341]
[200]
Zorron Cheng Tao Pu, L.; Yamamoto, K.; Honda, T.; Nakamura, M.; Yamamura, T.; Hattori, S.; Burt, A.D.; Singh, R.; Hirooka, Y.; Fujishiro, M. Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J. Gastroenterol. Hepatol., 2020, 35(3), 433-437.
[http://dx.doi.org/10.1111/jgh.14868] [PMID: 31609493]
[201]
Sarhadi, V.; Lahti, L.; Saberi, F.; Youssef, O.; Kokkola, A.; Karla, T.; Tikkanen, M.; Rautelin, H.; Puolakkainen, P.; Salehi, R.; Knuutila, S. Gut microbiota and host gene mutations in colorectal cancer patients and controls of Iranian and finnish origin. Anticancer Res., 2020, 40(3), 1325-1334.
[http://dx.doi.org/10.21873/anticanres.14074] [PMID: 32132029]
[202]
Siraj, Y.A.; Biadgelign, M.G.; Yassin, M.O.; Chekol, Y.Z. Mucosa-associated cultivable aerobic gut bacterial microbiota among colorectal cancer patients attending at the referral hospitals of Amhara Regional State, Ethiopia. Gut Pathog., 2021, 13(1), 19.
[http://dx.doi.org/10.1186/s13099-021-00415-7] [PMID: 33752753]
[203]
Niccolai, E.; Russo, E.; Baldi, S.; Ricci, F.; Nannini, G.; Pedone, M.; Stingo, F.C.; Taddei, A.; Ringressi, M.N.; Bechi, P.; Mengoni, A.; Fani, R.; Bacci, G.; Fagorzi, C.; Chiellini, C.; Prisco, D.; Ramazzotti, M.; Amedei, A. Significant and conflicting correlation of IL-9 with Prevotella and Bacteroides in human colorectal cancer. Front. Immunol., 2021, 11, 573158.
[http://dx.doi.org/10.3389/fimmu.2020.573158] [PMID: 33488574]
[204]
Liu, C.J.; Zhang, Y.L.; Shang, Y.; Wu, B.; Yang, E.; Luo, Y.Y.; Li, X.R. Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncol. Lett., 2019, 17(1), 1115-1127.
[PMID: 30655873]
[205]
Pan, H-W.; Du, L.T.; Li, W.; Yang, Y.M.; Zhang, Y.; Wang, C.X. Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Res. Microbiol., 2020, 171(3-4), 107-114.
[http://dx.doi.org/10.1016/j.resmic.2020.01.001] [PMID: 31982498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy