Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Fungal Metabolites: A Potential Source of Antidiabetic Agents with Particular Reference to PTP1B Inhibitors

Author(s): Sunil Kumar Deshmukh*, Shivankar Agrawal and Manish K. Gupta

Volume 24, Issue 8, 2023

Published on: 04 October, 2022

Page: [927 - 945] Pages: 19

DOI: 10.2174/1389201023666220506104219

Price: $65

Abstract

Diabetes is a growing health concern worldwide because it affects people of all age groups and increases the risk of other diseases such as renal impairment and neural and cardiovascular disorders. Oral hypoglycemic drugs mainly control diabetes; however, their associated side effects limit their use in patients with other complications. PTP1B is a viable drug target to explore new antidiabetic drugs. PTP1B acts as a negative regulator of the insulin-signaling pathway, and therefore, PTP1B inhibitors display antihyperglycemic activity. Several classes of compounds from natural and synthetic sources act as PTP1B inhibitors. Fungi are comprehensive in their diversity and recognized as a valuable source for therapeutically active molecules. In recent years, researchers have reported diverse classes of fungal secondary metabolites as potent PTP1B inhibitors. Some metabolites such as 6-O-methylalaternin, fumosorinone A, nordivaricatic acid, and the divarinyl divarate showed good activity and can be taken forward as a lead to develop novel PTP1B inhibitors and antidiabetic drugs. Therefore, the present review focuses on the fungal metabolites identified in the last five years possessing PTP1B inhibitory activity. A total of 128 metabolites are reviewed. Their fungal species and source, chemical structure, and activity in terms of IC50 are highlighted.

Keywords: Fungi, secondary metabolites, PTP1B inhibitors, anti-diabetic, diabetes, BMI.

Graphical Abstract

[1]
Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep., 2020, 10(1), 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[2]
Sharma, B.; Xie, L.; Yang, F.; Wang, W.; Zhou, Q.; Xiang, M.; Zhou, S.; Lv, W.; Jia, Y.; Pokhrel, L.; Shen, J.; Xiao, Q.; Gao, L.; Deng, W. Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem., 2020, 199, 112376.
[http://dx.doi.org/10.1016/j.ejmech.2020.112376] [PMID: 32416458]
[3]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[4]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta, 2010, 1804(3), 613-619.
[http://dx.doi.org/10.1016/j.bbapap.2009.09.018] [PMID: 19782770]
[5]
Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 85-96.
[http://dx.doi.org/10.1038/nrm1837] [PMID: 16493415]
[6]
Koren, S.; Fantus, I.G. Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21(4), 621-640.
[http://dx.doi.org/10.1016/j.beem.2007.08.004] [PMID: 18054739]
[7]
Kim, H.J.; Li, X.J.; Kim, D.C.; Kim, T.K.; Sohn, J.H.; Kwon, H.; Lee, D.; Kim, Y.C.; Yim, J.H.; Oh, H. PTP1B Inhibitory secondary metabolites from an Antarctic fungal strain Acremonium sp. SF-7394. Molecules, 2021, 26(18), 5505.
[http://dx.doi.org/10.3390/molecules26185505] [PMID: 34576982]
[8]
Yu, H.B.; Hu, B.; Kong, J.; Li, Y.H.; He, Y.; Lu, X.L.; Jiao, B.H.; Liu, X.Y. Palitantin derivatives from the Antarctic fungus Geomyces sp. 3-1. J. Asian Nat. Prod. Res., 2021, 1-7.
[PMID: 33892608]
[9]
Kim, D.C.; Minh Ha, T.; Sohn, J.H.; Yim, J.H.; Oh, H. Protein tyrosine phosphatase 1B inhibitors from a marine-derived fungal strain Aspergillus sp. SF-5929. Nat. Prod. Res., 2020, 34(5), 675-682.
[http://dx.doi.org/10.1080/14786419.2018.1499629] [PMID: 30445849]
[10]
Zhou, Y.; Li, Y.H.; Yu, H.B.; Liu, X.Y.; Lu, X.L.; Jiao, B.H. Furanone derivative and sesquiterpene from Antarctic marine-derived fungus Penicillium sp. S-1-18. J. Asian Nat. Prod. Res., 2018, 20(12), 1108-1115.
[http://dx.doi.org/10.1080/10286020.2017.1385604] [PMID: 28990801]
[11]
Sun, Y.; Liu, W.C.; Shi, X.; Zheng, H.Z.; Zheng, Z.H.; Lu, X.H.; Xing, Y.; Ji, K.; Liu, M.; Dong, Y.S. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb. Cell Fact., 2021, 20(1), 42.
[http://dx.doi.org/10.1186/s12934-021-01527-0] [PMID: 33579268]
[12]
Han, W.; Cai, J.; Zhong, W.; Xu, G.; Wang, F.; Tian, X.; Zhou, X.; Liu, Q.; Liu, Y.; Wang, J. Protein tyrosine phosphatase 1B (PTP1B) inhibitorsfrom the deep-sea fungus Penicillium chrysogenum SCSIO 07007. Bioorg. Chem., 2020, 96, 103646.
[http://dx.doi.org/10.1016/j.bioorg.2020.103646] [PMID: 32036160]
[13]
Pan, D.; Zhang, X.; Zheng, H.; Zheng, Z.; Nong, X.; Liang, X.; Ma, X.; Qi, S. Novel anthraquinone derivatives as inhibitors of protein tyrosine phosphatases and indoleamine 2,3-dioxygenase 1 from the deep-sea derived fungus Alternaria tenuissima DFFSCS013. Org. Chem. Front., 2019, 6(18), 3252-3258.
[http://dx.doi.org/10.1039/C9QO00775J]
[14]
Wiese, J.; Aldemir, H.; Schmaljohann, R.; Gulder, T.A.M.; Imhoff, J.F. Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Mar. Drugs, 2017, 15(6), 191.
[http://dx.doi.org/10.3390/md15060191] [PMID: 28635658]
[15]
Rotinsulu, H.; Yamazaki, H.; Sugai, S.; Iwakura, N.; Wewengkang, D.S.; Sumilat, D.A.; Namikoshi, M. Cladosporamide A, a new protein tyrosine phosphatase 1B inhibitor, produced by an Indonesian marine sponge-derived Cladosporium sp. J. Nat. Med., 2018, 72(3), 779-783.
[http://dx.doi.org/10.1007/s11418-018-1193-y] [PMID: 29508256]
[16]
Yamazaki, H.; Nakayama, W.; Takahashi, O.; Kirikoshi, R.; Izumikawa, Y.; Iwasaki, K.; Toraiwa, K.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; Sumilat, D.A.; Mangindaan, R.E.; Namikoshi, M. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum. Bioorg. Med. Chem. Lett., 2015, 25(16), 3087-3090.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.026] [PMID: 26115570]
[17]
Sumilat, D.A.; Yamazaki, H.; Endo, K.; Rotinsulu, H.; Wewengkang, D.S.; Ukai, K.; Namikoshi, M. A new biphenyl ether derivative produced by Indonesian ascidian-derived Penicillium albobiverticillium. J. Nat. Med., 2017, 71(4), 776-779.
[http://dx.doi.org/10.1007/s11418-017-1094-5] [PMID: 28550651]
[18]
Kong, F.D.; Zhang, R.S.; Ma, Q.Y.; Xie, Q.Y.; Wang, P.; Chen, P.W.; Zhou, L.M.; Dai, H.F.; Luo, D.Q.; Zhao, Y.X. Chrodrimanins O-S from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. Fitoterapia, 2017, 122, 1-6.
[http://dx.doi.org/10.1016/j.fitote.2017.08.002] [PMID: 28807715]
[19]
Ha, T.M.; Kim, D.C.; Sohn, J.H.; Yim, J.H.; Oh, H. Anti-inflammatory and protein tyrosine phosphatase 1B inhibitory metabolites from the antarctic marine-derived fungal strain Penicillium glabrum SF-7123. Mar. Drugs, 2020, 18(5), 247.
[http://dx.doi.org/10.3390/md18050247] [PMID: 32397523]
[20]
Kong, F.D.; Fan, P.; Zhou, L.M.; Ma, Q.Y.; Xie, Q.Y.; Zheng, H.Z.; Zheng, Z.H.; Zhang, R.S.; Yuan, J.Z.; Dai, H.F.; Luo, D.Q.; Zhao, Y.X. Penerpenes A-D, four indole terpenoids with potent protein tyrosine phosphatase inhibitory activity from the marine-derived fungus Penicillium sp. KFD28. Org. Lett., 2019, 21(12), 4864-4867.
[http://dx.doi.org/10.1021/acs.orglett.9b01751] [PMID: 31188002]
[21]
Zhou, L.M.; Kong, F.D.; Fan, P.; Ma, Q.Y.; Xie, Q.Y.; Li, J.H.; Zheng, H.Z.; Zheng, Z.H.; Yuan, J.Z.; Dai, H.F.; Luo, D.Q.; Zhao, Y.X. Indole-diterpenoids with protein tyrosine phosphatase inhibitory activities from the marine-derived fungus Penicillium sp. KFD28. J. Nat. Prod., 2019, 82(9), 2638-2644.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00620] [PMID: 31469560]
[22]
Yamazaki, H.; Saito, R.; Takahashi, O.; Kirikoshi, R.; Toraiwa, K.; Iwasaki, K.; Izumikawa, Y.; Nakayama, W.; Namikoshi, M. Trichoketides A and B, two new protein tyrosine phosphatase 1B inhibitors from the marine-derived fungus Trichoderma sp. J. Antibiot., 2015, 68(10), 628-632. [b
[http://dx.doi.org/10.1038/ja.2015.44] [PMID: 25899128]
[23]
Cho, K.H.; Sohn, J.H.; Oh, H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. Nat. Prod. Res., 2018, 32(2), 214-221.
[http://dx.doi.org/10.1080/14786419.2017.1346642] [PMID: 28670919]
[24]
Park, J.S.; Quang, T.H.; Yoon, C.S.; Kim, H.J.; Sohn, J.H.; Oh, H. Furanoaustinol and 7-acetoxydehydroaustinol: New meroterpenoids from a marine-derived fungal strain Penicillium sp. SF-5497. J. Antibiot., 2018, 71(6), 557-563.
[http://dx.doi.org/10.1038/s41429-018-0034-2] [PMID: 29463888]
[25]
Park, J.S.; Quang, T.H.; Thi Thanh Ngan, N.; Sohn, J.H.; Oh, H. New preaustinoids from a marine-derived fungal strain Penicillium sp. SF-5497 and their inhibitory effects against PTP1B activity. J. Antibiot., 2019, 72(8), 629-633.
[http://dx.doi.org/10.1038/s41429-019-0187-7] [PMID: 31019257]
[26]
Wu, J.S.; Shi, X.H.; Zhang, Y.H.; Shao, C.L.; Fu, X.M.; Li, X.; Yao, G.S.; Wang, C.Y. Benzyl furanones and pyrones from the marine-derived fungus Aspergillus terreus induced by chemical epigenetic modification. Molecules, 2020, 25(17), 3927. [a
[http://dx.doi.org/10.3390/molecules25173927] [PMID: 32867374]
[27]
Wu, J.S.; Shi, X.H.; Yao, G.S.; Shao, C.L.; Fu, X.M.; Zhang, X.L.; Guan, H.S.; Wang, C.Y. New Thiodiketopiperazine and 3, 4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar. Drugs, 2020, 18(3), 132. [b
[http://dx.doi.org/10.3390/md18030132 ] [PMID: 32110865]
[28]
Zhou, G.; Zhang, X.; Shah, M.; Che, Q.; Zhang, G.; Gu, Q.; Zhu, T.; Li, D. Polyhydroxy p-terphenyls from a mangrove endophytic fungus Aspergillus candidus LDJ-5. Mar. Drugs, 2021, 19(2), 82.
[http://dx.doi.org/10.3390/md19020082] [PMID: 33540563]
[29]
Gong, J.; Chen, C.; Mo, S.; Liu, J.; Wang, W.; Zang, Y.; Li, H.; Chai, C.; Zhu, H.; Hu, Z.; Wang, J.; Zhang, Y. Fusaresters A-E, new γ-pyrone-containing polyketides from fungus Fusarium sp. Hungcl and structure revision of fusariumin D. Org. Biomol. Chem., 2019, 17(22), 5526-5532.
[http://dx.doi.org/10.1039/C9OB00534J] [PMID: 31041978]
[30]
Gao, W.B.; Han, L.P.; Xie, F.X.; Ma, Q.Y.; Li, X.F.; Zhang, J.; Zhao, Y.X.; Luo, D.Q. A new polyketide-derived metabolite with PTP1B inhibitory activity from the endophytic fungus Pestalotiopsis neglecta. Chem. Nat. Compd., 2019, 55(6), 1056-1058.
[http://dx.doi.org/10.1007/s10600-019-02892-4]
[31]
Yang, R.; Dong, Q.; Xu, H.; Gao, X.; Zhao, Z.; Qin, J.; Chen, C.; Luo, D. Identification of phomoxanthone A and B as protein tyrosine phosphatase inhibitors. ACS Omega, 2020, 5(40), 25927-25935.
[http://dx.doi.org/10.1021/acsomega.0c03315] [PMID: 33073119]
[32]
Zhao, J.Y.; Wang, X.J.; Liu, Z.; Meng, F.X.; Sun, S.F.; Ye, F.; Liu, Y.B. Nonadride and spirocyclic anhydride derivatives from the plant endophytic fungus Talaromyces purpurogenus. J. Nat. Prod., 2019, 82(11), 2953-2962.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00210] [PMID: 31710490]
[33]
Gubiani, J.R.; Wijeratne, E.M.; Shi, T.; Araujo, A.R.; Arnold, A.E.; Chapman, E.; Gunatilaka, A.A. An epigenetic modifier induces production of (10'S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg. Med. Chem., 2017, 25(6), 1860-1866.
[http://dx.doi.org/10.1016/j.bmc.2017.01.048] [PMID: 28202316]
[34]
Chen, Z.M.; Fan, Q.Y.; Chen, H.P.; Li, Z.H.; Feng, T.; Liu, J.K. A novel C25 sterol peroxide from the endophytic fungus Phoma sp. EA-122. Z. Naturforsch. C J. Biosci., 2015, 70c(3-4), 93-96. [b
[http://dx.doi.org/10.1515/znc-2014-4217]
[35]
Liu, L.; Zhang, J.; Chen, C.; Teng, J.; Wang, C.; Luo, D. Structure and biosynthesis of fumosorinone, a new PTP1B inhibitor, firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genet. Biol., 2015, 81, 191-200.
[http://dx.doi.org/10.1016/j.fgb.2015.03.009] [PMID: 25857260]
[36]
Liu, Z.Q.; Liu, T.; Chen, C.; Li, M.Y.; Wang, Z.Y.; Chen, R.S.; Wei, G.X.; Wang, X.Y.; Luo, D.Q. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows antidiabetic effect in diabetic KKAy mice. Toxicol. Appl. Pharmacol., 2015, 285(1), 61-70.
[37]
Zhang, J.; Meng, L.L.; Wei, J.J.; Fan, P.; Liu, S.S.; Yuan, W.Y.; Zhao, Y.X.; Luo, D.Q. PTP1B inhibitors from the entomogenous fungi Isaria fumosorosea. Molecules, 2017, 22(12), 2058.
[http://dx.doi.org/10.3390/molecules22122058] [PMID: 29186763]
[38]
Wei, P.Y.; Liu, L.X.; Liu, T.; Chen, C.; Luo, D.Q.; Shi, B.Z. Three new pigment protein tyrosine phosphatases inhibitors from the insect parasite fungus Cordyceps gracilioides: Terreusinone A, pinophilin C and cryptosporioptide A. Molecules, 2015, 20(4), 5825-5834.
[39]
Sun, J.; Xu, J.; Wang, S.; Hou, Z.; Lu, X.; An, L.; Du, P. A new cerebroside from Cordyceps militaris with anti-PTP1B activity. Fitoterapia, 2019, 138, 104342.
[http://dx.doi.org/10.1016/j.fitote.2019.104342] [PMID: 31479703]
[40]
Díaz-Rojas, M.; Raja, H.; González-Andrade, M.; Rivera-Chávez, J.; Rangel-Grimaldo, M.; Rivero-Cruz, I.; Mata, R. Protein tyrosine phosphatase 1B inhibitors from the fungus Malbranchea albolutea. Phytochemistry, 2021, 184, 112664.
[http://dx.doi.org/10.1016/j.phytochem.2021.112664] [PMID: 33524855]
[41]
Ji, Y.; Zhou, Q.; Liu, G.; Zhu, T.; Wang, Y.; Fu, Y.; Li, Y.; Li, R.; Zhang, X.; Dong, M.; Sauriol, F.; Gu, Y.; Shi, Q.; Lu, X.; Ni, Z. New protein tyrosine phosphatase inhibitors from fungus Aspergillus gorakhpurensis F07ZB1707. RSC Advances, 2021, 11(17), 10144-10153.
[http://dx.doi.org/10.1039/D1RA00788B]
[42]
Jiménez-Arreola, B.S.; Aguilar-Ramírez, E.; Cano-Sánchez, P.; Morales-Jiménez, J.; González-Andrade, M.; Medina-Franco, J.L.; Rivera-Chávez, J. Dimeric phenalenones from Talaromyces sp. (IQ-313) inhibit hPTP1B1-400: Insights into mechanistic kinetics from in vitro and in silico studies. Bioorg. Chem., 2020, 101, 103893.
[http://dx.doi.org/10.1016/j.bioorg.2020.103893] [PMID: 32492551]
[43]
Huo, C.; Lu, X.; Zheng, Z.; Li, Y.; Xu, Y.; Zheng, H.; Niu, Y. Azaphilones with protein tyrosine phosphatase inhibitory activity isolated from the fungus Aspergillus deflectus. Phytochemistry, 2020, 170, 112224.
[http://dx.doi.org/10.1016/j.phytochem.2019.112224] [PMID: 31812919]
[44]
Sun, W.; Zhang, B.; Zheng, H.; Zhuang, C.; Li, X.; Lu, X.; Quan, C.; Dong, Y.; Zheng, Z.; Xiu, Z. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes. Life Sci., 2017, 169, 52-64.
[http://dx.doi.org/10.1016/j.lfs.2016.11.012] [PMID: 27871946]
[45]
Sun, W.; Zhuang, C.; Li, X.; Zhang, B.; Lu, X.; Zheng, Z.; Dong, Y. Varic acid analogues from fungus as PTP1B inhibitors: Biological evaluation and structure-activity relationships. Bioorg. Med. Chem. Lett., 2017, 27(15), 3382-3385.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.001] [PMID: 28642102]
[46]
Chen, B.; Han, J.; Wang, M.; Dai, H.; Zhang, J.; Cai, L.; Wei, S.; Zhang, X.; Liu, H. Amplisins A–E, chromone methide polymers with hypoglycemic activity from a new fungicolous fungus Amplistroma fungicola. Org. Chem. Front., 2020, 7(18), 2761-2769.
[http://dx.doi.org/10.1039/D0QO00851F]
[47]
Rangel-Grimaldo, M. Macías-Rubalcava, M.L.; González-Andrade, M.; Raja, H.; Figueroa, M.; Mata, R. α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Malbranchea circinata. J. Nat. Prod., 2020, 83(3), 675-683.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01108] [PMID: 31898904]
[48]
Yamazaki, H.; Ukai, K.; Namikoshi, M. Asperdichrome, an unusual dimer of tetrahydroxanthone through an ether bond, with protein tyrosine phosphatase 1B inhibitory activity, from the Okinawan freshwater Aspergillus sp. TPU1343. Tetrahedron Lett., 2016, 57(7), 732-735.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.111]
[49]
Rotinsulu, H.; Yamazaki, H.; Miura, T.; Chiba, S.; Wewengkang, D.S.; Sumilat, D.A.; Namikoshi, M.A. 2,4′-linked tetrahydroxanthone dimer with protein tyrosine phosphatase 1B inhibitory activity from the Okinawan freshwater Aspergillus sp. J. Antibiot., 2017, 70(9), 967-969.
[http://dx.doi.org/10.1038/ja.2017.72] [PMID: 28655930]
[50]
Sumilat, D.A.; Yamazaki, H.; Kanno, S.I.; Saito, R.; Watanabe, Y.; Namikoshi, M. Biphenyl ether derivatives with protein tyrosine phosphatase 1B inhibitory activity from the freshwater fungus Phoma sp. J. Antibiot, 2017, 70(3), 331-333.
[http://dx.doi.org/10.1038/ja.2016.147] [PMID: 28074056]
[51]
Maarisit, W.; Yamazaki, H.; Kanno, S.I.; Tomizawa, A.; Lee, J.S.; Namikoshi, M. Protein tyrosine phosphatase 1B inhibitory properties of seco-cucurbitane triterpenes obtained from fruiting bodies of Russula lepida. J. Nat. Med., 2017, 71(1), 334-337.
[http://dx.doi.org/10.1007/s11418-016-1061-6] [PMID: 27866320]
[52]
Jiaocen, G.; Qingyun, M.; Fangdong, K.; Qingyi, X.; Liman, Z.; Qiong, D.; Yougen, W.; Youxing, Z. Meroterpenoids from the fruiting bodies of Ganoderma ahmadii Steyaret and their protein tyrosine phosphatase 1B inhibitory activities. Youji Huaxue, 2019, 39(11), 3264-3268.
[http://dx.doi.org/10.6023/cjoc201905010]
[53]
Guo, J.; Kong, F.; Ma, Q.; Xie, Q.; Zhang, R.; Dai, H.; Wu, Y.; Zhao, Y. Meroterpenoids with protein tyrosine phosphatase 1b inhibitory activities from the fruiting bodies of Ganoderma ahmadii. Front Chem., 2020, 8, 279.
[http://dx.doi.org/10.3389/fchem.2020.00279] [PMID: 32373585]
[54]
Tao, Q.Q.; Ma, K.; Bao, L.; Wang, K.; Han, J.J.; Wang, W.Z.; Zhang, J.X.; Huang, C.Y.; Liu, H.W. Sesquiterpenoids with PTP1B inhibitory activity and cytotoxicity from the edible mushroom Pleurotus citrinopileatus. Planta Med., 2016, 82(7), 639-644.
[http://dx.doi.org/10.1055/s-0041-111629] [PMID: 26872321]
[55]
Tao, Q.Q.; Ma, K.; Bao, L.; Wang, K.; Han, J.J.; Zhang, J.X.; Huang, C.Y.; Liu, H.W. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B. Fitoterapia, 2016, 111, 29-35.
[http://dx.doi.org/10.1016/j.fitote.2016.04.007] [PMID: 27085303]
[56]
Wang, K.; Bao, L.; Ma, K.; Liu, N.; Huang, Y.; Ren, J.; Wang, W.; Liu, H. Eight new alkaloids with PTP1B and α-glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron, 2015, 71(51), 9557-9563.
[http://dx.doi.org/10.1016/j.tet.2015.10.068]
[57]
Malamas, M.S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, F.O.; Sawicki, D.R.; Seestaller, L.; Sullivan, D.; Taylor, J.R. Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J. Med. Chem., 2000, 43(7), 1293-1310.
[http://dx.doi.org/10.1021/jm990560c] [PMID: 10753467]
[58]
Liu, J.Z.; Zhang, S.E.; Nie, F.; Yang, Y.; Tang, Y.B.; Yin, W.; Tian, J.Y.; Ye, F.; Xiao, Z. Discovery of novel PTP1B inhibitors via pharmacophore-oriented scaffold hopping from Ertiprotafib. Bioorg. Med. Chem. Lett., 2013, 23(23), 6217-6222.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.002] [PMID: 24148325]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy