Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nano-vaccination Strategies: Applications and Challenges for Intranasal Immunization

Author(s): Tosha Pandya, Prachi Joshi, Rudree Pathak and Shreeraj Shah*

Volume 24, Issue 8, 2023

Published on: 07 October, 2022

Page: [946 - 969] Pages: 24

DOI: 10.2174/1389201023666220727105901

Price: $65

conference banner
Abstract

The nasal route, a subgroup of mucosal delivery systems, constitutes a lucrative and encouraging substitute for administering drugs and vaccines. Over the years, a lot of research has been done in this area, and scientists have successfully explored this pathway using novel formulations to combat several infections. This review article aims to address the pathways of mucosal immunization, the dominance of the nasal route over other mucosal routes for immunization, and the mechanism of generation of immunogenic response via nasal route and nanotechnology-based approaches for intranasal vaccination. The immunotherapeutic and vaccinations for intranasal administration available in the market are also discussed, along with a brief overview of the products in the pipeline. It can also be assumed that such an approach can prove to be favorable in designing vaccinations for the current uncertain times. In spite of some dubious views on this.

Keywords: nanocarriers, vaccines, nanotechnology, immunology, intranasal, mucosal

Graphical Abstract

[1]
Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; Ng, X.Y.; Yap, R.K.; Tan, H.Y.; Teo, Y.Y.; Tan, C.C.; Cook, A.R.; Yap, J.C.; Hsu, L.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A Systematic review. J. Clin. Med., 2020, 9(3), 623.
[http://dx.doi.org/10.3390/jcm9030623] [PMID: 32110875]
[2]
Zhang, L.; Wang, W.; Wang, S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev. Vaccines, 2015, 14(11), 1509-1523.
[3]
Shakya, A.K.; Chowdhury, M.Y.E.; Tao, W.; Gill, H.S. Mucosal vaccine delivery: Current state and a pediatric perspective. J. Control. Release, 2016, 240, 394-413.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.014] [PMID: 26860287]
[4]
Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol., 2012, 12(8), 592-605.
[http://dx.doi.org/10.1038/nri3251] [PMID: 22828912]
[5]
McGhee, J.R.; Fujihashi, K. Inside the mucosal immune system. PLoS Biol., 2012, 10(9), e1001397.
[http://dx.doi.org/10.1371/journal.pbio.1001397] [PMID: 23049482]
[6]
Wang, S.; Liu, H.; Zhang, X.; Qian, F. Intranasal and oral vaccination with protein-based antigens: Advantages, challenges and formulation strategies. Protein Cell, 2015, 6(7), 480-503.
[http://dx.doi.org/10.1007/s13238-015-0164-2] [PMID: 25944045]
[7]
Azegami, T.; Yuki, Y.; Sawada, S.; Mejima, M.; Ishige, K.; Akiyoshi, K.; Itoh, H.; Kiyono, H. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol., 2017, 10(5), 1351-1360.
[http://dx.doi.org/10.1038/mi.2016.137] [PMID: 28120848]
[8]
Sharma, S.; Mukkur, T.K.; Benson, H.A.; Chen, Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci., 2009, 98(3), 812-843.
[http://dx.doi.org/10.1002/jps.21493] [PMID: 18661544]
[9]
Sharma, B. Vaccine development: Highlighting development of tuberculosis vaccines. Austin. J. Clin. Immunol., 2019, 6(2), 1039.
[10]
Pavot, V.; Rochereau, N.; Genin, C.; Verrier, B.; Paul, S. New insights in mucosal vaccine development. Vaccine, 2012, 30(2), 142-154.
[http://dx.doi.org/10.1016/j.vaccine.2011.11.003] [PMID: 22085556]
[11]
Czerkinsky, C.; Holmgren, J. Topical immunization strategies. Mucosal Immunol., 2010, 3(6), 545-555.
[http://dx.doi.org/10.1038/mi.2010.55] [PMID: 20861833]
[12]
Liu, H.; Patil, H.P.; de Vries-Idema, J.; Wilschut, J.; Huckriede, A. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies. PLoS One, 2013, 8(7), e69649.
[http://dx.doi.org/10.1371/journal.pone.0069649] [PMID: 23936066]
[13]
Yuki, Y.; Nochi, T.; Kiyono, H. Progress towards an AIDS mucosal vaccine: An overview. Tuberculosis , 2007, 87(Suppl. 1), S35-S44.
[http://dx.doi.org/10.1016/j.tube.2007.05.005] [PMID: 17652028]
[14]
Cesta, M.F. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol. Pathol., 2006, 34(5), 599-608.
[http://dx.doi.org/10.1080/01926230600865531] [PMID: 17067945]
[15]
Brandtzaeg, P.; Pabst, R. Let’s go mucosal: Communication on slippery ground. Trends Immunol., 2004, 25(11), 570-577.
[http://dx.doi.org/10.1016/j.it.2004.09.005] [PMID: 15489184]
[16]
Brandtzaeg, P.; Farstad, I.N.; Haraldsen, G. Regional specialization in the mucosal immune system: Primed cells do not always home along the same track. Immunol. Today, 1999, 20(6), 267-277.
[http://dx.doi.org/10.1016/S0167-5699(99)01468-1] [PMID: 10354552]
[17]
Langman, J.M.; Rowland, R. The number and distribution of lymphoid follicles in the human large intestine. J. Anat., 1986, 149, 189-194.
[PMID: 3693106]
[18]
Nizard, M.; Diniz, M.O.; Roussel, H.; Tran, T.; Ferreira, L.C.; Badoual, C.; Tartour, E. Mucosal vaccines: Novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum. Vaccin. Immunother., 2014, 10(8), 2175-2187.
[http://dx.doi.org/10.4161/hv.29269] [PMID: 25424921]
[19]
Rhee, J.H. Current and new approaches for mucosal vaccine delivery; Mucosal Vaccines, 2020, pp. 325-356.
[http://dx.doi.org/10.1016/B978-0-12-811924-2.00019-5]
[20]
Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal drug delivery: How, why and what for? J. Pharm. Pharm. Sci., 2009, 12(3), 288-311.
[http://dx.doi.org/10.18433/J3NC79] [PMID: 20067706]
[21]
Beule, A. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. Curr. Top. Otorhinolaryngol. Head Neck Surg., 2010, 9, 1865-1011.
[22]
Cole, P. Nasal and oral airflow resistors. Site, function, and assessment. Arch. Otolaryngol. Head Neck Surg., 1992, 118(8), 790-793.
[http://dx.doi.org/10.1001/archotol.1992.01880080012004] [PMID: 1642827]
[23]
Fortuna, A.; Alves, G.; Serralheiro, A.; Sousa, J.; Falcão, A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. Eur. J. Pharm. Biopharm., 2014, 88(1), 8-27.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.004] [PMID: 24681294]
[24]
Sarkar, M.A. Drug metabolism in the nasal mucosa. Pharm. Res., 1992, 9(1), 1-9.
[http://dx.doi.org/10.1023/A:1018911206646] [PMID: 1589391]
[25]
Fukuyama, S.; Hiroi, T.; Yokota, Y.; Rennert, P.D.; Yanagita, M.; Kinoshita, N.; Terawaki, S.; Shikina, T.; Yamamoto, M.; Kurono, Y.; Kiyono, H. Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(-)CD4(+)CD45(+) cells. Immunity, 2002, 17(1), 31-40.
[http://dx.doi.org/10.1016/S1074-7613(02)00339-4] [PMID: 12150889]
[26]
Liang, B.; Hyland, L.; Hou, S. Nasal-associated lymphoid tissue is a site of long-term virus-specific antibody production following respiratory virus infection of mice. J. Virol., 2001, 75(11), 5416-5420.
[http://dx.doi.org/10.1128/JVI.75.11.5416-5420.2001] [PMID: 11333927]
[27]
Kiyono, H.; Satoshi, F. NALT- versus Peyer's-patch-mediated mucosal immunity. Natl. Rev. Immunol., 2004, 4(9), 699-710.
[28]
Li, M.; Wang, Y.; Sun, Y.; Cui, H.; Zhu, S.J.; Qiu, H.J. Mucosal vaccines: Strategies and challenges. Immunol. Lett., 2020, 271, 116-125.
[29]
Jahnsen, F.L.; Gran, E.; Haye, R.; Brandtzaeg, P. Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am. J. Respir. Cell Mol. Biol., 2004, 30(1), 31-37.
[http://dx.doi.org/10.1165/rcmb.2002-0230OC] [PMID: 12829449]
[30]
Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev., 2009, 61(2), 140-157.
[http://dx.doi.org/10.1016/j.addr.2008.09.005] [PMID: 19121350]
[31]
Holmgren, J.; Lycke, N. Principles of mucosal vaccine strategies. Principles of mucosal immunology; Smith, P.D.; MacDonald, T.T.; Blumberg, R.S., Eds.; Garland Science:; London, 2013, pp. 413-428.
[32]
Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal delivery of high molecular weight drugs. Molecules, 2009, 14(9), 3754-3779.
[http://dx.doi.org/10.3390/molecules14093754] [PMID: 19783956]
[33]
Bajracharya, R.; Song, J.G.; Back, S.Y.; Han, H.K. Recent advancements in non-invasive formulations for protein drug delivery. Comput. Struct. Biotechnol. J., 2019, 17, 1290-1308.
[http://dx.doi.org/10.1016/j.csbj.2019.09.004] [PMID: 31921395]
[34]
Rudin, A.; Johansson, E.L.; Bergquist, C.; Holmgren, J. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect. Immun., 1998, 66(7), 3390-3396.
[http://dx.doi.org/10.1128/IAI.66.7.3390-3396.1998] [PMID: 9632610]
[35]
Hagiwara, Y.; McGhee, J.R.; Fujihashi, K.; Kobayashi, R.; Yoshino, N.; Kataoka, K.; Etani, Y.; Kweon, M.N.; Tamura, S.; Kurata, T.; Takeda, Y.; Kiyono, H.; Fujihashi, K. Protective mucosal immunity in aging is associated with functional CD4+ T cells in nasopharyngeal-associated lymphoreticular tissue. J. Immunol., 2003, 170(4), 1754-1762.
[http://dx.doi.org/10.4049/jimmunol.170.4.1754] [PMID: 12574339]
[36]
Koga, T.; McGhee, J.R.; Kato, H.; Kato, R.; Kiyono, H.; Fujihashi, K. Evidence for early aging in the mucosal immune system. J. Immunol., 2000, 165(9), 5352-5359.
[http://dx.doi.org/10.4049/jimmunol.165.9.5352] [PMID: 11046071]
[37]
FDA Information Regarding FluMist Quadrivalent Vaccine. Available from: https://www.fda.gov/biologicsbloodvaccines/vaccines/approvedproducts/ucm508761.htm [Accessed on May 25, 2022]
[38]
Cape, S.; Chaudhari, A.; Vaidya, V.; Mulay, R.; Agarkhedkar, S.; Shermer, C.; Collins, M.; Anderson, R.; Agarkhedkar, S.; Kulkarni, P.S.; Winston, S.; Sievers, R.; Dhere, R.M.; Gunale, B.; Powell, K.; Rota, P.A.; Papania, M. Safety and immunogenicity of dry powder measles vaccine administered by inhalation: A randomized controlled Phase I clinical trial. Vaccine, 2014, 32(50), 6791-6797.
[http://dx.doi.org/10.1016/j.vaccine.2014.09.071] [PMID: 25446830]
[39]
Hinkula, J.; Hagbom, M.; Wahren, B.; Schroder, U. Safety and immunogenicity, after nasal application of HIV-1 DNA gagp37 plasmid vaccine in young mice. Vaccine, 2008, 26(40), 5101-5106.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.098] [PMID: 18482783]
[40]
Tiwari, S.; Verma, S.K.; Agrawal, G.P.; Vyas, S.P. Viral protein complexed liposomes for intranasal delivery of hepatitis B surface antigen. Int. J. Pharm., 2011, 413(1-2), 211-219.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.029] [PMID: 21540094]
[41]
Derrick, S.C.; Kolibab, K.; Yang, A.; Morris, S.L. Intranasal administration of Mycobacterium bovis BCG induces superior protection against aerosol infection with Mycobacterium tuberculosis in mice. Clin. Vaccine Immunol., 2014, 21(10), 1443-1451.
[http://dx.doi.org/10.1128/CVI.00394-14] [PMID: 25143340]
[42]
Lorenzi, J.C.; Trombone, A.P.; Rocha, C.D.; Almeida, L.P.; Lousada, R.L.; Malardo, T.; Fontoura, I.C.; Rossetti, R.A.; Gembre, A.F.; Silva, A.M.; Silva, C.L.; Coelho-Castelo, A.A. Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol., 2010, 10(1), 77.
[http://dx.doi.org/10.1186/1472-6750-10-77] [PMID: 20961459]
[43]
Krishnan, V.; Andersen, B.H.; Shoemaker, C.; Sivko, G.S.; Tordoff, K.P.; Stark, G.V.; Zhang, J.; Feng, T.; Duchars, M.; Roberts, M.S. Efficacy and immunogenicity of single-dose AdVAV intranasal anthrax vaccine compared to anthrax vaccine absorbed in an aerosolized spore rabbit challenge model. Clin. Vaccine Immunol., 2015, 22(4), 430-439.
[http://dx.doi.org/10.1128/CVI.00690-14] [PMID: 25673303]
[44]
Wu, Y.; Wei, W.; Zhou, M.; Wang, Y.; Wu, J.; Ma, G.; Su, Z. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials, 2012, 33(7), 2351-2360.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.068] [PMID: 22192540]
[45]
Fischer, W.A., II; King, L.S.; Lane, A.P.; Pekosz, A. Restricted replication of the live attenuated influenza A virus vaccine during infection of primary differentiated human nasal epithelial cells. Vaccine, 2015, 33(36), 4495-4504.
[http://dx.doi.org/10.1016/j.vaccine.2015.07.023] [PMID: 26196325]
[46]
Citron, M.P.; Patel, M.; Purcell, M.; Lin, S.A.; Rubins, D.J.; McQuade, P.; Callahan, C.; Gleason, A.; Petrescu, I.; Knapp, W.; Orekie, C.; Chamarthy, S.; Wen, Z.; Touch, S.; Pine, M.; Fontenot, J.; Douglas, C.; Liang, X.; Espeseth, A.S. A novel method for strict intranasal delivery of non-replicating RSV vaccines in cotton rats and non-human primates. Vaccine, 2018, 36(20), 2876-2885.
[http://dx.doi.org/10.1016/j.vaccine.2018.02.110] [PMID: 29599087]
[47]
Ball, J.P.; Springer, M.J.; Ni, Y.; Finger-Baker, I.; Martinez, J.; Hahn, J.; Suber, J.F.; DiMarco, A.V.; Talton, J.D.; Cobb, R.R. Intranasal delivery of a bivalent norovirus vaccine formulated in an in situ gelling dry powder. PLoS One, 2017, 12(5), e0177310.
[http://dx.doi.org/10.1371/journal.pone.0177310] [PMID: 28545100]
[48]
Lijek, R.S.; Luque, S.L.; Liu, Q.; Parker, D.; Bae, T.; Weiser, J.N. Protection from the acquisition of Staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proc. Natl. Acad. Sci., 2012, 109(34), 13823-13828.
[http://dx.doi.org/10.1073/pnas.1208075109] [PMID: 22869727]
[49]
Pedersen, G.; Cox, R. The mucosal vaccine quandary: Intranasal vs. sublingual immunization against influenza. Hum. Vaccin. Immunother., 2012, 8(5), 689-693.
[http://dx.doi.org/10.4161/hv.19568] [PMID: 22495121]
[50]
Giri, P.K.; Sable, S.B.; Verma, I.; Khuller, G.K. Comparative evaluation of intranasal and subcutaneous route of immunization for development of mucosal vaccine against experimental tuberculosis. FEMS Immunol. Med. Microbiol., 2005, 45(1), 87-93.
[http://dx.doi.org/10.1016/j.femsim.2005.02.009] [PMID: 15985227]
[51]
Phua, K.K.; Staats, H.F.; Leong, K.W.; Nair, S.K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep., 2014, 4(1), 5128.
[http://dx.doi.org/10.1038/srep05128] [PMID: 24894817]
[52]
Xu, Y.; Yuen, P.W.; Lam, J.K. Intranasal DNA vaccine for protection against respiratory infectious diseases: The delivery perspectives. Pharmaceutics, 2014, 6(3), 378-415.
[http://dx.doi.org/10.3390/pharmaceutics6030378] [PMID: 25014738]
[53]
Azegami, T.; Yuki, Y.; Kiyono, H. Challenges in mucosal vaccines for the control of infectious diseases. Int. Immunol., 2014, 26(9), 517-528.
[http://dx.doi.org/10.1093/intimm/dxu063] [PMID: 24914172]
[54]
Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med., 2013, 19(12), 1597-1608.
[http://dx.doi.org/10.1038/nm.3409] [PMID: 24309663]
[55]
Akagi, T.; Baba, M.; Akashi, M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: Regulation of immune responses by nanoparticle-based vaccine. Adv. Polym. Sci., 2011, 247, 31-64.
[http://dx.doi.org/10.1007/12_2011_150]
[56]
Thakkar, S.G.; Warnken, Z.N.; Alzhrani, R.F.; Valdes, S.A.; Aldayel, A.M.; Xu, H.; Williams, R.O., III; Cui, Z. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J. Control. Release, 2018, 292, 111-118.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.020] [PMID: 30339906]
[57]
Bilyy, R.; Paryzhak, S.; Turcheniuk, K.; Dumych, T.; Barras, A.; Boukherroub, R.; Wang, F.; Yushin, G.; Szunerits, S. Aluminum oxide nanowires as safe and effective adjuvants for next-generation vaccines. Mater. Today, 2019, 22, 58-66.
[http://dx.doi.org/10.1016/j.mattod.2018.10.034]
[58]
Thakkar, S.G.; Xu, H.; Li, X.; Cui, Z. Uric acid and the vaccine adjuvant activity of aluminium (oxy)hydroxide nanoparticles. J. Drug Target., 2018, 26(5-6), 474-480.
[http://dx.doi.org/10.1080/1061186X.2018.1428808] [PMID: 29334279]
[59]
Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers, 2018, 10(1), 31-45.
[http://dx.doi.org/10.3390/polym10010031] [PMID: 30966075]
[60]
Bivas-Benita, M.; Romeijn, S.; Junginger, H.E.; Borchard, G. PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur. J. Pharm. Biopharm., 2004, 58(1), 1-6.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.008] [PMID: 15207531]
[61]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[62]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[63]
Pachioni-Vasconcelos, J.A.; Lopes, A.M.; Apolinário, A.C.; Valenzuela-Oses, J.K.; Costa, J.S.; Nascimento, L.O.; Pessoa, A.; Barbosa, L.R.; Rangel-Yagui, C.O. Nanostructures for protein drug delivery. Biomater. Sci., 2016, 4(2), 205-218.
[http://dx.doi.org/10.1039/C5BM00360A] [PMID: 26580477]
[64]
Peek, L.J.; Middaugh, C.R.; Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev., 2008, 60(8), 915-928.
[http://dx.doi.org/10.1016/j.addr.2007.05.017] [PMID: 18325628]
[65]
Ensign, L.M.; Schneider, C.; Suk, J.S.; Cone, R.; Hanes, J. Mucus penetrating nanoparticles: Biophysical tool and method of drug and gene delivery. Adv. Mater., 2012, 24(28), 3887-3894.
[http://dx.doi.org/10.1002/adma.201201800] [PMID: 22988559]
[66]
Noh, Y.W.; Hong, J.H.; Shim, S.M.; Park, H.S.; Bae, H.H.; Ryu, E.K.; Hwang, J.H.; Lee, C.H.; Cho, S.H.; Sung, M.H.; Poo, H.; Lim, Y.T. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7684-7689.
[http://dx.doi.org/10.1002/anie.201302881] [PMID: 23765547]
[67]
Schneider, C.S.; Xu, Q.; Boylan, N.J.; Chisholm, J.; Tang, B.C.; Schuster, B.S.; Henning, A.; Ensign, L.M.; Lee, E.; Adstamongkonkul, P.; Simons, B.W.; Wang, S.S.; Gong, X.; Yu, T.; Boyle, M.P.; Suk, J.S.; Hanes, J. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv., 2017, 3(4), e1601556.
[http://dx.doi.org/10.1126/sciadv.1601556] [PMID: 28435870]
[68]
Reddy, S.T.; van der Vlies, A.J.; Simeoni, E.; Angeli, V.; Randolph, G.J.; O’Neil, C.P.; Lee, L.K.; Swartz, M.A.; Hubbell, J.A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol., 2007, 25(10), 1159-1164.
[http://dx.doi.org/10.1038/nbt1332] [PMID: 17873867]
[69]
Popi, A.F.; Longo-Maugéri, I.M.; Mariano, M. An overview of B-1 cells as antigen-presenting cells. Front. Immunol., 2016, 7, 138.
[70]
Mestecky, J.; Blumberg, R.; Kiyono, H.; McGhee, J. Fundamental Immunology, 5th ed; Lippincott Williams & Wilkins: Philadelphia, 2003.
[71]
Yuki, Y.; Kiyono, H. New generation of mucosal adjuvants for the induction of protective immunity. Rev. Med. Virol., 2003, 13(5), 293-310.
[http://dx.doi.org/10.1002/rmv.398] [PMID: 12931340]
[72]
Fujimura, Y. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch., 2000, 436(6), 560-566.
[http://dx.doi.org/10.1007/s004289900177] [PMID: 10917169]
[73]
Ogasawara, N.; Kojima, T.; Go, M.; Takano, K.; Kamekura, R.; Ohkuni, T.; Koizumi, J.; Masaki, T.; Fuchimoto, J.; Obata, K.; Kurose, M.; Shintani, T.; Sawada, N.; Himi, T. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids. Acta Otolaryngol., 2011, 131(2), 116-123.
[http://dx.doi.org/10.3109/00016489.2010.520022] [PMID: 21062118]
[74]
Gebert, A.; Pabst, R. M cells at locations outside the gut. Semin. Immunol., 1999, 11(3), 165-170.
[http://dx.doi.org/10.1006/smim.1999.0172] [PMID: 10381862]
[75]
Tacken, P.J.; de Vries, I.J.; Torensma, R.; Figdor, C.G. Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat. Rev. Immunol., 2007, 7(10), 790-802.
[http://dx.doi.org/10.1038/nri2173] [PMID: 17853902]
[76]
Pulendran, B.; Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol., 2011, 12(6), 509-517.
[http://dx.doi.org/10.1038/ni.2039] [PMID: 21739679]
[77]
Shen, H.; Ackerman, A.L.; Cody, V.; Giodini, A.; Hinson, E.R.; Cresswell, P.; Edelson, R.L.; Saltzman, W.M.; Hanlon, D.J. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology, 2006, 117(1), 78-88.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02268.x] [PMID: 16423043]
[78]
Wang, C.; Li, P.; Liu, L.; Pan, H.; Li, H.; Cai, L.; Ma, Y. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials, 2016, 79, 88-100.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.040] [PMID: 26702587]
[79]
Rivera, A.; Siracusa, M.C.; Yap, G.S.; Gause, W.C. Innate cell communication kick-starts pathogen-specific immunity. Nat. Immunol., 2016, 17(4), 356-363.
[http://dx.doi.org/10.1038/ni.3375] [PMID: 27002843]
[80]
Boraschi, D.; Italiani, P. From antigen delivery system to adjuvanticy: The board application of nanoparticles in vaccinology. Vaccines, 2015, 3(4), 930-939.
[http://dx.doi.org/10.3390/vaccines3040930] [PMID: 26556378]
[81]
Bungener, L.; Huckriede, A.; Wilschut, J.; Daemen, T. Delivery of protein antigens to the immune system by fusion-active virosomes: A comparison with liposomes and ISCOMs. Biosci. Rep., 2002, 22(2), 323-338.
[http://dx.doi.org/10.1023/A:1020198908574] [PMID: 12428908]
[82]
Burgdorf, S.; Kautz, A.; Böhnert, V.; Knolle, P.A.; Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science, 2007, 316(5824), 612-616.
[http://dx.doi.org/10.1126/science.1137971] [PMID: 17463291]
[83]
Diebold, S.S.; Cotten, M.; Koch, N.; Zenke, M. MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther., 2001, 8(6), 487-493.
[http://dx.doi.org/10.1038/sj.gt.3301433] [PMID: 11313828]
[84]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5), 3926-3938.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[85]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10, 57.
[86]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.014] [PMID: 19874859]
[87]
Yewale, C.; Baradia, D.; Patil, S.; Bhatt, P.; Amrutiya, J.; Gandhi, R.; Kore, G.; Misra, A. Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. J. Drug Deliv. Sci. Technol., 2018, 45, 334-345.
[http://dx.doi.org/10.1016/j.jddst.2018.03.027]
[88]
Köping-Höggård, M.; Sánchez, A.; Alonso, M.J. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev. Vaccines, 2005, 4(2), 185-196.
[http://dx.doi.org/10.1586/14760584.4.2.185] [PMID: 15889992]
[89]
Patel, J.; Amrutiya, J.; Bhatt, P.; Javia, A.; Jain, M.; Misra, A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul., 2018, 35(2), 204-217.
[http://dx.doi.org/10.1080/02652048.2018.1453560] [PMID: 29542378]
[90]
Joseph, A.; Itskovitz-Cooper, N.; Samira, S.; Flasterstein, O.; Eliyahu, H.; Simberg, D.; Goldwaser, I.; Barenholz, Y.; Kedar, E. A new intranasal influenza vaccine based on a novel polycationic lipid--Ceramide Carbamoyl-Spermine (CCS) I. Immunogenicity and efficacy studies in mice. Vaccine, 2006, 24(18), 3990-4006.
[http://dx.doi.org/10.1016/j.vaccine.2005.12.017] [PMID: 16516356]
[91]
Heydenreich, A.V.; Westmeier, R.; Pedersen, N.; Poulsen, H.S.; Kristensen, H.G. Preparation and purification of cationic solid lipid nanospheres--effects on particle size, physical stability and cell toxicity. Int. J. Pharm., 2003, 254(1), 83-87.
[http://dx.doi.org/10.1016/S0378-5173(02)00688-9] [PMID: 12615415]
[92]
Alpar, H.O.; Somavarapu, S.; Atuah, K.N.; Bramwell, V.W. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev., 2005, 57(3), 411-430.
[http://dx.doi.org/10.1016/j.addr.2004.09.004] [PMID: 15560949]
[93]
Garg, N.K.; Mangal, S.; Khambete, H.; Tyagi, R.K. Mucosal delivery of vaccines: Role of mucoadhesive/biodegradable polymers. Recent Pat. Drug Deliv. Formul., 2010, 4(2), 114-128.
[http://dx.doi.org/10.2174/187221110791185015] [PMID: 20380624]
[94]
Primard, C.; Poecheim, J.; Heuking, S.; Sublet, E.; Esmaeili, F.; Borchard, G. Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization. Mol. Pharm., 2013, 10(8), 2996-3004.
[http://dx.doi.org/10.1021/mp400092y] [PMID: 23869898]
[95]
Hilbert, A.K.; Fritzsche, U.; Kissel, T. Biodegradable microspheres containing influenza A vaccine: Immune response in mice. Vaccine, 1999, 17(9-10), 1065-1073.
[http://dx.doi.org/10.1016/S0264-410X(98)00323-5] [PMID: 10195616]
[96]
Ramvikas, M.; Arumugam, M.; Chakrabarti, S.R.; Jaganathan, K.S. Nasal Vaccine Delivery; Elsevier Inc.: Amsterdam, 2017.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00015-4]
[97]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnology, 2018, 16, 1-33.
[98]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[99]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[100]
Devi, J.R.; Das, B. Liposomes : A carrier for Novel drug delivery system. Int. J. Res. Pharmaceut. Nanosci., 2016, 5, 212-223.
[101]
Monteiro, N.; Martins, A.; Reis, R.L.; Neves, N.M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface, 2014, 11(101), 20140459.
[http://dx.doi.org/10.1098/rsif.2014.0459] [PMID: 25401172]
[102]
Dhakal, S.; Cheng, X.; Salcido, J.; Renu, S.; Bondra, K.; Lakshmanappa, Y.S.; Misch, C.; Ghimire, S.; Feliciano-Ruiz, N.; Hogshead, B.; Krakowka, S.; Carson, K.; McDonough, J.; Lee, C.W.; Renukaradhya, G.J. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. Int. J. Nanomedicine, 2018, 13, 6699-6715.
[http://dx.doi.org/10.2147/IJN.S178809] [PMID: 30425484]
[103]
Bernasconi, V.; Norling, K.; Bally, M.; Höök, F.; Lycke, N.Y. Mucosal vaccine development based on liposome technology. J. Immunol. Res., 2016, 2016, 5482087.
[http://dx.doi.org/10.1155/2016/5482087] [PMID: 28127567]
[104]
Gao, Y.; Wijewardhana, C.; Mann, J.F.S. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front. Immunol., 2018, 9, 345.
[http://dx.doi.org/10.3389/fimmu.2018.00345] [PMID: 29541072]
[105]
Qiao, C.; Liu, J.; Yang, J.; Li, Y.; Weng, J.; Shao, Y.; Zhang, X. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines. Biomaterials, 2016, 85, 1-17.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.054] [PMID: 26851653]
[106]
Rao, M.; Onkar, S.; Peachman, K.K.; White, Y.; Trinh, H.V.; Jobe, O.; Zhou, Y.; Dawson, P.; Eller, M.A.; Matyas, G.R.; Alving, C.R. Liposome-encapsulated human immunodeficiency virus-1 gp120 induces potent V1V2-specific antibodies in humans. J. Infect. Dis., 2018, 218(10), 1541-1550.
[http://dx.doi.org/10.1093/infdis/jiy348] [PMID: 29893872]
[107]
Honke, N.; Shaabani, N.; Teijaro, J.R.; Christen, U.; Hardt, C.; Bezgovsek, J.; Lang, P.A.; Lang, K.S. Presentation of autoantigen in peripheral lymph nodes is sufficient for priming autoreactive CD8+ T cells. Front. Immunol., 2017, 8, 113.
[http://dx.doi.org/10.3389/fimmu.2017.00113] [PMID: 28239381]
[108]
Weiner, D.; Yan, J.; Obeng-adjei, N. Nucleic acid molecule encoding hepatitis b virus core protein and vaccine comprising the same. US Patent 9,403,879, 2019.
[109]
Dewangan, H.K. Development and immunological evaluation of hepatitis b surface antigen loaded nanoparticles for vaccination. 2018.
[110]
Joshi, S.; Bawage, S.; Tiwari, P.; Kirby, D.; Perrie, Y.; Dennis, V.; Singh, S.R. Liposomes: A promising carrier for respiratory syncytial virus therapeutics. Expert Opin. Drug Deliv., 2019, 16(9), 969-980.
[http://dx.doi.org/10.1080/17425247.2019.1652268] [PMID: 31382795]
[111]
Joshi, S.; Chaudhari, A.A.; Dennis, V.; Kirby, D.J.; Perrie, Y.; Singh, S.R. Anti-RSV peptide-loaded liposomes for the inhibition of respiratory syncytial virus. Bioengineering, 2018, 5(2), 37.
[http://dx.doi.org/10.3390/bioengineering5020037] [PMID: 29747393]
[112]
Saelens, X.; Schepens, B.; Fiers, W. Respiratory syncytial virus vaccine., 2018.
[113]
Jaafer, N.S.; Balqees, H.A.; Al-Bayati, M.A. Preparation and standardization of liposomes encapsulated Newcastle disease vaccine in unilamellar and multilamellar forms. Plant Arch., 2020, 20, 978-982.
[114]
Diogo, G.R.; Hart, P.; Copland, A.; Kim, M.Y.; Tran, A.C.; Poerio, N.; Singh, M.; Paul, M.J.; Fraziano, M.; Reljic, R. Immunization with mycobacterium tuberculosis antigens encapsulated in phosphatidylserine liposomes improves protection afforded by BCG. Front. Immunol., 2019, 10, 1349.
[http://dx.doi.org/10.3389/fimmu.2019.01349] [PMID: 31293568]
[115]
Khademi, F.; Taheri, R.A.; Momtazi-Borojeni, A.A.; Farnoosh, G.; Johnston, T.P.; Sahebkar, A. Potential of cationic liposomes as adjuvants/delivery systems for tuberculosis subunit vaccines. Rev. Physiol. Biochem. Pharmacol., 2018, vol. 175, 47-69.
[116]
Ssemaganda, A.; Giddam, A.K.; Zaman, M.; Skwarczynski, M.; Toth, I.; Stanisic, D.I.; Good, M.F. Induction of Plasmodium-specific immune responses using liposome-based vaccines. Front. Immunol., 2019, 10, 135.
[http://dx.doi.org/10.3389/fimmu.2019.00135] [PMID: 30774635]
[117]
Nugraheni, R.W.; Yusuf, H.; Setyawan, D. Design of liposomes based vaccine adjuvant system, asian. J. Pharm. Technol., 2018, 8, 261-263.
[118]
Kammona, O.; Bourganis, V.; Karamanidou, T.; Kiparissides, C. Recent developments in nanocarrier-aided mucosal vaccination. Nanomedicine, 2017, 12(9), 1057-1074.
[http://dx.doi.org/10.2217/nnm-2017-0015] [PMID: 28440707]
[119]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[120]
Chen, Y.C.; Chen, S.J.; Cheng, H.F.; Yeh, M.K. Development of Yersinia pestis F1 antigen-loaded liposome vaccine against plague using microneedles as a delivery system. J. Drug Deliv. Sci. Technol., 2020, 55, 101443.
[http://dx.doi.org/10.1016/j.jddst.2019.101443]
[121]
Nakahashi-Ouchida, R.; Yuki, Y.; Kiyono, H. Nanodelivery vehicles for mucosal vaccines. Mucosal Vaccines; Elsevier: Amsterdam, 2020, pp. 461-475.
[http://dx.doi.org/10.1016/B978-0-12-811924-2.00026-2]
[122]
Przybyl, S.; Jachymek, W. Antigens of Actinobacillus pleuropneumoniae and their use in the design of vaccines, especially glycoconjugates. Postepy Hig. Med. Dosw., 2018, 72, 471-480.
[http://dx.doi.org/10.5604/01.3001.0012.0683]
[123]
Heuts, J.; Varypataki, E.M.; van der Maaden, K.; Romeijn, S.; Drijfhout, J.W.; van Scheltinga, A.T.; Ossendorp, F.; Jiskoot, W. Cationic liposomes: A flexible vaccine delivery system for physicochemically diverse antigenic peptides. Pharm. Res., 2018, 35(11), 207.
[http://dx.doi.org/10.1007/s11095-018-2490-6] [PMID: 30209623]
[124]
Marasini, N.; Ghaffar, K.A.; Skwarczynski, M.; Toth, I. Liposomes as a vaccine delivery system. Micro Nanotechnol. Vaccine Dev; Elsevier: Amsterdam, 2017, pp. 221-239.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00012-9]
[125]
Gaber, M.; Medhat, W.; Hany, M.; Saher, N.; Fang, J.Y.; Elzoghby, A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. J. Control. Release, 2017, 254, 75-91.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.392] [PMID: 28365294]
[126]
Tai, K.; Rappolt, M.; He, X.; Wei, Y.; Zhu, S.; Zhang, J.; Mao, L.; Gao, Y.; Yuan, F. Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chem., 2019, 293, 92-102.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.077] [PMID: 31151654]
[127]
Khan, K.; Aqil, M.; Imam, S.S.; Ahad, A.; Moolakkadath, T.; Sultana, Y.; Mujeeb, M. Ursolic acid loaded intra nasal nano lipid vesicles for brain tumour: Formulation, optimization, in-vivo brain/plasma distribution study and histopathological assessment. Biomed. Pharmacother., 2018, 106, 1578-1585.
[http://dx.doi.org/10.1016/j.biopha.2018.07.127] [PMID: 30119233]
[128]
Kalam, M.A.; Khan, A.A.; Alshamsan, A. Non-invasive administration of biodegradable nano-carrier vaccines. Am. J. Transl. Res., 2017, 9(1), 15-35.
[PMID: 28123631]
[129]
Kimelberg, H.K.; Mayhew, E.G.; Gregoriadis, G. Properties and biological effects of liposomes and their uses in pharmacology and toxicology. CRC Crit. Rev. Toxicol., 1978, 6(1), 25-79.
[http://dx.doi.org/10.3109/10408447809029333]
[130]
Alshweiat, A.; Ambrus, R. Ii; Csoka, I. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr. Med. Chem., 2019, 26(35), 6459-6492.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[131]
Rashid, M.; Ahmad, Q.Z. Trends in nanotechnology for practical applications. Appl. Target. Nano Drugs Deliv. Syst; Elsevier, 2019, pp. 297-325.
[132]
Giese, M. Mucosal immunity. Introd. to Mol. Vaccinol; Springer, 2016, pp. 63-95.
[http://dx.doi.org/10.1007/978-3-319-25832-4_3]
[133]
Hong, S.S.; Oh, K.T.; Choi, H.G.; Lim, S.J. Liposomal formulations for nose-to-brain delivery: Recent advances and future perspectives. Pharmaceutics, 2019, 11(10), 540.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[134]
Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release, 2019, 303, 130-150.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.025] [PMID: 31022431]
[135]
Park, J.Y.; Kim, M.G.; Shim, G.; Oh, Y.K. Lipid-based antigen delivery systems. J. Pharm. Investig., 2016, 46(4), 295-304.
[http://dx.doi.org/10.1007/s40005-016-0246-z]
[136]
Wang, N.; Wu, T.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system. Liposomes, 2017, 129, 129-272.
[137]
Liu, T.; Qian, R.; Liu, Q.; Wu, T.; Chen, J. Vaccine adjuvant delivery systems constructed using biocompatible nanoparticles formed through self-assembly of small molecules. Immunization- Vaccine Adjuv. Deliv. Syst. Strateg., 2018.
[http://dx.doi.org/10.5772/intechopen.79905]
[138]
Ingvarsson, P.T.; Rasmussen, I.S.; Viaene, M.; Irlik, P.J.; Nielsen, H.M.; Foged, C. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models. Eur. J. Pharm. Biopharm., 2014, 87(3), 480-488.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.001] [PMID: 24726978]
[139]
Ghaffar, K.A.; Marasini, N.; Giddam, A.K.; Batzloff, M.R.; Good, M.F.; Skwarczynski, M.; Toth, I. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomater., 2016, 41, 161-168.
[http://dx.doi.org/10.1016/j.actbio.2016.04.012] [PMID: 27063491]
[140]
Kim, B.G.; Kang, I.J. Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM. Ultramicroscopy, 2008, 108(10), 1168-1173.
[http://dx.doi.org/10.1016/j.ultramic.2008.04.038] [PMID: 18554804]
[141]
Fotoran, W.L.; Santangelo, R.; de Miranda, B.N.M.; Irvine, D.J.; Wunderlich, G. DNA-loaded cationic liposomes efficiently function as a vaccine against malarial proteins. Mol. Ther. Methods Clin. Dev., 2017, 7, 1-10.
[http://dx.doi.org/10.1016/j.omtm.2017.08.004] [PMID: 28879213]
[142]
Mancha-Agresti, P.; de Castro, C.P.; Dos Santos, J.S.C.; Araujo, M.A.; Pereira, V.B.; LeBlanc, J.G.; Leclercq, S.Y.; Azevedo, V. Recombinant invasive Lactococcus lactis carrying a DNA vaccine coding the Ag85A antigen increases INF-γ IL-6, and TNF-α cytokines after intranasal immunization. Front. Microbiol., 2017, 8, 1263.
[http://dx.doi.org/10.3389/fmicb.2017.01263] [PMID: 28744263]
[143]
Kannanganat, S.; Wyatt, L.S.; Gangadhara, S.; Chamcha, V.; Chea, L.S.; Kozlowski, P.A.; LaBranche, C.C.; Chennareddi, L.; Lawson, B.; Reddy, P.B.J.; Styles, T.M.; Vanderford, T.H.; Montefiori, D.C.; Moss, B.; Robinson, H.L.; Amara, R.R. High doses of GM-CSF inhibit antibody responses in rectal secretions and diminish modified vaccinia ankara/simian immunodeficiency virus vaccine protection in TRIM5α-restrictive Macaques. J. Immunol., 2016, 197(9), 3586-3596.
[http://dx.doi.org/10.4049/jimmunol.1600629] [PMID: 27683750]
[144]
Qu, W.; Li, N.; Yu, R.; Zuo, W.; Fu, T.; Fei, W.; Hou, Y.; Liu, Y.; Yang, J. Cationic DDA/TDB liposome as a mucosal vaccine adjuvantfor uptake by dendritic cells in vitro induces potent humouralimmunity. Artif. Cells Nanomed. Biotechnol, 2018, 46(sup1), 852-860.
[http://dx.doi.org/ 10.1080/21691401.2018.1438450] [PMID: 29447484]
[145]
Sarsenbayeva, G. Volgin, Y.; Kassenov, M.; Issagulov, T.; Bogdanov, N.; Sansyzbay, A.; Stukova, M.; Buzitskaya, Z.; Кulmagambetov, I.; Davlyatshin, T.; Khairullin, B. Immunogenicity and safety of a novel seasonal influenza preservative-free vaccine manufactured in Kazakhstan: Results of a randomized, comparative, phase II clinical trial in adults. Hum. Vaccin. Immunother., 2018, 14(3), 609-614.
[http://dx.doi.org/10.1080/21645515.2017.1387345] [PMID: 29112488]
[146]
Yeo, P.L.; Lim, C.L.; Chye, S.M.; Ling, A.P.K.; Koh, R.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed., 2018, 11(4), 301-314.
[http://dx.doi.org/10.1515/abm-2018-0002]
[147]
Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[148]
Sharma, R.; Dua, J.S.; Prasad, D.N.; Hira, S. Advancement in novel drug delivery system: Niosomes. J. Drug Deliv. Ther., 2019, 9, 995-1001.
[149]
Kundu, N.; Banik, D.; Sarkar, N. Self-assembly of amphiphiles into vesicles and fibrils: Investigation of structure and dynamics using spectroscopy and microscopy techniques. Langmuir, 2018, 34(39), 11637-11654.
[http://dx.doi.org/10.1021/acs.langmuir.7b04355] [PMID: 29544249]
[150]
Sahoo, C.K.; Reddy, G.S.; Vojjala, A.; Reddy, B.V. Bioavailability enhancement for poorly soluble drugs: A review., Innoriginal Int.J. Sci, 2018, 1-6.
[151]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Pharm. Sci., 2018, 2018, 15.
[152]
Kumar, A.; Pandey, A.N.; Jain, S.K. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv., 2016, 23(3), 681-693.
[http://dx.doi.org/10.3109/10717544.2014.920431] [PMID: 24901207]
[153]
Brewer, J.M.; Alexander, J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology, 1992, 75(4), 570-575.
[PMID: 1592432]
[154]
Goswami, S.; Pathak, D. Niosomes-a review of current status and application. World J. Pharm. Pharm. Sci., 2017, 594-615.
[http://dx.doi.org/10.20959/wjpps20176-9296]
[155]
López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M.J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J., 2015, 14, 58-68.
[http://dx.doi.org/10.1016/j.csbj.2015.11.001] [PMID: 26862374]
[156]
Patel, P. Surface modification of nanoparticles for targeted drug delivery. Surface modification of nanoparticles for targeted drug delivery; Pathak, Y., Ed.; Springer: Cham, Berlin, 2019, pp. 19-31.
[http://dx.doi.org/10.1007/978-3-030-06115-9_2]
[157]
Facciolà, A.; Visalli, G.; Laganà, P.; La Fauci, V.; Squeri, R.; Pellicanò, G.F.; Nunnari, G.; Trovato, M.; Di Pietro, A. The new era of vaccines: The “nanovaccinology”. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 7163-7182.
[PMID: 31486519]
[158]
Vicente, T.; Roldão, A.; Peixoto, C.; Carrondo, M.J.T.; Alves, P.M. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol., 2011, 107(Suppl.), S42-S48.
[http://dx.doi.org/10.1016/j.jip.2011.05.004] [PMID: 21784230]
[159]
Teunissen, E.A.; de Raad, M.; Mastrobattista, E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J. Control. Release, 2013, 172(1), 305-321.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.026] [PMID: 23999392]
[160]
Chackerian, B. Virus-like particles: Flexible platforms for vaccine development. Expert Rev. Vaccines, 2007, 6(3), 381-390.
[http://dx.doi.org/10.1586/14760584.6.3.381] [PMID: 17542753]
[161]
Rudolf, M.P.; Fausch, S.C.; Da Silva, D.M.; Kast, W.M. Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J. Immunol., 2001, 166(10), 5917-5924.
[http://dx.doi.org/10.4049/jimmunol.166.10.5917] [PMID: 11342606]
[162]
Quan, F.S.; Huang, C.; Compans, R.W.; Kang, S.M. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol., 2007, 81(7), 3514-3524.
[http://dx.doi.org/10.1128/JVI.02052-06] [PMID: 17251294]
[163]
Asadi, K.; Gholami, A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. Int. J. Biol. Macromol., 2021, 182, 648-658.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.005] [PMID: 33862071]
[164]
Sokolov, A.V.; Kostin, N.N.; Ovchinnikova, L.A.; Lomakin, Y.A.; Kudriaeva, A.A. Targeted drug delivery in lipid-like nanocages and extracellular vesicles. Acta Naturae, 2019, 11(2 (41)), 28-41.
[165]
Barclay, T.; Petrovsky, N. Vaccine adjuvant nanotechnologies. In: Micro Nanotechnol. Vaccine Dev; Elsevier: Norwich, 2017; pp. 127-147.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00007-5]
[166]
Shafique, M.; Meijerhof, T.; Wilschut, J.; de Haan, A. An intranasal virosomal vaccine against Respiratory Syncytial Virus, supplemented with TLR2 and NOD2 ligands, induces RSV-specific systemic and mucosal immunity in cotton rats 2013, 87.
[167]
Battaglia, L.; Panciani, P.P.; Muntoni, E.; Capucchio, M.T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv., 2018, 15(4), 369-378.
[http://dx.doi.org/10.1080/17425247.2018.1429401] [PMID: 29338427]
[168]
Giri, T.K. Chapter 16. Solid lipid nanoparticles for the delivery of drug molecules In: Materials for Biomedical Engineering; Elsevier Inc., 2019; pp. 551-576.
[http://dx.doi.org/10.1016/B978-0-12-818433-2.00016-9]
[169]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[170]
Lingayat, V.J.; Zarekar, N.S.; Shendge, R.S. Solid lipid nanoparticles: A review. Nanosci. Nanotechnol. Res., 2017, 2, 67-72.
[171]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[172]
Aboud, H.M.; El, M.H.; Ali, A.A.; El Menshawe, S.F.; Elbary, A.A. Development, optimization , and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery. 2016.
[173]
Singh, H.; Gupta, R.A.M.D.; Gautam, G. Formulation development, characterization, and in vitro-in vivo study of antihyperlipidemic drug rosuvastatin calcium-solid lipid nanoparticles. Asian J. Pharm. Clin. Res., 2018, 11(7), 436-443.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.26117]
[174]
Bezerra, I.P.S.; Costa-Souza, B.L.S.; Carneiro, G.; Ferreira, L.A.M.; de Matos Guedes, H.L.; Rossi-Bergmann, B. Nanoencapsulated retinoic acid as a safe tolerogenic adjuvant for intranasal vaccination against cutaneous leishmaniasis. Vaccine, 2019, 37(28), 3660-3667.
[http://dx.doi.org/10.1016/j.vaccine.2019.05.043] [PMID: 31133469]
[175]
D’Souza, A.; Shegokar, R. Nanostructured Lipid Carriers (NLCs) for drug delivery: Role of liquid lipid (oil). Curr. Drug Deliv., 2021, 18(3), 249-270.
[PMID: 32324512]
[176]
Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured Lipid Carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[177]
Gaba, B.; Fazil, M.; Ali, A.; Baboota, S.; Sahni, J.K.; Ali, J. Nanostructured Lipid Carriers (NLCs) as a bioavailability enhancement tool for oral administration. Drug Deliv., 2015, 22(6), 691-700.
[http://dx.doi.org/10.3109/10717544.2014.898110] [PMID: 24670099]
[178]
Gartziandia, O.; Herran, E.; Pedraz, J.L.; Carro, E.; Igartua, M.; Hernandez, R.M. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf. B Biointerfaces, 2015, 134, 304-313.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.054] [PMID: 26209963]
[179]
Alam, M.I.; Baboota, S.; Ahuja, A.; Ali, M.; Ali, J.; Sahni, J.K. Intranasal infusion of nanostructured Lipid Carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug Deliv., 2013, 20(6), 247-251.
[http://dx.doi.org/10.3109/10717544.2013.822945] [PMID: 23869788]
[180]
Erasmus, J.H.; Khandhar, A.P.; Guderian, J.; Granger, B.; Archer, J.; Archer, M.; Gage, E.; Fuerte-Stone, J.; Larson, E.; Lin, S.; Kramer, R.; Coler, R.N.; Fox, C.B.; Stinchcomb, D.T.; Reed, S.G.; Van Hoeven, N. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against zika. Mol. Ther., 2018, 26(10), 2507-2522.
[http://dx.doi.org/10.1016/j.ymthe.2018.07.010] [PMID: 30078765]
[181]
Emad, N.A.; Ahmed, B.; Alhalmi, A.; Alzobaidi, N.; Saleh Al-Kubati, S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2021, 64, 102642.
[http://dx.doi.org/10.1016/j.jddst.2021.102642]
[182]
Tiwari, A.; Tiwari, A. Nanomaterials in drug delivery, imaging, and tissue engineering;; John Wiley & Sons: Hoboxen, 2013.
[http://dx.doi.org/10.1002/9781118644591]
[183]
Laffleur, F.; Bernkop-Schnürch, A. Strategies for improving mucosal drug delivery. Nanomedicine, 2013, 8(12), 2061-2075.
[http://dx.doi.org/10.2217/nnm.13.178] [PMID: 24279493]
[184]
Thiagarajan, P. Nanoemulsions for drug delivery through different routes. Res. Biotechnol., 2011, 2(3), 30-41.
[185]
Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm, 2010, 1(1), 24-32.
[186]
Ruiza, A.; Varelab, A.; Cornejo, L. Nanoemulsions as coadjuants in intranasal vaccines. In: International Conference Series on Multidisciplinary Sciences; , 2019; 4, pp. 5078-2624.
[187]
Dey, A.K.; Srivastava, I.K. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev. Vaccines, 2011, 10(2), 227-251.
[http://dx.doi.org/10.1586/erv.10.142] [PMID: 21105782]
[188]
Jia, Y.; Krishnan, L.; Omri, A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin. Drug Deliv., 2015, 12(6), 993-1008.
[http://dx.doi.org/10.1517/17425247.2015.1044435] [PMID: 25952104]
[189]
Yang, Y.; Chen, L.; Sun, H.W.; Guo, H.; Song, Z.; You, Y.; Yang, L.Y.; Tong, Y.N.; Gao, J.N.; Zeng, H.; Yang, W.C.; Zou, Q.M. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J. Nanobiotechnol., 2019, 17(1), 6.
[http://dx.doi.org/10.1186/s12951-019-0441-y] [PMID: 30660182]
[190]
Ambrose, C.S.; Luke, C.; Coelingh, K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respi. Viruses, 2008, 2(6), 193-202.
[http://dx.doi.org/10.1111/j.1750-2659.2008.00056.x] [PMID: 19453395]
[191]
Kulkarni, P.S.; Raut, S.K.; Dhere, R.M. A post-marketing surveillance study of a human live-virus pandemic influenza A (H1N1) vaccine (Nasovac®) in India. Hum. Vaccin. Immunother., 2013, 9(1), 122-124.
[http://dx.doi.org/10.4161/hv.22317] [PMID: 23442586]
[192]
Erdoğar, N.; Akkın, S.; Bilensoy, E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat. Drug Deliv. Formul., 2018, 12(4), 252-266.
[http://dx.doi.org/10.2174/1872211313666190123153711] [PMID: 30674269]
[193]
Wu, L.; Shan, W.; Zhang, Z.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev., 2018, 124, 150-163.
[http://dx.doi.org/10.1016/j.addr.2017.10.001] [PMID: 28989056]
[194]
Cordeiro, A.S.; Crecente-Campo, J.; Bouzo, B.L.; González, S.F.; de la Fuente, M.; Alonso, M.J. Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. J. Drug Target., 2019, 27(5-6), 646-658.
[http://dx.doi.org/10.1080/1061186X.2018.1561886] [PMID: 30601085]
[195]
Huynh, N.T.; Passirani, C.; Saulnier, P.; Benoît, J-P. Lipid nanocapsules: A new platform for nanomedicine. Int. J. Pharm., 2009, 379(2), 201-209.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.026] [PMID: 19409468]
[196]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[197]
Prego, C.; Fabre, M.; Torres, D.; Alonso, M.J. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm. Res., 2006, 23(3), 549-556.
[http://dx.doi.org/10.1007/s11095-006-9570-8] [PMID: 16525861]
[198]
Peleteiro, M.; Presas, E.; González-Aramundiz, J.V.; Sánchez-Correa, B.; Simón-Vázquez, R.; Csaba, N.; Alonso, M.J.; González-Fernández, Á. Polymeric nanocapsules for vaccine delivery: Influence of the polymeric shell on the interaction with the immune system. Front. Immunol., 2018, 9, 791.
[http://dx.doi.org/10.3389/fimmu.2018.00791] [PMID: 29725329]
[199]
Prego, C.; Paolicelli, P.; Díaz, B.; Vicente, S.; Sánchez, A.; González-Fernández, A.; Alonso, M.J. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28(14), 2607-2614.
[http://dx.doi.org/10.1016/j.vaccine.2010.01.011] [PMID: 20096389]
[200]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[201]
Hu, J.; Sheng, Y.; Shi, J.; Yu, B.; Yu, Z.; Liao, G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr. Drug Metab., 2018, 19(9), 723-738.
[http://dx.doi.org/10.2174/1389200219666171207120643] [PMID: 29219050]
[202]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[203]
McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci., 2018, 253, 1-22.
[http://dx.doi.org/10.1016/j.cis.2018.02.002] [PMID: 29478671]
[204]
Bhatia, S. Natural polymers vs synthetic polymer. Nat. Polym. Drug Deliv. Syst; Springer: Berlin, 2016, pp. 95-118.
[http://dx.doi.org/10.1007/978-3-319-41129-3_3]
[205]
Jin, Z.; Gao, S.; Cui, X.; Sun, D.; Zhao, K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int. J. Pharm., 2019, 572, 118731.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118731] [PMID: 31669213]
[206]
Roopngam, P.E. Liposome and polymer-based nanomaterials for vaccine applications. Nanomed. J., 2019, 6, 1-10.
[207]
Nevagi, R.J.; Skwarczynski, M.; Toth, I. Polymers for subunit vaccine delivery. Eur. Polym. J., 2019, 114, 397-410.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.03.009]
[208]
Wen, R.; Umeano, A.C.; Francis, L.; Sharma, N.; Tundup, S.; Dhar, S. Mitochondrion: A promising target for nanoparticle-based vaccine delivery systems. Vaccines, 2016, 4(2), 18.
[http://dx.doi.org/10.3390/vaccines4020018] [PMID: 27258316]
[209]
Foged, C.; Hansen, J.; Agger, E.M. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur. J. Pharm. Sci., 2012, 45(4), 482-491.
[http://dx.doi.org/10.1016/j.ejps.2011.08.016] [PMID: 21888971]
[210]
Joshi, M.D.; Unger, W.J.; Storm, G.; van Kooyk, Y.; Mastrobattista, E. Targeting tumor antigens to dendritic cells using particulate carriers. J. Control. Release, 2012, 161(1), 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.010] [PMID: 22580109]
[211]
Sakshi, M.; Rampal, M.; Nikhlesh, B.; Sujit, P. A review on mucosal drug delivery system. Res. J. Pharmacogn. Phytochem., 2019, 11, 251-257.
[212]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[213]
Seidi, F.; Jenjob, R.; Phakkeeree, T.; Crespy, D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J. Control. Release, 2018, 284, 188-212.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.026] [PMID: 29940204]
[214]
Singh, B.; Maharjan, S.; Sindurakar, P.; Cho, K-H.; Choi, Y-J.; Cho, C-S. Needle-free immunization with chitosan-based systems. Int. J. Mol. Sci., 2018, 19(11), 3639.
[http://dx.doi.org/10.3390/ijms19113639] [PMID: 30463211]
[215]
Diego-González, L.; Crecente-Campo, J.; Paul, M.J.; Singh, M.; Reljic, R.; Alonso, M.J.; González-Fernández, Á.; Simón-Vázquez, R. Design of polymeric nanocapsules for intranasal vaccination against Mycobacterium tuberculosis: Influence of the polymeric shell and antigen positioning. Pharmaceutics, 2020, 12(6), 489.
[http://dx.doi.org/10.3390/pharmaceutics12060489] [PMID: 32481601]
[216]
Dhakal, S.; Renu, S.; Ghimire, S.; Shaan Lakshmanappa, Y.; Hogshead, B.T.; Feliciano-Ruiz, N.; Lu, F. HogenEsch, H.; Krakowka, S.; Lee, C.W.; Renukaradhya, G.J. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front. Immunol., 2018, 9, 934.
[http://dx.doi.org/10.3389/fimmu.2018.00934] [PMID: 29770135]
[217]
Nevagi, R.J.; Khalil, Z.G.; Hussein, W.M.; Powell, J.; Batzloff, M.R.; Capon, R.J.; Good, M.F.; Skwarczynski, M.; Toth, I. Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomater., 2018, 80, 278-287.
[http://dx.doi.org/10.1016/j.actbio.2018.09.037] [PMID: 30266637]
[218]
Sun, B.; Yu, S.; Zhao, D.; Guo, S.; Wang, X.; Zhao, K. Polysaccharides as vaccine adjuvants. Vaccine, 2018, 36(35), 5226-5234.
[http://dx.doi.org/10.1016/j.vaccine.2018.07.040] [PMID: 30057282]
[219]
Petrovsky, N. Vaxine. Hum. Vaccin. Immunother., 2016, 12(11), 2726-2728.
[http://dx.doi.org/10.1080/21645515.2016.1188639] [PMID: 27246682]
[220]
Kaur, L.; Sharma, A.; Yadav, A.K.; Mishra, N. Recent advances on biodegradable polymeric carrier-based mucosal immunization: An overview. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 452-464.
[http://dx.doi.org/10.1080/21691401.2017.1345927] [PMID: 28685588]
[221]
Rehman, S.; Nabi, B.; Zafar, A.; Baboota, S. Intranasal delivery of mucoadhesive nanocarriers: A viable option for Parkinson’s disease treatment? Expert Opin. Drug Deliv., 2019, 16(2), 1355-1366.
[http://dx.doi.org/10.1080/17425247.2019.1684895] [PMID: 31663382]
[222]
Andonova, V. Synthetic Polymer-Based Nanoparticles: IntelligentDrug Delivery Systems. In: Acrylic Polym. Healthc; IntechOpen, 2017.
[223]
Tekinay, T. Immunomodulatory Nanomaterials. In: Nanomater. Regen. Med; Springer: Kenthcky, 2019; pp. 119-142.
[http://dx.doi.org/10.1007/978-3-030-31202-2_4]
[224]
Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig., 2019, 49(4), 1-34.
[http://dx.doi.org/10.1007/s40005-019-00439-x]
[225]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[226]
Ebrahimian, M.; Hashemi, M.; Maleki, M.; Abnous, K.; Hashemitabar, G.; Ramezani, M.; Haghparast, A. Induction of a balanced Th1/Th2 immune responses by co-delivery of PLGA/ovalbumin nanospheres and CpG ODNs/PEI-SWCNT nanoparticles as TLR9 agonist in BALB/c mice. Int. J. Pharm., 2016, 515(1-2), 708-720.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.065] [PMID: 27989827]
[227]
Lambricht, L.; Peres, C.; Florindo, H.; Préat, V.; Vandermeulen, G. Polymer-Based Nanoparticles as Modern Vaccine Delivery Systems; Elsevier Inc., 2017, pp. 185-203.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00010-5]
[228]
Abraham, S.; Leong, K.; Staats, H.; John, A.S. Method of treatingfood allergies by administering a nanoparticle comprising heparinand chitosan encapsulating IL-12. US 9,782,475, 2017.
[229]
Verreck, F.A.W.; de Boer, T.; Langenberg, D.M.L.; van der Zanden, L.; Ottenhoff, T.H.M. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-γ- and CD40L-mediated costimulation. J. Leukoc. Biol., 2006, 79(2), 285-293.
[http://dx.doi.org/10.1189/jlb.0105015] [PMID: 16330536]
[230]
Binjawadagi, B.; Dwivedi, V.; Manickam, C.; Ouyang, K.; Torrelles, J.B.; Renukaradhya, G.J. An innovative approach to induce cross-protective immunity against porcine reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted nanotechnology-based vaccination. Int. J. Nanomedicine, 2014, 9, 1519-1535.
[PMID: 24711701]
[231]
Verma, A.; Gupta, A.; Mittal, A. Development and characterization of bipolymer based nanoparticulate carrier system as vaccine adjuvant for effective immunization 2015.
[232]
Gebril, A.M.; Lamprou, D.A.; Alsaadi, M.M.; Stimson, W.H.; Mullen, A.B.; Ferro, V.A. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles, nanomedicine nanotechnology. Biol. Med., 2014, 10, e971-e979.
[233]
Nanda, R.K.; Hajam, I.A.; Edao, B.M.; Ramya, K.; Rajangam, M.; Chandra Sekar, S.; Ganesh, K.; Bhanuprakash, V.; Kishore, S. Immunological evaluation of mannosylated chitosan nanoparticles based foot and mouth disease virus DNA vaccine, pVAC FMDV VP1-OmpA in guinea pigs. Biologicals, 2014, 42(3), 153-159.
[http://dx.doi.org/10.1016/j.biologicals.2014.01.002] [PMID: 24656961]
[234]
Tafaghodi, M.; Saluja, V.; Kersten, G.F.A.; Kraan, H.; Slütter, B.; Amorij, J-P.; Jiskoot, W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: Impact of formulation on physicochemical and immunological characteristics. Vaccine, 2012, 30(36), 5341-5348.
[http://dx.doi.org/10.1016/j.vaccine.2012.06.035] [PMID: 22749834]
[235]
Yao, W.; Peng, Y.; Du, M.; Luo, J.; Zong, L. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol. Pharm., 2013, 10(8), 2904-2914.
[http://dx.doi.org/10.1021/mp4000053] [PMID: 23768205]
[236]
Vinodh, S.; Kumar, S.V.; Vimal, K.E.K. Implementing lean sigma in an Indian rotary switches manufacturing organisation. Prod. Plann. Contr., 2014, 25(4), 288-302.
[http://dx.doi.org/10.1080/09537287.2012.684726]
[237]
Chiu, D.Y.-S. Evaluation of calcium phosphate nanoparticles mineralized with proteins and peptides for use as adjuvants in protein and nucleic acid vaccines 2014.
[238]
Patel, J.D. Pharmaceutically engineered nanoparticles for enhancing immune responses to HIV-1 Tat and Gag P24 proteins 2006.
[239]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[240]
Hall, M.A.; Stroop, S.D.; Hu, M.C.; Walls, M.A.; Reddish, M.A.; Burt, D.S.; Lowell, G.H.; Dale, J.B. Intranasal immunization with multivalent group A streptococcal vaccines protects mice against intranasal challenge infections. Infect. Immun., 2004, 72(5), 2507-2512.
[http://dx.doi.org/10.1128/IAI.72.5.2507-2512.2004] [PMID: 15102757]
[241]
Bhatt, P.; Lalani, R.; Vhora, I.; Patil, S.; Amrutiya, J.; Misra, A.; Mashru, R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int. J. Pharm., 2018, 536(1), 95-107.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.048] [PMID: 29175440]
[242]
Goncharova, E.P.; Ryzhikov, A.B.; Bulychev, L.E.; Sizov, A.A.; Lebedev, L.R.; Poryvaev, V.D.; Karpenko, L.I.; Il’ichev, A.A. A study of systems for delivering antigens and plasmid DNA for intranasal immunization against tick-borne encephalitis virus. Wien. Klin. Wochenschr., 2002, 114(13-14), 630-635.
[PMID: 12422616]
[243]
Das, S.C.; Hatta, M.; Wilker, P.R.; Myc, A.; Hamouda, T.; Neumann, G.; Baker, J.R., Jr; Kawaoka, Y. Nanoemulsion W805EC improves immune responses upon intranasal delivery of an inactivated pandemic H1N1 influenza vaccine. Vaccine, 2012, 30(48), 6871-6877.
[http://dx.doi.org/10.1016/j.vaccine.2012.09.007] [PMID: 22989689]
[244]
Bento, D.; Staats, H.F.; Borges, O. Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination. Vaccine, 2015, 33(31), 3609-3613.
[http://dx.doi.org/10.1016/j.vaccine.2015.06.037] [PMID: 26087299]
[245]
Zhao, K.; Rong, G.; Hao, Y.; Yu, L.; Kang, H.; Wang, X.; Wang, X.; Jin, Z.; Ren, Z.; Li, Z. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@ SiO2 hollow nanoparticles. Sci. Rep., 2016, 6, 1-12.
[246]
Lebre, F.; Borchard, G.; Faneca, H.; Pedroso de Lima, M.C.; Borges, O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol. Pharm., 2016, 13(2), 472-482.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00707] [PMID: 26651533]
[247]
Slütter, B.; Bal, S.; Keijzer, C.; Mallants, R.; Hagenaars, N.; Que, I.; Kaijzel, E.; van Eden, W.; Augustijns, P.; Löwik, C.; Bouwstra, J.; Broere, F.; Jiskoot, W. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine, 2010, 28(38), 6282-6291.
[http://dx.doi.org/10.1016/j.vaccine.2010.06.121] [PMID: 20638455]
[248]
Jaganathan, K.S.; Vyas, S.P. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine, 2006, 24(19), 4201-4211.
[http://dx.doi.org/10.1016/j.vaccine.2006.01.011] [PMID: 16446012]
[249]
Kiyono, H. Mucosal vaccines; Elsevier: Amsterdam, 1996.
[250]
Mohn, K.G.; Smith, I.; Sjursen, H.; Cox, R.J. Immune responses after live attenuated influenza vaccination. Hum. Vaccin. Immunother., 2018, 14(3), 571-578.
[http://dx.doi.org/10.1080/21645515.2017.1377376] [PMID: 28933664]
[251]
Rhee, J.H. Current and New Approaches for Mucosal Vaccine Delivery, Mucosal Vaccines; Elsevier: Massachusetts, 2020, pp. 325-356.
[252]
Hasegawa, H. Nasal Influenza Vaccines, Mucosal Vaccines; Elsevier, 2020, pp. 677-682.
[http://dx.doi.org/10.1016/B978-0-12-811924-2.00039-0]
[253]
Wang, S.H.; Kirwan, S.M.; Abraham, S.N.; Staats, H.F.; Hickey, A.J. Stable dry powder formulation for nasal delivery of anthrax vaccine. J. Pharm. Sci., 2012, 101(1), 31-47.
[http://dx.doi.org/10.1002/jps.22742] [PMID: 21905034]
[254]
Johnson, L.M.; Mecham, J.B.; Quinn, F.; Hickey, A.J. Nanoparticle technology for respiratory tract mucosal vaccine delivery. Kona, 2020, 37(0), 2020013.
[http://dx.doi.org/10.14356/kona.2020013]
[255]
Yusuf, H.; Kett, V. Current prospects and future challenges for nasal vaccine delivery. Hum. Vaccin. Immunother., 2017, 13(1), 34-45.
[http://dx.doi.org/10.1080/21645515.2016.1239668] [PMID: 27936348]
[256]
Asjö, B.; Stavang, H.; Sørensen, B.; Baksaas, I.; Nyhus, J.; Langeland, N. Phase I trial of a therapeutic HIV type 1 vaccine, Vacc-4x, in HIV type 1-infected individuals with or without antiretroviral therapy. AIDS Res. Hum. Retroviruses, 2002, 18(18), 1357-1365.
[http://dx.doi.org/10.1089/088922202320935438] [PMID: 12487807]
[257]
Iglesias, E.; García, D.; Carrazana, Y.; Aguilar, J.C.; Sánchez, A.; Gorobaya, L.; Blanco, A. Anti-HIV-1 and anti-HBV immune responses in mice after parenteral and nasal co-administration of a multiantigenic formulation. Curr. HIV Res., 2008, 6(5), 452-460.
[http://dx.doi.org/10.2174/157016208785861186] [PMID: 18855656]
[258]
Fernández, G.L.; Sanchez, A.; Jerez, E.E.; Anillo, L.; Freyre, F.A.; Aguiar, J.; Leon, Y.; Cinza, Z.A.; Diaz, P.; Figueroa, N.; Muzio, V.G.; Nieto, G.; Lobaina, Y.; Aguilar, A.; Penton, E.C.; Aguilar, J. Five-year follow-up of chronic hepatitis B patients immunized by nasal route with the therapeutic vaccine HeberNasvac. Euroasian J. Hepatogastroenterol., 2018, 8(2), 133-139.
[http://dx.doi.org/10.5005/jp-journals-10018-1279] [PMID: 30828555]
[259]
Marasini, N.; Skwarczynski, M.; Toth, I. Intranasal delivery of nanoparticle-based vaccines. Ther. Deliv., 2017, 8(3), 151-167.
[http://dx.doi.org/10.4155/tde-2016-0068] [PMID: 28145824]
[260]
Skwarczynski, M.; Toth, I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine, 2014, 9(17), 2657-2669.
[http://dx.doi.org/10.2217/nnm.14.187] [PMID: 25529569]
[261]
Intranasal modified vacc-4x gag peptides with endocine as adjuvant. ClinicalTrials.gov Identifier: NCT01473810. 2011. Available from: www.clinicaltrials.gov/ct2/show/record/NCT01473810?term=Vac c-4-x&draw=2&rank=2 (Accessed on May 25, 2022).
[262]
A Phase I Clinical Study of a GamLPV, a Live Intranasal Bordetella Pertussis Vaccine. ClinicalTrials.gov Identifier: NCT03137927. 2017. Available from: www.clinicaltrials.gov/ct2/show/record/NCT03137927?term=intranasal+vaccine&draw=2&rank=1 (Accessed on May 25, 2022)
[263]
A Phase 1/2 Clinical Trial of a GamLPV, a Live Intranasal Bordetella Pertussis Vaccine. ClinicalTrials.gov Identifier: NCT04036526. 2019. Available from: www.clinicaltrials.gov/ct2/show/NCT04036526?cond=GamLPV&draw=2&rank=1 (Accessed on May 25, 2022).
[264]
Development of an Intranasal Proteosome Influenza Vaccine. ClinicalTrials.gov Identifier: NCT02522754. 2015.Available from: www.clinicaltrials.gov/ct2/show/NCT02522754?term=intranasal+vaccine&draw=2&rank=3 (Accessed on May 25, 2022).
[265]
Study to Evaluate the Safety of MEDI-534 Vaccine Against Respiratory Syncytial Virus (RSV) and Parainfluenza Virus Type 3 (PIV3) in Healthy Children. ClinicalTrials.gov Identifier: NCT00345670. 2008. Available from: www.clinicaltrials.gov/ct2/show/NCT00345670?term=intranasal+vaccine&draw=2&rank=4 (Accessed on May 25, 2022).
[266]
A Study to Evaluate the Safety, Tolerability, Immunogenicity andVaccine-like Viral Shedding of MEDI-534, Against RespiratorySyncytial Virus (RSV) and Parainfluenza Virus Type 3 (PIV3), inHealthy 6 to <24 Month-old Children and in 2 Month-old Infants. ClinicalTrials.gov Identifier: NCT00686075. 2014. Availablefrom: www.clinicaltrials.gov/ct2/show/NCT00686075?cond=MEDI+534&draw=2&rank=1 (Accessed on May 25, 2022).
[267]
Shigella Flexneri 2a Invaplex 50 Vaccine Dose Finding and Assessment of Protection. ClinicalTrials.gov Identifier: NCT00485134. 2017. Available from: www.clinicaltrials.gov/ct2/show/record/NCT00485134?term=intranasal+vaccine&draw=2&rank=10 (Accessed on May 25, 2022).
[268]
Safety and Immunogenicity Study of Inactivated Nasal Influenza Vaccine NB-1008. ClinicalTrials.gov Identifier: NCT01333462.2011. Available from: www.clinicaltrials.gov/ct2/show/NCT01333462?term=intranasal+vaccine&draw=2&rank=11 (Accessed on May 25, 2022).
[269]
Single Group Study of the Safety of and Immune Response to a Bird Flu Virus Vaccine (H5N1) in Healthy Adults. ClinicalTrials.gov Identifier: NCT00488046. 2007. Available from: www.clinicaltrials.gov/ct2/show/NCT00488046?term=intranasal+vaccine&draw=2&rank=13 (Accessed on May 25, 2022).
[270]
Single Group Study of the Safety of and Immune Response to a Bird Flu Virus Vaccine (H5N1) in Healthy Adults. ClinicalTrials.gov Identifier: NCT01806909. 2007. Available from: www.clinicaltrials.gov/ct2/show/NCT01806909?term=intranasal+vaccine&draw=2&rank=17 (Accessed on May 25, 2022).
[271]
Safety of Nasal Influenza Immunisation in Children With Asthma (SNIFFLE-4). ClinicalTrials.gov Identifier: NCT02866942. 2019. Available from: www.clinicaltrials.gov/ct2/show/NCT02866942?term=intranasal+vaccine&draw=2&rank=16 (Accessed on May 25, 2022).
[272]
A Study to Evaluate the Shedding and Safety of Trivalent Influenza Virus Vaccine Live, Intranasal in Infants and Young Children. ClinicalTrials.gov Identifier: NCT00344305. 2017. Availablefrom: www.clinicaltrials.gov/ct2/show/NCT00344305?term=intranasal+vaccine&draw=2&rank=21 (Accessed on May 25, 2022).
[273]
A Study to Evaluate the Shedding and Safety of Trivalent Influenza Virus Vaccine Live, Intranasal in Infants and Young Children ClinicalTrials.gov Identifier: NCT00755703. 2017. Available from: www.clinicaltrials.gov/ct2/show/NCT00755703?term=intranasal+vaccine&draw=2&rank=22 (Accessed on May 25, 2022).
[274]
Safety and Immunogenicity of Intranasal BPZE1 Vaccination in Healthy Adults. ClinicalTrials.gov Identifier: NCT03541499 2022. Available from: www.clinicaltrials.gov/ct2/show/NCT03541499?term=intranasal+vaccine&draw=2&rank=24 (Accessed on May 25, 2022).
[275]
Study of BPZE1 Intranasal Pertussis Vaccine (Administered Via VaxINator(TM)), Prime + Boost, in Healthy Adults. ClinicalTrials.gov Identifier: NCT03942406. 2020. Available from: www.clinicaltrials.gov/ct2/show/NCT03942406?term=intranasal+vaccine&draw=2&rank=26 (Accessed on May 25, 2022).
[276]
Safety and Immunogenicity of a Single Dose of Intranasal Seasonal Trivalent Live-Attenuated Influenza Vaccine. ClinicalTrials.gov Identifier: NCT01625689. 2015. Available from: www.clinicaltrials.gov/ct2/show/NCT01625689?term=intranasal+vaccine&draw=2&rank=25 Accessed on June 01 2020.
[277]
A Safety and Immunogenicity Study of Intranasal Sendai VirusVectored Respiratory Syncytial Virus (SeVRSV) Vaccine in Healthy Adults. ClinicalTrials.gov Identifier: NCT03473002.2019. Available from: www.clinicaltrials.gov/ct2/show/NCT03473002?term=intranasal+vaccine&draw=2&rank=29 Accessed on June 01 2020.
[278]
Safety and Immune Response of Increasing Doses of OVX836 After Intramuscular or Intranasal Administrations in Healthy Subjects. ClinicalTrials.gov Identifier: NCT03594890. 2019. Available from: www.clinicaltrials.gov/ct2/show/NCT03594890?term=intranasal+vaccine&draw=2&rank=31 Accessed on June 01 2020.
[279]
Fletcher, H.A.; Schrager, L. TB vaccine development and the End TB Strategy: Importance and current status. Trans. R. Soc. Trop. Med. Hyg., 2016, 110(4), 212-218.
[http://dx.doi.org/10.1093/trstmh/trw016] [PMID: 27076508]
[280]
Reactogenicity, Safety and Immunogenicity of a TB/FLU-01L Tuberculosis Vaccine. ClinicalTrials.gov Identifier: NCT03017378. 2017. Available from: www.clinicaltrials.gov/ct2/show/NCT03017378?term=intranasal+vaccine&draw=2&rank=36 Accessed on June 01 2020.
[281]
Safety Study of Live Attenuated Influenza Vaccine, CodaVax, Delivered Via Intranasal Spray. ClinicalTrials.gov Identifier: NCT04146623. 2020. Available from: www.clinicaltrials.gov/ct2/show/NCT04146623?term=intranasal+ vaccine&draw=2&rank=44 Accessed on June 01 2020.
[282]
Phase 1 Norwalk Vaccine Study. ClinicalTrials.gov Identifier: NCT00806962. 2015. Available from: www.clinicaltrials.gov/ct2/show/NCT00806962?term=intranasal+ vaccine&draw=2&rank=43 Accessed on June 01 2020.
[283]
RSV-MVA-BN Vaccine Phase I Trial, Intranasal Application in Adults. ClinicalTrials.gov Identifier: NCT02864628. 2018. Available from: www.clinicaltrials.gov/ct2/show/NCT02864628?term=intranasal+ vaccine&draw=2&rank=41 Accessed on June 01 2020.
[284]
A Phase 2, Double-blind Study to Evaluate Intranasal Trivalent Influenza Virus Vaccine in Healthy Adult. ClinicalTrials.gov Identifier: NCT03784885. 2018. Available from: www.clinicaltrials.gov/ct2/show/record/NCT03784885?term=intra nasal+vaccine&draw=2&rank=39 Accessed on June 01 2020.
[285]
Safety, Tolerability, and Efficacy Study of Prophylactic S. Pneumoniae Vaccine Following Challenge With S. Pneumoniae. ClinicalTrials.gov Identifier: NCT02116998. 2018. Available from: www.clinicaltrials.gov/ct2/show/record/NCT02116998?term=intra nasal+vaccine&draw=2&rank=46 Accessed on June 01 2020.
[287]
A Safety and Immunogenicity of Intranasal Nanoemulsion Adjuvanted Recombinant Anthrax Vaccine in Healthy Adults (IN NErPA). ClinicalTrials.gov Identifier: NCT04148118. 2022. Available from: www.clinicaltrials.gov/ct2/show/NCT04148118?term=intranasal+ vaccine&draw=2&rank=47 Accessed on June 01 2020.
[288]
Intranasal Recombinant Flagellin Subunit Campylobacter Vaccine (rFla-MBP) Dose-Ranging Study. ClinicalTrials.gov Identifier: NCT00124865. 2017. Available from: www.clinicaltrials.gov/ct2/show/NCT00124865?term=intranasal+ vaccine&draw=4&rank=48 Accessed on June 01 2020.
[289]
Norwalk Vaccine Study. ClinicalTrials.gov Identifier: NCT00973284. 2017. Available from: www.clinicaltrials.gov/ct2/show/record/NCT00973284?term=intra nasal+vaccine&draw=2&rank=64 Accessed on June 01 2020.
[290]
Post-Partum Immunization With Live Attenuated Influenza Vaccine (LAIV) or Trivalent Influenza Vaccine (TIV) in Post-Partum Breast Feeding Women. ClinicalTrials.gov Identifier: NCT01181323. 2015. Available from: www.clinicaltrials.gov/ct2/show/study/NCT01181323?term=intran asal+vaccine&draw=2&rank=76 Accessed on June 01 2020.
[291]
Trial of Intranasal Insulin in Children and Young Adults at Risk of Type 1 Diabetes (INITII). ClinicalTrials.gov Identifier: NCT00336674. 2020. Available from: www.clinicaltrials.gov/ct2/show/NCT00336674?term=intranasal+ vaccine&draw=2&rank=100 Accessed on June 01 2020.
[292]
Newsletter: CyanVac eyes fundraise for parainfluenza-vectored Covid-19 vaccine after December data . 21st Annual Contract Pharma. Contracting and outsourcing conference and table top exibition. Global Pharma Update., 2022. Available from: http://globalpharmaupdate.com/cyanvac-eyes-fundraise-forparainfluenza-vectored-covid-19-vaccine-after-december-data/
[293]
Saif, L.J. Vaccines for COVID-19: Perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. Eur. Med. J., 2020, 200324.
[http://dx.doi.org/10.33590/emj/200324]
[294]
Lead innovation-Newsletter: BBV154 - A novel adenovirus vectored, intranasal vaccine for COVID-19 Available from : https://www.bharatbiotech.com/intranasal-vaccine.html
[295]
First post: From Merck’s Molnupiravir to Glenmark’s nasal spray, over 20 new drugs in pipeline for COVID-19. The Washington Post. 2021. Available from: https://www.washingtonpost.com/health/2021/11/04/covid19-pillmerck-molnupiravir-approval-uk/.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy