Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Bioactive Compounds from Polar Regions: An Account of Chemical Ecology and Biotechnological Applications

Author(s): Archana Singh* and Keisham S. Singh

Volume 26, Issue 11, 2022

Published on: 29 August, 2022

Page: [1055 - 1087] Pages: 33

DOI: 10.2174/1385272826666220620152557

Price: $65

Abstract

Organisms living in polar regions experience harsh environmental conditions. To cope and adapt to the extreme conditions, organisms produce specialized metabolites. Such metabolites exhibit various biological activities and thus find application in the pharmaceutical, food and cosmetic industries. Numerous secondary metabolites have been isolated from polar organisms that exhibited interesting biological properties. With ongoing climate change and the opening up of the polar regions for resource exploration, it is important to realize the natural product potential and scope of the regions. This review describes a brief account of bioactive compounds reported from polar organisms along with their ecological perspective and biotechnological applications. We present a detailed overview of the chemical structures of the compounds isolated from polar regions, which are grouped into usnic acid, MAAs, asterric acids, depsides, depsidones and psedodepsidones, alkaloids, polysaccharides and exopolysaccharides. We have also discussed the ecological significance of the compounds, covering a general aspect as well as a specific account, wherever reported, along with bioactivities. The review covers the literature reported from 2010 to 2020.

Keywords: Bioactive compounds, polar regions, ecology, biotechnology, alkaloids, terpenes, anticancer, antioxidants.

Graphical Abstract

[1]
Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 2002, 19(1), 1-48.
[http://dx.doi.org/10.1039/b009029h] [PMID: 11902436]
[2]
Singh, K.S. Pyrone-derived marine natural products: A review on isolation, bio-activities and synthesis. Curr. Org. Chem., 2020, 24(4), 354-401.
[http://dx.doi.org/10.2174/1385272824666200217101400]
[3]
Svenson, J. MabCent: Arctic marine bioprospecting in Norway. Phytochem. Rev., 2013, 12(123), 567-578.
[http://dx.doi.org/10.1007/s11101-012-9239-3] [PMID: 24078803]
[4]
Núñez-Montero, K.; Barrientos, L. Advances in antarctic research for antimicrobial discovery: A comprehensive narrative review of bacteria from antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics, 2018, 7(4), E90.
[http://dx.doi.org/10.3390/antibiotics7040090] [PMID: 30347637]
[5]
Núñez-Pons, L.; Avila, C. Natural products mediating ecological interactions in Antarctic benthic communities: A mini-review of the known molecules. Nat. Prod. Rep., 2015, 32(7), 1114-1130.
[http://dx.doi.org/10.1039/C4NP00150H] [PMID: 25693047]
[6]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173.
[http://dx.doi.org/10.1039/C8NP00092A] [PMID: 30663727]
[7]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2020, 37(2), 175-223.
[http://dx.doi.org/10.1039/C9NP00069K] [PMID: 32025684]
[8]
Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2010, 27(2), 165-237.
[http://dx.doi.org/10.1039/b906091j] [PMID: 20111802]
[9]
Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2011, 28(2), 196-268.
[http://dx.doi.org/10.1039/C005001F] [PMID: 21152619]
[10]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2012, 29(2), 144-222.
[http://dx.doi.org/10.1039/C2NP00090C] [PMID: 22193773]
[11]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2013, 30(2), 237-323.
[http://dx.doi.org/10.1039/C2NP20112G] [PMID: 23263727]
[12]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2014, 31(2), 160-258.
[http://dx.doi.org/10.1039/c3np70117d] [PMID: 24389707]
[13]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2015, 32(2), 116-211.
[http://dx.doi.org/10.1039/C4NP00144C] [PMID: 25620233]
[14]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2016, 33(3), 382-431.
[http://dx.doi.org/10.1039/C5NP00156K] [PMID: 26837534]
[15]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2017, 34(3), 235-294.
[http://dx.doi.org/10.1039/C6NP00124F] [PMID: 28290569]
[16]
Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2018, 35(1), 8-53.
[http://dx.doi.org/10.1039/C7NP00052A] [PMID: 29335692]
[17]
Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep., 2014, 31(8), 999-1025.
[http://dx.doi.org/10.1039/C3NP70118B] [PMID: 24871201]
[18]
Abbas, S.; Kelly, M.; Bowling, J.; Sims, J.; Waters, A.; Hamann, M. Advancement into the Arctic region for bioactive sponge secondary metabolites. Mar. Drugs, 2011, 9(11), 2423-2437.
[http://dx.doi.org/10.3390/md9112423] [PMID: 22163194]
[19]
Boustie, J.; Tomasi, S.; Grube, M. Bioactive lichen metabolites: Alpine habitats as an untapped source. Phytochem. Rev., 2011, 10(3), 287-307.
[http://dx.doi.org/10.1007/s11101-010-9201-1]
[20]
Lo Giudice, A.; Rizzo, C. Bacteria associated with marine benthic invertebrates from polar environments: Unexplored frontiers for biodiscovery? Diversity, 2018, 10(3), 80.
[http://dx.doi.org/10.3390/d10030080]
[21]
De Pascale, D.; De Santi, C.; Fu, J.; Landfald, B. The microbial diversity of polar environments is a fertile ground for bioprospecting. Mar. Genomics, 2012, 8, 15-22.
[http://dx.doi.org/10.1016/j.margen.2012.04.004] [PMID: 23199876]
[22]
Bruno, S.; Coppola, D.; Di Prisco, G.; Giordano, D.; Verde, C. Enzymes from marine polar regions and their biotechnological applications. Mar. Drugs, 2019, 17(10), 544.
[http://dx.doi.org/10.3390/md17100544] [PMID: 31547548]
[23]
Núñez-Pons, L.; Avila, C.; Romano, G.; Verde, C.; Giordano, D. UV-protective compounds in marine organisms from the southern ocean. Mar. Drugs, 2018, 16(9), E336.
[http://dx.doi.org/10.3390/md16090336] [PMID: 30223486]
[24]
Sinha, R.P.; Häder, D. The Physiology of Microalgae; Borowitzka, M.A.; Beardall, J.; Raven, J.A., Eds.; Springer International Publishing: Cham, 2016.
[http://dx.doi.org/10.1007/978-3-319-24945-2]
[25]
Dionisio-Sese, M.L. Aquatic microalgae as potential sources of UV-screening compounds. Philipp. J. Sci., 2010, 139(1), 5-16.
[26]
Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Antarctic yeasts: Analysis of their freeze-thaw tolerance and production of antifreeze proteins, fatty acids and ergosterol. BMC Microbiol., 2018, 18(1), 66.
[http://dx.doi.org/10.1186/s12866-018-1214-8] [PMID: 29976143]
[27]
Moles, J.; Núñez-Pons, L.; Taboada, S.; Figuerola, B.; Cristobo, J.; Avila, C. Anti-predatory chemical defences in Antarctic benthic fauna. Mar. Biol., 2015, 162(9), 1813-1821.
[http://dx.doi.org/10.1007/s00227-015-2714-9]
[28]
Núñez-Pons, L.; Shilling, A.; Verde, C.; Baker, B.J.; Giordano, D. Marine terpenoids from polar latitudes and their potential applications in biotechnology. Mar. Drugs, 2020, 18(8), E401.
[http://dx.doi.org/10.3390/md18080401] [PMID: 32751369]
[29]
Millot, M.; Di Meo, F.; Tomasi, S.; Boustie, J.; Trouillas, P. Photoprotective capacities of lichen metabolites: A joint theoretical and experimental study. J. Photochem. Photobiol. B, 2012, 111, 17-26.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.03.005] [PMID: 22516892]
[30]
Galanty, A.; Węgrzyn, M.; Wietrzyk-Pełka, P.; Fołta, M.; Krośniak, M.; Podolak, I.; Zagrodzki, P. Quantitative variations of usnic acid and selected elements in terrico-lous lichen Cladonia mitis San dst., with respect to different environmental factors - A chemometric approach. Phytochemistry, 2021, 192, 112948.
[http://dx.doi.org/10.1016/j.phytochem.2021.112948] [PMID: 34530281]
[31]
Luzina, O.A.; Salakhutdinov, N.F. Usnic acid and its derivatives for pharmaceutical use: A patent review (2000-2017). Expert Opin. Ther. Pat., 2018, 28(6), 477-491.
[http://dx.doi.org/10.1080/13543776.2018.1472239] [PMID: 29718734]
[32]
Ingólfsdóttir, K. Usnic acid. Phytochemistry, 2002, 61(7), 729-736.
[http://dx.doi.org/10.1016/S0031-9422(02)00383-7] [PMID: 12453567]
[33]
Paudel, B.; Bhattarai, H.D.; Lee, H.K.; Oh, H.; Shin, H.W.; Yim, J.H. Antibacterial activities of ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. Z. Naturforsch. C J. Biosci., 2010, 65(1-2), 34-38.
[http://dx.doi.org/10.1515/znc-2010-1-206] [PMID: 20355318]
[34]
Lee, S.G.; Koh, H.Y.; Oh, H.; Han, S.J.; Kim, I.C.; Lee, H.K.; Yim, J.H. Human dermal fibroblast proliferation activity of usimine-C from Antarctic lichen Ramalina terebrata. Biotechnol. Lett., 2010, 32(4), 471-475.
[http://dx.doi.org/10.1007/s10529-009-0191-2] [PMID: 20035371]
[35]
De la Rosa, I.N.; Passo, A.; Rodríguez, J.M.; Chiapella, J.O.; Messuti, M.I. A new species and new records of Lecanora (Lecanoraceae, lichenized Ascomycota) with usnic acid from the Antarctic region. Phytotaxa, 2016, 261(2), 185-193.
[http://dx.doi.org/10.11646/phytotaxa.261.2.8]
[36]
Viteri, R.; Villamizar, J.E.; Alejandra, U.; Quintero, A.; Salazar, F.J. A new tetrahydrodibenzofuran and other constituents from the lichen Usnea antarctica. J. Chem. Res., 2017, 41(7), 390-391.
[http://dx.doi.org/10.3184/174751917X14967701766996]
[37]
Gadea, A.; Charrier, M.; Fanuel, M.; Clerc, P.; Daugan, C.; Sauvager, A.; Rogniaux, H.; Boustie, J.; Le Lamer, A.C.; Lohézic-Le Devehat, F. Overcoming deterrent metabolites by gaining essential nutrients: A lichen/snail case study. Phytochemistry, 2019, 164, 86-93.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.019] [PMID: 31102999]
[38]
Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A.P. Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation. Pharmacogn. Rev., 2011, 5(10), 138-146.
[http://dx.doi.org/10.4103/0973-7847.91107] [PMID: 22279371]
[39]
La Barre, S.; Roullier, C.; Boustie, J. Mycosporine-Like Amino Acids (MAAs) in Biological Photosystems. InOutstanding Marine Molecules: Chemistry, Biology. Analysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014, 9783527334, pp. 333-360.
[http://dx.doi.org/10.1002/9783527681501.ch15]
[40]
Sun, Y.; Zhang, N.; Zhou, J.; Dong, S.; Zhang, X.; Guo, L.; Guo, G. Distribution, contents, and types of Mycosporine-Like Amino Acids (MAAs) in marine macroalgae and a database for MAAs based on these characteristics. Mar. Drugs, 2020, 18(1), 43.
[http://dx.doi.org/10.3390/md18010043] [PMID: 31936139]
[41]
Ha, S.Y.; Kim, Y.N.; Park, M.O.; Kang, S.H.; Kim, H.C.; Shin, K.H. Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic. J. Photochem. Photobiol. B, 2012, 114, 1-14.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.03.011] [PMID: 22682778]
[42]
Hernando, M.; Malanga, G.; Puntarulo, S.; Ferreyra, G. Fotoprotección antioxidante no-Enzimática Contra El potencial daño inducido por UVBR en una diatomea Antártica (Thalassiosira Sp.). Lat. Am. J. Aquat. Res., 2011, 39(3), 397-408.
[http://dx.doi.org/10.3856/vol39-issue3-fulltext-1]
[43]
Elliott, A.; Mundy, C.J.; Gosselin, M.; Poulin, M.; Campbell, K.; Wang, F. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. Mar. Ecol. Prog. Ser., 2015, 541, 91-104.
[http://dx.doi.org/10.3354/meps11540]
[44]
Ha, S.Y.; Min, J.O.; Joo, H.; Kim, M.S.; Kang, S.H.; Shin, K.H. Synthesis of mycosporine-like amino acids by a size-fractionated marine phytoplankton community of the arctic beaufort sea. J. Photochem. Photobiol. B, 2018, 188, 87-94.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.09.008] [PMID: 30237008]
[45]
Hartmann, A.; Holzinger, A.; Ganzera, M.; Karsten, U. Prasiolin, a new UV-sunscreen compound in the terrestrial green macroalga Prasiola calophylla (Carmichael ex Greville) Kützing (Trebouxiophyceae, Chlorophyta). Planta, 2016, 243(1), 161-169.
[http://dx.doi.org/10.1007/s00425-015-2396-z] [PMID: 26358040]
[46]
Rangel, K.C.; Villela, L.Z.; Pereira, K. de C.; Colepicolo, P.; Debonsi, H.M.; Gaspar, L.R. Assessment of the photoprotective potential and toxicity of antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use. Algal Res., 2020, 50, 101984.
[http://dx.doi.org/10.1016/j.algal.2020.101984]
[47]
Hylander, S.; Hansson, L.A. Vertical distribution and pigmentation of antarctic zooplankton determined by a blend of UV radiation, predation and food availability. Aquat. Ecol., 2013, 47(4), 467-480.
[http://dx.doi.org/10.1007/s10452-013-9459-7]
[48]
Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr. Microbiol., 2016, 72(1), 94-101.
[http://dx.doi.org/10.1007/s00284-015-0928-1] [PMID: 26483082]
[49]
Wang, M.; Tian, J.; Xiang, M.; Liu, X. Living strategy of cold-adapted fungi with the reference to several representative species. Mycology, 2017, 8(3), 178-188.
[http://dx.doi.org/10.1080/21501203.2017.1370429] [PMID: 30123638]
[50]
Ha, T.M.; Kim, D.C.; Sohn, J.H.; Yim, J.H.; Oh, H. Anti-inflammatory and protein tyrosine phosphatase 1b inhibitory metabolites from the antarctic marine-derived fungal strain Penicillium glabrum SF-7123. Mar. Drugs, 2020, 18(5), 1-15.
[http://dx.doi.org/10.3390/md18050247] [PMID: 32397523]
[51]
Figueroa, L.; Jiménez, C.; Rodríguez, J.; Areche, C.; Chávez, R.; Henríquez, M.; De la Cruz, M.; Díaz, C.; Segade, Y.; Vaca, I. 3-Nitroasterric acid derivatives from an antarctic sponge-derived Pseudogymnoascus sp. Fungus. J. Nat. Prod., 2015, 78(4), 919-923.
[http://dx.doi.org/10.1021/np500906k] [PMID: 25732560]
[52]
Bhattarai, H.D.; Kim, T.; Oh, H.; Yim, J.H. A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J. Antibiot., 2013, 66(9), 559-561.
[http://dx.doi.org/10.1038/ja.2013.41] [PMID: 23677030]
[53]
Youn, U.J.; So, J.E.; Kim, J.H.; Han, S.J.; Park, H.; Kim, I.C.; Yim, J.H. Chemical constituents from the antarctic lichen, Stereocaulon caespitosum. Biochem. Syst. Ecol., 2018, 80, 73-75.
[http://dx.doi.org/10.1016/j.bse.2018.07.004]
[54]
Jeon, Y.J.; Kim, S.; Kim, J.H.; Youn, U.J.; Suh, S.S. The comprehensive roles of ATRANORIN, A secondary metabolite from the Antarctic Lichen Stereocaulon caespitosum, in HCC Tumorigenesis. Molecules, 2019, 24(7), 1414.
[http://dx.doi.org/10.3390/molecules24071414] [PMID: 30974882]
[55]
Cardile, V.; Graziano, A.C.E.; Avola, R.; Piovano, M.; Russo, A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem. Biol. Interact., 2017, 263, 36-45.
[http://dx.doi.org/10.1016/j.cbi.2016.12.007] [PMID: 28012710]
[56]
Lu, X.L.; Liu, J.T.; Liu, X.Y.; Gao, Y.; Zhang, J.; Jiao, B.H.; Zheng, H. Pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. J. Antibiot., 2014, 67(2), 171-174.
[http://dx.doi.org/10.1038/ja.2013.104] [PMID: 24169793]
[57]
Liu, J.T.; Hu, B.; Gao, Y.; Zhang, J.P.; Jiao, B-H.; Lu, X.L.; Liu, X.Y. Bioactive tyrosine-derived cytochalasins from fungus Eutypella sp. D-1. Chem. Biodivers., 2014, 11(5), 800-806.
[http://dx.doi.org/10.1002/cbdv.201300218] [PMID: 24827690]
[58]
Zhou, Y.; Zhang, Y-X.; Zhang, J-P.; Yu, H-B.; Liu, X-Y.; Lu, X-L.; Jiao, B-H. A new sesquiterpene lactone from fungus Eutypella sp. D-1. Nat. Prod. Res., 2017, 31(14), 1676-1681.
[http://dx.doi.org/10.1080/14786419.2017.1286486] [PMID: 28278679]
[59]
Zhang, L.Q.; Chen, X.C.; Chen, Z.Q.; Wang, G.M.; Zhu, S.G.; Yang, Y.F.; Chen, K.X.; Liu, X.Y.; Li, Y.M. Eutypenoids A-C: Novel pimarane diterpenoids from the arctic fungus Eutypella sp. D-1. Mar. Drugs, 2016, 14(3), 1-9.
[http://dx.doi.org/10.3390/md14030044] [PMID: 26959036]
[60]
Liu, X.Y.; Chen, X.C.; Qian, F.; Zhu, T.T.; Xu, J.W.; Li, Y.M.; Zhang, L.Q.; Jiao, B.H. Chlorinated phenolic sesquiterpenoids from the arctic fungus Nectria Sp. B-13. Biochem. Syst. Ecol., 2015, 59, 22-25.
[http://dx.doi.org/10.1016/j.bse.2015.01.001]
[61]
Wu, G.; Lin, A.; Gu, Q.; Zhu, T.; Li, D. Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar. Drugs, 2013, 11(4), 1399-1408.
[http://dx.doi.org/10.3390/md11041399] [PMID: 23612371]
[62]
Lin, A.; Wu, G.; Gu, Q.; Zhu, T.; Li, D. New eremophilane-type sesquiterpenes from an Antarctic deep sea derived fungus, Penicillium sp. PR19 N-1. Arc. Pharm. Res., 2014, 37(7), 839-44.
[http://dx.doi.org/10.1007/s12272-013-0246-8]
[63]
Zhou, H.; Li, L.; Wang, W.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J. Nat. Prod., 2015, 78(6), 1442-1445.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00103] [PMID: 26046820]
[64]
Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T.; Tu, Z.; Chen, B.; Liu, Y. Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod., 2016, 79(1), 59-65.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00650] [PMID: 26697718]
[65]
Kozlovsky, A.G.; Kochkina, G.A.; Zhelifonova, V.P.; Antipova, Т.V.; Ivanushkina, N.E.; Ozerskaya, S.M. Secondary metabolites of the genus Penicillium from undisturbed and anthropogenically altered Antarctic habitats. Folia Microbiol., 2020, 65(1), 95-102.
[http://dx.doi.org/10.1007/s12223-019-00708-0] [PMID: 30982204]
[66]
Antipova, T.V.; Zhelifonova, V.P.; Baskunov, B.P.; Kochkina, G.A.; Ozerskaya, S.M.; Kozlovskii, A.G. Exometabolites the penicillium fungi isolated from various high-latitude ecosystems. Microbiol. Russian Fed., 2018, 87(5), 642-651.
[http://dx.doi.org/10.1134/S002626171805003X]
[67]
Kozlovskii, A.G.; Antipova, T.V.; Zhelifonova, V.P.; Baskunov, B.P.; Ivanushkina, N.E.; Kochkina, G.A.; Ozerskaya, S.M. Secondary metabolites of fungi of the usti section, genus aspergillus and their application in chemosystematics. Microbiol. Russian Fed., 2017, 86(2), 176-182.
[http://dx.doi.org/10.1134/S0026261717020114]
[68]
Shan, W.G.; Wu, Z.Y.; Pang, W.W.; Ma, L.F.; Ying, Y.M.; Zhan, Z.J. α-Glucosidase inhibitors from the fungus Aspergillus terreus 3.05358. Chem. Biodivers., 2015, 12(11), 1718-1724.
[http://dx.doi.org/10.1002/cbdv.201500027] [PMID: 26567949]
[69]
Cui, Y.; Yim, J.H.; Lee, D.S.; Kim, Y.C.; Oh, H. New diterpene furanoids from the Antarctic lichen Huea sp. Bioorg. Med. Chem. Lett., 2012, 22(24), 7393-7396.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.063] [PMID: 23141910]
[70]
Seo, C.; Yim, J.H.; Lee, H.K.; Oh, H. PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica. Mycology, 2011, 2(1), 18-23.
[http://dx.doi.org/10.1080/21501203.2011.554906]
[71]
Von Salm, J.L.; Witowski, C.G.; Fleeman, R.M.; McClintock, J.B.; Amsler, C.D.; Shaw, L.N.; Baker, B.J. Darwinolide, a new diterpene scaffold that inhibits methicillin-resistant Staphylococcus aureus biofilm from the Antarctic sponge Dendrilla membranosa. Org. Lett., 2016, 18(11), 2596-2599.
[http://dx.doi.org/10.1021/acs.orglett.6b00979] [PMID: 27175857]
[72]
Solanki, H.; Angulo-Preckler, C.; Calabro, K.; Kaur, N.; Lasserre, P.; Cautain, B.; de la Cruz, M.; Reyes, F.; Avila, C.; Thomas, O.P. Suberitane sesterterpenoids from the Antarctic sponge Phorbas Areolatus (Thiele, 1905). Tetrahedron Lett., 2018, 59(36), 3353-3356.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.055]
[73]
Diyabalanage, T.; Iken, K.B.; McClintock, J.B.; Amsler, C.D.; Baker, B.J. Palmadorins A--C, diterpene glycerides from the Antarctic Nudibranch Austrodoris kergue-lenensis. J. Nat. Prod., 2010, 73(3), 416-421.
[http://dx.doi.org/10.1021/np900617m] [PMID: 20121160]
[74]
Cutignano, A.; Zhang, W.; Avila, C.; Cimino, G.; Fontana, A. Intrapopulation variability in the terpene metabolism of the Antarctic Opisthobranch Mollusc Austrodoris Kerguelenensis. Eur. J. Org. Chem., 2011, (27), 5383-5389.
[http://dx.doi.org/10.1002/ejoc.201100552]
[75]
Maschek, J.A.; Mevers, E.; Diyabalanage, T.; Chen, L.; Ren, Y.; McClintock, J.B.; Amsler, C.D.; Wu, J.; Baker, B.J. Palmadorin chemodiversity from the Antarctic Nudi-branch Austrodoris Kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia Cells. Tetrahedron, 2012, 68(44), 9095-9104.
[http://dx.doi.org/10.1016/j.tet.2012.08.045]
[76]
Carbone, M.; Núñez-Pons, L.; Paone, M.; Castelluccio, F.; Avila, C.; Gavagnin, M. Rossinone-related meroterpenes from the Antarctic ascidian Aplidium Fuegiense. Tetrahedron, 2012, 68(18), 3541-3544.
[http://dx.doi.org/10.1016/j.tet.2012.03.013]
[77]
Núñez-Pons, L.; Carbone, M.; Vázquez, J.; Rodríguez, J.; Nieto, R.M.; Varela, M.M.; Gavagnin, M.; Avila, C. Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: Variability and defensive role. Mar. Drugs, 2012, 10(8), 1741-1764.
[http://dx.doi.org/10.3390/md10081741] [PMID: 23015772]
[78]
Von Salm, J.L.; Wilson, N.G.; Vesely, B.A.; Kyle, D.E.; Cuce, J.; Baker, B.J. Shagenes A and B, new tricyclic sesquiterpenes produced by an undescribed Antarctic octocoral. Org. Lett., 2014, 16(10), 2630-2633.
[http://dx.doi.org/10.1021/ol500792x] [PMID: 24779517]
[79]
Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjashchenko, P.V.; Dmitrenok, P.S.; Kalinin, V.I.; Taboada, S.; Avila, C. Triterpene glycosides from Antarctic sea cucumbers IV. Turquetoside A, a 3-O-methylquinovose containing disulfated tetraoside from the sea cucumber Staurocucumis turqueti (Vaney, 1906) (=Cucumaria spatha). Biochem. Syst. Ecol., 2013, 51, 45-49.
[http://dx.doi.org/10.1016/j.bse.2013.08.012]
[80]
Angulo-Preckler, C.; Genta-Jouve, G.; Mahajan, N.; de la Cruz, M.; de Pedro, N.; Reyes, F.; Iken, K.; Avila, C.; Thomas, O.P. Gersemiols A-C and eunicellol A, diterpenoids from the Arctic soft coral Gersemia fruticosa. J. Nat. Prod., 2016, 79(4), 1132-1136.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00040] [PMID: 26894524]
[81]
Moles, J.; Wägele, H.; Cutignano, A.; Fontana, A.; Avila, C. Distribution of Granuloside in the Antarctic nudibranch Charcotia granulosa (Gastropoda: Heterobranchia: Charcotiidae). Mar. Biol., 2016, 163(3), 1-11.
[http://dx.doi.org/10.1007/s00227-016-2831-0]
[82]
Kim, D.; Lee, E.J.; Lee, J.; Leutou, A.S.; Shin, Y.H.; Choi, B.; Hwang, J.S.; Hahn, D.; Choi, H.; Chin, J.; Cho, S.J.; Hong, Y.D.; Ko, J.; Seong, C.N.; Maloney, K.N.; Oh, D.C.; Yang, I.; Hwang, H.; Nam, S.J. Antartin, a cytotoxic zizaane-type sesquiterpenoid from a Streptomyces sp. Isolated from an Antarctic marine sediment. Mar. Drugs, 2018, 16(4), E130.
[http://dx.doi.org/10.3390/md16040130] [PMID: 29659509]
[83]
Na, M.; Ding, Y.; Wang, B.; Tekwani, B.L.; Schinazi, R.F.; Franzblau, S.; Kelly, M.; Stone, R.; Li, X.C.; Ferreira, D.; Hamann, M.T. Anti-infective discorhabdins from a deep-water alaskan sponge of the genus Latrunculia. J. Nat. Prod., 2010, 73(3), 383-387.
[http://dx.doi.org/10.1021/np900281r] [PMID: 20337497]
[84]
Botić, T.; Defant, A.; Zanini, P.; Žužek, M.C.; Frangež, R.; Janussen, D.; Kersken, D.; Knez, Ž.; Mancini, I.; Sepčić, K. Discorhabdin alkaloids from Antarctic Latrunculia sp. sponges as a new class of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 136, 294-304.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.019] [PMID: 28505534]
[85]
Schmidt, G.; Timm, C.; Grube, A.; Volk, C.A.; Köck, M. Viscosalines B(1,2) and E(1,2): challenging new 3-alkyl pyridinium alkaloids from the marine sponge Haliclona viscosa. Chemistry, 2012, 18(26), 8180-8189.
[http://dx.doi.org/10.1002/chem.201101362] [PMID: 22615259]
[86]
Olsen, E.K.; Hansen, E.; W K Moodie, L.; Isaksson, J.; Sepčić, K.; Cergolj, M.; Svenson, J.; Andersen, J.H. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem., 2016, 14(5), 1629-1640.
[http://dx.doi.org/10.1039/C5OB02416A] [PMID: 26695619]
[87]
Di, X.; Rouger, C.; Hardardottir, I.; Freysdottir, J.; Molinski, T.F.; Tasdemir, D.; Omarsdottir, S. 6-bromoindole derivatives from the icelandic marine sponge Geodia barretti: Isolation and anti-inflammatory activity. Mar. Drugs, 2018, 16(11), 1-17.
[http://dx.doi.org/10.3390/md16110437] [PMID: 30413031]
[88]
Tadesse, M.; Strøm, M.B.; Svenson, J.; Jaspars, M.; Milne, B.F.; Tørfoss, V.; Andersen, J.H.; Hansen, E.; Stensvåg, K.; Haug, T. Synoxazolidinones A and B: Novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Org. Lett., 2010, 12(21), 4752-4755.
[http://dx.doi.org/10.1021/ol101707u] [PMID: 20883040]
[89]
Tadesse, M.; Svenson, J.; Jaspars, M.; Strøm, M.B.; Abdelrahman, M.H.; Andersen, J.H.; Hansen, E.; Kristiansen, P.E.; Stensvg, K.; Haug, T.; Synoxazolidinone, C. A bicyclic member of the synoxazolidinone family with antibacterial and anticancer activities. Tetrahedron Lett., 2011, 52(15), 1804-1806.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.027]
[90]
Trepos, R.; Cervin, G.; Hellio, C.; Pavia, H.; Stensen, W.; Stensvåg, K.; Svendsen, J.S.; Haug, T.; Svenson, J. Antifouling compounds from the sub-arctic ascidian Synoicum pulmonaria: Synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues. J. Nat. Prod., 2014, 77(9), 2105-2113.
[http://dx.doi.org/10.1021/np5005032] [PMID: 25181423]
[91]
Tadesse, M.; Svenson, J.; Sepčić, K.; Trembleau, L.; Engqvist, M.; Andersen, J.H.; Jaspars, M.; Stensvåg, K.; Haug, T. Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria. J. Nat. Prod., 2014, 77(2), 364-369.
[http://dx.doi.org/10.1021/np401002s] [PMID: 24547899]
[92]
Núñez-Pons, L.; Forestieri, R.; Nieto, R.M.; Varela, M.; Nappo, M.; Rodríguez, J.; Jiménez, C.; Castelluccio, F.; Carbone, M.; Ramos-Espla, A. Chemical defenses of tunicates of the genus Aplidium from the Weddell Sea (Antarctica). Polar Biol., 2010, 33(10), 1319-1329.
[http://dx.doi.org/10.1007/s00300-010-0819-7]
[93]
Yang, A.; Si, L.; Shi, Z.; Tian, L.; Liu, D.; Zhou, D.; Proksch, P.; Lin, W. Nitrosporeusines A and B, unprecedented thioester-bearing alkaloids from the Arctic Streptomyces nitrosporeus. Org. Lett., 2013, 15(20), 5366-5369.
[http://dx.doi.org/10.1021/ol4026809] [PMID: 24090410]
[94]
Kwon, J.; Lee, H.; Ko, W.; Kim, D.C.; Kim, K.W.; Kwon, H.C.; Guo, Y.; Sohn, J.H.; Yim, J.H.; Kim, Y.C. Chemical constituents isolated from Antarctic marine-derived Aspergillus sp. SF-5976 and their anti-inflammatory effects in LPS-Stimulated RAW 264.7 and BV2 cells. Tetrahedron, 2017, 73(27-28), 3905-3912.
[http://dx.doi.org/10.1016/j.tet.2017.05.060]
[95]
Nair, V.; Schuhmann, I.; Anke, H.; Kelter, G.; Fiebig, H.H.; Helmke, E.; Laatsch, H. Marine bacteria, XLVII-psychrotolerant bacteria from extreme Antarctic habitats as producers of rare bis- and trisindole alkaloids. Planta Med., 2016, 82(9-10), 910-918.
[http://dx.doi.org/10.1055/s-0042-108204] [PMID: 27286331]
[96]
Li, L.; Li, D.; Luan, Y.; Gu, Q.; Zhu, T. Cytotoxic metabolites from the Antarctic psychrophilic fungus Oidiodendron truncatum. J. Nat. Prod., 2012, 75(5), 920-927.
[http://dx.doi.org/10.1021/np3000443] [PMID: 22583079]
[97]
Wang, J.; He, W.; Qin, X.; Wei, X.; Tian, X.; Liao, L.; Liao, S.; Yang, B.; Tu, Z.; Chen, B. Three new indolyl diketopiperazine metabolites from the Antarctic soil-derived fungus Penicillium sp. SCSIO 05705. RSC Advances, 2015, 5(84), 68736-68742.
[http://dx.doi.org/10.1039/C5RA10828D]
[98]
Huang, J. Phenols and diketopiperazines isolated from Antarctic-derived fungi, Penicillium citreonigrum SP-6. Phytochem. Lett., 2018, 27(July), 114-118.
[http://dx.doi.org/10.1016/j.phytol.2018.07.013]
[99]
Liu, C.C.; Zhang, Z.Z.; Feng, Y.Y.; Gu, Q.Q.; Li, D.H.; Zhu, T.J. Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat. Prod. Res., 2019, 33(3), 414-419.
[http://dx.doi.org/10.1080/14786419.2018.1455045] [PMID: 29600717]
[100]
Shin, H.J.; Mondol, M.A.M.; Yu, T.K.; Lee, H.S.; Lee, Y.J.; Jung, H.J.; Kim, J.H.; Kwon, H.J. An angiogenesis inhibitor isolated from a marine-derived actinomycete, Nocardiopsis sp. 03N67. Phytochem. Lett., 2010, 3(4), 194-197.
[http://dx.doi.org/10.1016/j.phytol.2010.07.005]
[101]
Ivanova, V.; Laatsch, H.; Kolarova, M.; Aleksieva, K. Structure elucidation of a new natural diketopiperazine from a Microbispora aerata strain isolated from Livingston Island, Antarctica. Nat. Prod. Res., 2013, 27(2), 164-170.
[http://dx.doi.org/10.1080/14786419.2012.665911] [PMID: 22420410]
[102]
Ye, F.; Cai, M.H.; Chen, B.; Xiao, W.; Li, X.W.; Guo, Y.W. Absolute configuration of (2R,3R,6S,8R)-methyl homononactate, a polyketide from Actinomycetes streptomyces sp. R-527F of the Arctic region. Chem. Nat. Compd., 2018, 54(4), 821-825.
[http://dx.doi.org/10.1007/s10600-018-2488-7]
[103]
Youn, U.J.; Lee, J.H.; Han, S.J. Diketopiperazine and alloxazine alkaloids from the Antarctic bacteria, Pseudorhodobacter psychrotolerans sp. Nov. Biochem. Syst. Ecol., 2019, 85(May), 21-23.
[http://dx.doi.org/10.1016/j.bse.2019.04.010]
[104]
Antipova, T.V.; Zhelifonova, V.P.; Baskunov, B.P.; Ozerskaya, S.M.; Ivanushkina, N.E.; Kozlovsky, A.G. New producers of biologically active compounds-fungal strains of the genus Penicillium isolated from permafrost. Appl. Biochem. Microbiol., 2011, 47(3), 288-292.
[http://dx.doi.org/10.1134/S0003683811030033]
[105]
Kozlovskii, A.G.; Zhelifonova, V.P.; Antipova, T.V.; Baskunov, B.P.; Kochkina, G.A.; Ozerskaya, S.M. Secondary metabolite profiles of the Penicillium fungi isolated from the arctic and antarctic permafrost as elements of polyphase taxonomy. Microbiol. Russian Fed., 2012, 81(3), 306-311.
[http://dx.doi.org/10.1134/S0026261712030071]
[106]
Zhou, H.; Li, L.; Wu, C.; Kurtán, T.; Mándi, A.; Liu, Y.; Gu, Q.; Zhu, T.; Guo, P.; Li, D. Penipyridones A-F, pyridone alkaloids from Penicillium funiculosum. J. Nat. Prod., 2016, 79(7), 1783-1790.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00218] [PMID: 27359163]
[107]
Melo, I.S.; Santos, S.N.; Rosa, L.H.; Parma, M.M.; Silva, L.J.; Queiroz, S.C.N.; Pellizari, V.H. Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles, 2014, 18(1), 15-23.
[http://dx.doi.org/10.1007/s00792-013-0588-7] [PMID: 24126742]
[108]
Hansen, K.Ø.; Isaksson, J.; Bayer, A.; Johansen, J.A.; Andersen, J.H.; Hansen, E. Securamine derivatives from the Arctic Bryozoan Securiflustra securifrons. J. Nat. Prod., 2017, 80(12), 3276-3283.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00703] [PMID: 29220180]
[109]
Núñez-Pons, L.; Carbone, M.; Paris, D.; Melck, D.; Ríos, P.; Cristobo, J.; Castelluccio, F.; Gavagnin, M.; Avila, C. Chemo-ecological studies on hexactinellid sponges from the Southern Ocean. Naturwissenschaften, 2012, 99(5), 353-368.
[http://dx.doi.org/10.1007/s00114-012-0907-3] [PMID: 22430814]
[110]
Hansen, K.Ø.; Isaksson, J.; Glomsaker, E.; Andersen, J.H.; Hansen, E. Ponasterone A and F, ecdysteroids from the Arctic Bryozoan Alcyonidium gelatinosum. Molecules, 2018, 23(6), 1-9.
[http://dx.doi.org/10.3390/molecules23061481] [PMID: 29921766]
[111]
Kicha, A.A.; Ivanchina, N.V.; Malyarenko, T.V.; Kalinovsky, A.I.; Popov, R.S.; Stonik, V.A. Six new polyhydroxylated steroids conjugated with taurine, microdiscusols A-F, from the Arctic starfish Asterias microdiscus. Steroids, 2019, 150, 108458.
[http://dx.doi.org/10.1016/j.steroids.2019.108458] [PMID: 31326449]
[112]
Wu, B.; Wiese, J.; Labes, A.; Kramer, A.; Schmaljohann, R.; Imhoff, J.F. Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the lindgomycetaceae. Mar. Drugs, 2015, 13(8), 4617-4632.
[http://dx.doi.org/10.3390/md13084617] [PMID: 26225984]
[113]
Ondeyka, J.G.; Smith, S.K.; Zink, D.L.; Vicente, F.; Basilio, A.; Bills, G.F.; Polishook, J.D.; Garlisi, C.; Mcguinness, D.; Smith, E.; Qiu, H.; Gill, C.J.; Donald, R.G.; Phillips, J.W.; Goetz, M.A.; Singh, S.B. Isolation, structure elucidation and antibacterial activity of a new tetramic acid, ascosetin. J. Antibiot. (Tokyo), 2014, 67(7), 527-531.
[http://dx.doi.org/10.1038/ja.2014.33] [PMID: 24690911]
[114]
Noguez, J.H.; Diyabalanage, T.K.K.; Miyata, Y.; Xie, X.S.; Valeriote, F.A.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Palmerolide Macrolides from the Antarctic tunicate Synoicum adareanum. Bioorg. Med. Chem., 2011, 19(22), 6608-6614.
[http://dx.doi.org/10.1016/j.bmc.2011.06.004]
[115]
Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res., 2012, 167(10), 616-622.
[http://dx.doi.org/10.1016/j.micres.2012.02.008] [PMID: 22494896]
[116]
Moon, K.; Ahn, C.H.; Shin, Y.; Won, T.H.; Ko, K.; Lee, S.K.; Oh, K.B.; Shin, J.; Nam, S.I.; Oh, D.C. New benzoxazine secondary metabolites from an arctic actinomycete. Mar. Drugs, 2014, 12(5), 2526-2538.
[http://dx.doi.org/10.3390/md12052526] [PMID: 24796308]
[117]
Tanabe, Y.; Ohtani, S.; Kasamatsu, N.; Fukuchi, M.; Kudoh, S. Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol., 2010, 33(1), 85-100.
[http://dx.doi.org/10.1007/s00300-009-0687-1]
[118]
Arróniz-Crespo, M.; Gwynn-Jones, D.; Callaghan, T.V.; Núñez-Olivera, E.; Martínez-Abaigar, J.; Horton, P.; Phoenix, G.K. Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability. Ann. Bot. (Lond.), 2011, 108(3), 557-565.
[http://dx.doi.org/10.1093/aob/mcr178] [PMID: 21803739]
[119]
Ha, S.Y.; Lee, D.B.; Kang, S.H.; Shin, K.H. Strategy of photo-protection in phytoplankton assemblages in the Kongsfjorden, Svalbard, Arctic. Chin. J. Oceanol. Limnol., 2016, 34(1), 1-12.
[http://dx.doi.org/10.1007/s00343-015-4295-3]
[120]
Singh, S.M.; Singh, P.; Ravindra, R. Screening of antioxidant potential of arctic lichens. Polar Biol., 2011, 34(11), 1775-1782.
[http://dx.doi.org/10.1007/s00300-011-1027-9]
[121]
Martín-Cerezo, M.L.; García-López, E.; Cid, C. Isolation and identification of a red pigment from the Antarctic Bacterium Shewanella frigidimarina. Protein Pept. Lett., 2015, 22(12), 1076-1082.
[http://dx.doi.org/10.2174/0929866522666150915122247] [PMID: 26369950]
[122]
Mojib, N.; Philpott, R.; Huang, J.P.; Niederweis, M.; Bej, A.K. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie Van Leeuwenhoek, 2010, 98(4), 531-540.
[http://dx.doi.org/10.1007/s10482-010-9470-0] [PMID: 20556653]
[123]
Mojib, N.; Nasti, T.H.; Andersen, D.T.; Attigada, V.R.; Hoover, R.B.; Yusuf, N.; Bej, A.K. The antiproliferative function of violacein-like Purple Violet Pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int. J. Dermatol., 2011, 50(10), 1223-1233.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04825.x] [PMID: 21790550]
[124]
Alem, D.; Marizcurrena, J.J.; Saravia, V.; Davyt, D.; Martinez-Lopez, W.; Castro-Sowinski, S. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J. Microbiol. Biotechnol., 2020, 36(8), 120.
[http://dx.doi.org/10.1007/s11274-020-02893-4] [PMID: 32681377]
[125]
Mojib, N.; Farhoomand, A.; Andersen, D.T.; Bej, A.K. UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2. Extremophiles, 2013, 17(3), 367-378.
[http://dx.doi.org/10.1007/s00792-013-0525-9] [PMID: 23512118]
[126]
Atalah, J.; Blamey, L.; Muñoz-Ibacache, S.; Gutierrez, F.; Urzua, M.; Encinas, M.V.; Páez, M.; Sun, J.; Blamey, J.M. Isolation and characterization of violacein from an Antarctic Iodobacter: A non-pathogenic psychrotolerant microorganism. Extremophiles, 2020, 24(1), 43-52.
[http://dx.doi.org/10.1007/s00792-019-01111-w] [PMID: 31324985]
[127]
Kimura, T.; Fukuda, W.; Sanada, T.; Imanaka, T. Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus. J. Biosci. Bioeng., 2015, 120(1), 58-61.
[http://dx.doi.org/10.1016/j.jbiosc.2014.11.020] [PMID: 25533380]
[128]
Silva, C.; Santos, A.; Salazar, R.; Lamilla, C.; Pavez, B.; Meza, P.; Hunter, R.; Barrientos, L. Evaluation of dye sensitized solar cells based on a pigment obtained from Antarctic Streptomyces fildesensis. Sol. Energy, 2018, 2019(181), 379-385.
[http://dx.doi.org/10.1016/j.solener.2019.01.035]
[129]
Pacelli, C.; Cassaro, A.; Maturilli, A.; Timperio, A.M.; Gevi, F.; Cavalazzi, B.; Stefan, M.; Ghica, D.; Onofri, S. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl. Microbiol. Biotechnol., 2020, 104(14), 6385-6395.
[http://dx.doi.org/10.1007/s00253-020-10666-0] [PMID: 32447439]
[130]
Remias, D.; Schwaiger, S.; Aigner, S.; Leya, T.; Stuppner, H.; Lütz, C. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol., 2012, 79(3), 638-648.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01245.x] [PMID: 22092588]
[131]
Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats : Production in characterization and biological activities. Mol. Drugs, 2010, 8(6), 1779-1802.
[http://dx.doi.org/10.3390/md8061779]
[132]
Toshkova, R.; Ivanova, V.; Yossifova, L.; Gardeva, E.; Zvetkova, E. In vitro immunobiological activity of an Antarctic streptomyces polysaccharide. Comptes Rendus L’Academie Bulg. des Sci., 2010, 63(11), 1667-1674.
[133]
Hao, C.; Zhou, Z.; Peng, C.; Gen, W.X.; Ge, Z. Inhibitory effect of extracellular polysaccharide EPS-II from Pseudomonas on candida adhesion to cornea in vitro. Biomed. Environ. Sci., 2012, 25(2), 210-215.
[http://dx.doi.org/10.3967/0895-3988.2012.02.013]
[134]
Kuncheva, M.; Panchev, I.; Pavlova, K. Functional characteristics of an exopolysaccharide from Antarctic yeast strain Cryptococcus laurentii. Biotechnol. Biotechnol. Equip., 2013, 27(5), 4098-4102.
[http://dx.doi.org/10.5504/BBEQ.2013.0009]
[135]
Sun, M.L.; Zhao, F.; Shi, M.; Zhang, X.Y.; Zhou, B.C.; Zhang, Y.Z.; Chen, X.L. Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine Bacterium polaribacter sp. SM1127. Sci. Rep., 2015, 5, 18435.
[http://dx.doi.org/10.1038/srep18435] [PMID: 26688201]
[136]
Carillo, S.; Pieretti, G.; Lindner, B.; Parrilli, E.; Filomena, S.; Tutino, M.L.; Lanzetta, R.; Parrilli, M.; Corsaro, M.M. Structural characterization of the core oligosaccharide isolated from the lipopolysaccharide of the psychrophilic bacterium Colwellia psychrerythraea strain 34H. Eur. J. Org. Chem., 2013, (18), 3771-3779.
[http://dx.doi.org/10.1002/ejoc.201300005]
[137]
Carillo, S.; Casillo, A.; Pieretti, G.; Parrilli, E.; Sannino, F.; Bayer-Giraldi, M.; Cosconati, S.; Novellino, E.; Ewert, M.; Deming, J.W.; Lanzetta, R.; Marino, G.; Parrilli, M.; Randazzo, A.; Tutino, M.L.; Corsaro, M.M. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins. J. Am. Chem. Soc., 2015, 137(1), 179-189.
[http://dx.doi.org/10.1021/ja5075954] [PMID: 25525681]
[138]
Casillo, A.; Parrilli, E.; Sannino, F.; Mitchell, D.E.; Gibson, M.I.; Marino, G.; Lanzetta, R.; Parrilli, M.; Cosconati, S.; Novellino, E.; Randazzo, A.; Tutino, M.L.; Corsaro, M.M. Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: A strategy for cryoprotection. Carbohydr. Polym., 2017, 156, 364-371.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.037] [PMID: 27842835]
[139]
Casillo, A.; Ståhle, J.; Parrilli, E.; Sannino, F.; Mitchell, D.E.; Pieretti, G.; Gibson, M.I.; Marino, G.; Lanzetta, R.; Parrilli, M.; Widmalm, G.; Tutino, M.L.; Corsaro, M.M. Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Antonie van Leeuwenhoek, 2017, 110(11), 1377-1387.
[http://dx.doi.org/10.1007/s10482-017-0834-6] [PMID: 28161737]
[140]
Vásquez-ponce, F.; Higuera-llantén, S.; Soledad, M.; Ramírez-orellana, R.; Marshall, S.H.; Olivares-pacheco, J. Alginate overproduction and bio film formation by psychrotolerant Pseudomonas mandelii depend on temperature in Antarctic marine sediments. Electron. J. Biotechnol., 2017, 28, 27-34.
[http://dx.doi.org/10.1016/j.ejbt.2017.05.001]
[141]
Brian, M. Structure and antioxidant activity of extracellular polysaccharides from Antarctic marine filamentous fungi. CCAMLR Sci., 2018, 25(1), 49-55.
[142]
Song, H.; He, M.; Gu, C.; Wei, D.; Liang, Y.; Yan, J.; Wang, C. Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an Arctic Chlorella sp. Polymers, 2018, 10(3), E292.
[http://dx.doi.org/10.3390/polym10030292] [PMID: 30966327]
[143]
Bai, Y.; Zhang, P.; Chen, G.; Cao, J.; Huang, T.; Chen, K. Macrophage immunomodulatory activity of extracellular polysaccharide (PEP) of Antarctic bacterium Pseudo-altermonas sp.S-5. Int. Immunopharmacol., 2012, 12(4), 611-617.
[http://dx.doi.org/10.1016/j.intimp.2012.02.009] [PMID: 22391090]
[144]
Li, J.; Qian, W.; Xu, Y.; Chen, G.; Wang, G.; Nie, S.; Shen, B.; Zhao, Z.; Liu, C.; Chen, K. Activation of RAW 264.7 cells by a polysaccharide isolated from Antarctic bacterium Pseudoaltermonas sp. S-5. Carbohydr. Polym., 2015, 130, 97-103.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.070] [PMID: 26076605]
[145]
Chen, G.; Qian, W.; Li, J.; Xu, Y.; Chen, K. Exopolysaccharide of Antarctic bacterium Pseudoaltermonas sp. S-5 induces apoptosis in K562 cells. Carbohydr. Polym., 2015, 121, 107-114.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.045] [PMID: 25659678]
[146]
Carrión, O.; Delgado, L.; Mercade, E. New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym., 2015, 117, 1028-1034.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.060] [PMID: 25498731]
[147]
Sathiyanarayanan, G.; Yi, D.H.; Bhatia, S.K.; Kim, J.H.; Seo, H.M.; Kim, Y.G.; Park, S.H.; Jeong, D.; Jung, S.; Jung, J.Y. Exopolysaccharide from psychrotrophic arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Advances, 2015, 5(103), 84492-84502.
[http://dx.doi.org/10.1039/C5RA14978A]
[148]
Mukhopadhyay, S.K.; Chatterjee, S.; Gauri, S.S.; Das, S.S.; Mishra, A.; Patra, M.; Ghosh, A.K.; Das, A.K.; Singh, S.M.; Dey, S. Isolation and characterization of extracellular polysaccharide thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr. Polym., 2014, 104(1), 204-212.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.034] [PMID: 24607179]
[149]
Aslam, S.N.; Cresswell-Maynard, T.; Thomas, D.N.; Underwood, G.J.C. Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J. Phycol., 2012, 48(6), 1494-1509.
[http://dx.doi.org/10.1111/jpy.12004] [PMID: 27009999]
[150]
Pavlova, K.; Rusinova-Videva, S.; Kuncheva, M.; Kratchanova, M.; Gocheva, M.; Dimitrova, S. Synthesis and characterization of an exopolysaccharide by Antarctic yeast strain Cryptococcus laurentii AL100. Appl. Biochem. Biotechnol., 2011, 163(8), 1038-1052.
[http://dx.doi.org/10.1007/s12010-010-9107-9] [PMID: 20972644]
[151]
Krylov, V.B.; Grachev, A.A.; Ustyuzhanina, N.E.; Ushakova, N.A.; Preobrazhenskaya, M.E.; Kozlova, N.I.; Portsel, M.N.; Konovalova, I.N.; Novikov, V.Y.; Siebert, H.C. Preliminary structural characterization, anti-inflammatory and anticoagulant activities of chondroitin sulfates from marine fish cartilage. Russ. Chem. Bull., 2011, 60(4), 746-753.
[http://dx.doi.org/10.1007/s11172-011-0115-x]
[152]
Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Lo Giudice, A. Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ. Sci. Pollut. Res. Int., 2018, 25(5), 4667-4677.
[http://dx.doi.org/10.1007/s11356-017-0851-z] [PMID: 29197057]
[153]
Tedesco, P.; Maida, I.; Palma Esposito, F.; Tortorella, E.; Subko, K.; Ezeofor, C.C.; Zhang, Y.; Tabudravu, J.; Jaspars, M.; Fani, R.; de Pascale, D. Antimicrobial activity of monoramnholipids produced by bacterial strains isolated from the ross sea (Antarctica). Mar. Drugs, 2016, 14(5), E83.
[http://dx.doi.org/10.3390/md14050083] [PMID: 27128927]
[154]
Buonocore, C.; Tedesco, P.; Vitale, G.A.; Esposito, F.P.; Giugliano, R.; Monti, M.C.; D’Auria, M.V.; de Pascale, D. Characterization of a new mixture of mono-rhamnolipids produced by Pseudomonas gessardii isolated from edmonson point (Antarctica). Mar. Drugs, 2020, 18(5), 1-18.
[http://dx.doi.org/10.3390/md18050269] [PMID: 32443698]
[155]
Janek, T.; Krasowska, A.; Czyżnikowska, Ż.; Łukaszewicz, M. Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: An experimental and computational approach. Front. Microbiol., 2018, 9, 2441.
[http://dx.doi.org/10.3389/fmicb.2018.02441] [PMID: 30386313]
[156]
Trudgeon, B.; Dieser, M.; Balasubramanian, N.; Messmer, M.; Foreman, C.M. Low-temperature biosurfactants from polar microbes. Microorganisms, 2020, 8(8), 1183.
[http://dx.doi.org/10.3390/microorganisms8081183] [PMID: 32756528]
[157]
Janek, T.; Łukaszewicz, M.; Krasowska, A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf. B Biointerfaces, 2013, 110, 379-386.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.008] [PMID: 23751417]
[158]
Walters, K.R., Jr; Serianni, A.S.; Voituron, Y.; Sformo, T.; Barnes, B.M.; Duman, J.G. A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. J. Comp. Physiol. B, 2011, 181(5), 631-640.
[http://dx.doi.org/10.1007/s00360-011-0552-8] [PMID: 21279720]
[159]
Gesheva, V.; Stackebrandt, E.; Vasileva-Tonkova, E. Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr. Microbiol., 2010, 61(2), 112-117.
[http://dx.doi.org/10.1007/s00284-010-9584-7] [PMID: 20135319]
[160]
Treyvaud Amiguet, V.; Jewell, L.E.; Mao, H.; Sharma, M.; Hudson, J.B.; Durst, T.; Allard, M.; Rochefort, G.; Arnason, J.T. Antibacterial properties of a glycolipid-rich extract and active principle from Nunavik collections of the macroalgae Fucus evanescens C. Agardh (Fucaceae). Can. J. Microbiol., 2011, 57(9), 745-749.
[http://dx.doi.org/10.1139/w11-065] [PMID: 21859295]
[161]
Wietz, M.; Månsson, M.; Bowman, J.S.; Blom, N.; Ng, Y.; Gram, L. Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl. Environ. Microbiol., 2012, 78(6), 2039-2042.
[http://dx.doi.org/10.1128/AEM.07096-11] [PMID: 22247128]
[162]
Artini, M.; Papa, R.; Vrenna, G.; Lauro, C.; Ricciardelli, A.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E.; Selan, L. Cold-adapted bacterial extracts as a source of anti-infective and antimicrobial compounds against Staphylococcus aureus. Future Microbiol., 2019, 14(16), 1369-1382.
[http://dx.doi.org/10.2217/fmb-2019-0147] [PMID: 31596138]
[163]
Khan, I.; Zhang, H.; Liu, W.; Zhang, L.; Peng, F.; Chen, Y.; Zhang, Q.; Zhang, G.; Zhang, W.; Zhang, C. Identification and bioactivity evaluation of secondary metabolites from Antarctic-derived Penicillium chrysogenum CCTCC M 2020019. RSC Advances, 2020, 10(35), 20738-20744.
[http://dx.doi.org/10.1039/D0RA03529G] [PMID: 35517746]
[164]
Liu, J-T.; Lu, X.L.; Liu, X.Y.; Gao, Y.; Hu, B.; Jiao, B.H.; Zheng, H. Bioactive natural products from the Antarctic and Arctic organisms. Mini Rev. Med. Chem., 2013, 13(4), 617-626.
[http://dx.doi.org/10.2174/1389557511313040013] [PMID: 23373650]
[165]
Nygaard, H.; Langmyhr, E. Antimicrobial composition from copepods for treatment of infections. Patent EP2346516A2, 2011.
[166]
Woo, K.J.; Wook, L.S.; Jin, P.S.; Won, S.J.; Ae, L.I.; Mi, Y.T.; Keun, C.J.; Ean, L.J.; Yong, K.J.; Yu, J.Y. Cyclic peptide from Nonomuraea sp., process for the production thereof, and pharmaceutical composition for the prevention or treatment of mycobacteria related disease comprising the same. Patent EP2699584B1, 2016.
[167]
He, P.; Shen, J.; Li, J.; Liu, C.; Lin, X.; Chen, H.; Huang, X. Bacillus sp. 107, Psychrobacter sp. B-3, mixed bactericide, and preparation method thereof. Patent CN 102732445A, 2012.
[168]
Peiqing, H.; Xuezheng, L.; Xiaohang, H.; Jihong, S. Antarctic pseudomonas biocontrol strain and preparation method of biocontrol preparation of strain. Patent CN201210097015A, 2013.
[169]
Elisabeth, H.; Birte, G.; Jutta, J.; Kristine, R. Bioremediation method for accelerated biological degradation of petroleum hydrocarbons in sea ice-covered polar regions, and bacteria and enzyme mixtures as agents for carrying out said method. Patent EP2111379A2, 2009.
[170]
Elisabeth, H.; Birte, G.; Jutta, J.; Kristine, R. Bioremediationsverfahren Zum Beschleunigten Biologischen Abbau von Petroleum-Kohlenwasserstoffen in Den Polaren Meereisbedeckten Regionen Und Bakterien- Und Enzymgemische Als Mittel Zur Verfahrensdurchführung. Patent DE102007003644A1, 2008.
[171]
Daicheng, L. Method for preparing dbp through waste liquid generated by Antarctic krill alkaloid extraction. Patent CN105037153A, 2015.
[172]
Liangbiao, C.; Mingli, L.; Qianghua, X.; Ruiqin, H.; Yuping, L. Antarctic fish hepcidin as well as preparation method and application thereof. Patent CN111662370A, 2020.
[173]
Guangli, Y.; Jiejie, H.; Dapeng, C.; Huashi, G.; Xia, Z.; Youjing, L.; Ting, H. Beta-1,3/1,6-glucan, preparation method therefor, and application thereof in preparing immune enhancement and anti-tumor medicine and functional food. Patent CN105001352A, 2015.
[174]
Han, Y.J.; Han, K. Pharmaceutical composition for the prevention or treatment of inflammatory diseases or immune diseases containing ramalin. Patent WO2011152671A9, 2012.
[175]
Cornelia, S.S.D.; Daniel, S.D.; Fred, Z.D. Use of an extract from snow algae in cosmetic or dermatological formulations. Patent EP2260829A2, 2010.
[176]
Chao, Z.; Bin, L.; Chao, A.; Zheng, X. Anti-aging alga health-care alga granule beverage and preparation method thereof. Patent CN105475761A, 2016.
[177]
Weimin, L. Composition for delaying senescence and enhancing immunity and application. Patent CN111388568A, 2020.
[178]
Han, Y. J.; Chan, K. Antimicrobial and antioxidative composition containing pseudodepsidone compound originated from Stereocaulon alpinum. Patent KR101452324B1, 2014.
[179]
Yi, Z.; Chen, B.; Baodong, Z.; Hongliang, Z.; Zebin, G. Processing method of instant Antarctic ice microalgae. Patent CN105533519A, 2016.
[180]
Yaqin, H.; Chunhua, W.; Wenjuan, L.; Qingqing, J.; Shiguo, C.; Xingqian, Y.; Donghong, L. Preparation method of Antarctic ice algae flavored seawater fish meat deep-processing products. Patent CN103719935A, 2014.
[181]
Li, J.; Shen, J.; Lin, X.; Huang, X.; He, P. Antarctic sea ice bacterium exopolysaccharide with immune activity, and preparation method thereof. Patent CN102399296A, 2012.
[182]
Ting, H.; Xia, Z.; Jianjie, L.; Huashi, G. Antarctic dried seaweed polysaccharide composition and preparation method thereof. Patent CN109077323A, 2018.
[183]
Fotini, S. Natural marine source phospholipids comprising flavonoids, polyunsaturated fatty acids and their applications. Patent AU2013205516A1, 2013.
[184]
Zhidong, L.; Baolin, L.; Yinghong, Q.; Na, L.; Liu, Z.; Ang, H. Antarctic krill canned food and making method thereof. Patent CN110604273A, 2019.
[185]
Jianxue, L.; Tingting, L.; Lujiao, G.; Yanqing, H. Method of nutritional enhancement of rotifers with antarctic krill meal. N103155905A, 2013.
[186]
Yu, L.; Wei, J.; Shiwei, H.; Shijie, L. Method for preparing oligopeptide powder from Antarctic krill shells. Patent CN108130353A, 2018.
[187]
Xiaohu, G.; Haijia, C.; Yifei, W.; Zhandong, Y.; Weimin, Z. Composition for assisting in reducing blood lipid, preparation method of composition, and health-care food including composition. Patent CN106617076A, 2017.
[188]
Chen, L. Health care product for improving memory. Patent CN105011131A, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy