Abstract
Heterocyclic scaffolds are important from both academic and industrial points of view. Due to their biological and pharmacological activities, they are useful intermediates in organic synthesis and have great interest in medicinal and natural products chemistry. N-halo compounds bearing an electron-withdrawing group on nitrogen (e.g., carbonyl, sulfonyl) present the unique chemical properties of the N-X bond that give them broad synthetic utility for diverse organic transformation. In the past years, significant progress has been achieved in the synthesis of heterocyclic compounds with the intermediacy of N-halo compounds. Numerous strategies (e.g., electrophilic cyclizations, asymmetric halocyclizations, oxidative cyclizations, radical processes) were implemented featuring high atom- and step-economy, and more efficient procedures are continually being developed. An interesting approach consists of using Nhalo compounds to promote multicomponent reactions (MCRs), which rapidly became an emerging field in heterocyclic construction. MCRs are recognized for their mild conditions, high convergence, and efficiency. Thus, the present review will focus attention on the main topics and utilization of N-halo compounds (N-halosuccinimides, trihaloisocyanuric acids, N-halosulfonamides, etc.) as green and convenient reagents in heterocyclic construction via MCRs. Examples of the preparation of azoles, pyridines, 1,4-dihydropyridines, chromenes, and xanthenes, among other scaffolds are presented and discussed.
Keywords: Organic synthesis, green chemistry, halogenation, N-haloimides, pot-economy, azoles, pyridines, xanthenes.
Graphical Abstract
[http://dx.doi.org/10.1007/s10311-021-01232-9]
(b)Maheshwari, K.K.; Bandyopadhyay, D. Heterocycles in the treatment of neglected tropical diseases. Curr. Med. Chem., 2021, 28(3), 472-495.
[http://dx.doi.org/10.2174/0929867327666200219141652] [PMID: 32072886]
(c)Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
(d)Cabrele, C.; Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem., 2016, 81(21), 10109-10125.
[http://dx.doi.org/10.1021/acs.joc.6b02034] [PMID: 27680573]
[http://dx.doi.org/10.2174/1385272824999201020204620]
(b)Hayashi, Y. Time and pot economy in total synthesis. Acc. Chem. Res., 2021, 54(6), 1385-1398.
[http://dx.doi.org/10.1021/acs.accounts.0c00803] [PMID: 33617234]
(c)Kumari, S.; Kishore, D.; Paliwal, S.; Chauhan, R.; Dwivedi, J.; Mishra, A. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol. Divers., 2016, 20(1), 185-232.
[http://dx.doi.org/10.1007/s11030-015-9596-0] [PMID: 26055184]
(d)Sydnes, M. One-pot reactions: A step towards greener chemistry. Curr. Green Chem., 2014, 1(3), 216-226.
[http://dx.doi.org/10.2174/2213346101666140221225404]
(e)Wu, G.; Yin, W.; Shen, H.C.; Huang, Y. One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy. Green Chem., 2012, 14(3), 580-585.
[http://dx.doi.org/10.1039/c2gc16457d]
(f)Zhao, W.; Chen, F.E. One-pot synthesis and its practical application in pharmaceutical industry. Curr. Org. Synth., 2012, 9(6), 873-897.
[http://dx.doi.org/10.2174/157017912803901619]
[http://dx.doi.org/10.21577/0100-4042.20170731]
(b)Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[http://dx.doi.org/10.1021/cr940277f] [PMID: 11848747]
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
(b)Wender, P.A. Toward the ideal synthesis and molecular function through synthesis-informed design. Nat. Prod. Rep., 2014, 31(4), 433-440.
[http://dx.doi.org/10.1039/C4NP00013G] [PMID: 24589860]
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
(b)Cimarelli, C. Multicomponent reactions. Molecules, 2019, 24(13), 2372.
[http://dx.doi.org/10.3390/molecules24132372] [PMID: 31252514]
[http://dx.doi.org/10.1002/jlac.18500750103]
(b)Kouznetsov, V.V.; Galvis, C.E.P. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2018, 74(8), 773-810.
[http://dx.doi.org/10.1016/j.tet.2018.01.005]
[http://dx.doi.org/10.1002/jlac.18822150102]
(b)Sohal, H.S. A review on recent trends in synthesis and applications of 1,4-dihydropyridines. Mater. Today Proc., 2022, 48, 1163-1170.
[http://dx.doi.org/10.1016/j.matpr.2021.08.209]
[http://dx.doi.org/10.1002/cber.189002301243]
(b)Menéndez, J.; Leonardi, M.; Estévez, V.; Villacampa, M. The Hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis, 2019, 51(4), 816-828.
[http://dx.doi.org/10.1055/s-0037-1610320]
[http://dx.doi.org/10.1002/cber.189102401228]
(b)de Fátima, Â.; Braga, T.C.; Neto, L.S.; Terra, B.S.; Oliveira, B.G.F.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373.
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
[http://dx.doi.org/10.1039/CT9171100762]
(b)Medley, J.W.; Movassaghi, M. Robinson’s landmark synthesis of tropinone. Chem. Commun. (Camb.), 2013, 49(92), 10775-10777.
[http://dx.doi.org/10.1039/c3cc44461a] [PMID: 24116374]
[http://dx.doi.org/10.1002/ange.19560681209]
(b)Liu, Z.Q. Two neglectd multicomponent reactions: Asinger and Groebke reaction for constructing thiazolines and imidazolines. Curr. Org. Synth., 2015, 12(1), 20-60.
[http://dx.doi.org/10.2174/1570179411999141112144441]
(c)Griboura, N.; Gatzonas, K.; Neochoritis, C.G. Still relevant today: The Asinger multicomponent reaction. ChemMedChem, 2021, 16(13), 1997-2020.
[http://dx.doi.org/10.1002/cmdc.202100086] [PMID: 33769692]
[http://dx.doi.org/10.1002/cber.19660990116]
(b)Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
(c)El-Mekabaty, A. Chemistry of 2-amino-3-carbethoxythiophene and related compounds. Synth. Commun., 2014, 44(1), 1-31.
[http://dx.doi.org/10.1080/00397911.2013.821618]
[http://dx.doi.org/10.1055/s-1998-1721]
(b)Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett., 1998, 39(22), 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4]
(c)Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433]
(d)Boltjes, A.; Dömling, A. The groebke-blackburn-bienaymé reaction. Eur. J. Org. Chem., 2019, 2019(42), 7007-7049.
[http://dx.doi.org/10.1002/ejoc.201901124] [PMID: 34012704]
[http://dx.doi.org/10.1021/ol035521g] [PMID: 14507224]
[http://dx.doi.org/10.1016/j.gresc.2021.10.008]
(b)Ma, X.; Qiu, W.; Liu, L.; Zhang, X.; Awad, J.; Evans, J.; Zhang, W. Synthesis of tetrahydropyrrolothiazoles through one-pot and four-component N,S-acetalation and decarboxylative [3+2] cycloaddition. Green Syn. Cat., 2021, 2(1), 74-77.
[http://dx.doi.org/10.1016/j.gresc.2020.11.001]
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
(b)Shaw, R.; Elagamy, A.; Althagafi, I.; Srivastava, A.K.; Pratap, R. Multi-component reactions for the synthesis of biologically relevant molecules under environmentally benign conditions. Curr. Org. Chem., 2021, 25(20), 2331-2377.
[http://dx.doi.org/10.2174/1385272825666210623160932]
(c)Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules, 2020, 25(3), 505.
[http://dx.doi.org/10.3390/molecules25030505] [PMID: 31991635]
(d)Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
(e)Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[http://dx.doi.org/10.1055/s-0037-1611746]
(b)Lyubchuk, T.V.; Hordiyenko, O.V. The use of N-halosuccinimides for cyclization with the formation of five-membered heterocyclic compounds. Chem. Heterocycl. Compd., 2020, 56(1), 1-29.
[http://dx.doi.org/10.1007/s10593-020-02616-5]
(c)Andrade, V.S.C.; Mattos, M.C.S. N-Halo reagents-mediated greener protocols for heterocyclic synthesis: Safe chemistry and pot-economy approaches to azoles and quinoxalines. Curr. Green Chem., 2018, 5(2), 68-85.
[http://dx.doi.org/10.2174/2452273202666180719124023]
(d)China, H.; Kumar, R.; Kikushima, K.; Dohi, T. Halogen-induced controllable cyclizations as diverse heterocycle synthetic strategy. Molecules, 2020, 25(24), 6007.
[http://dx.doi.org/10.3390/molecules25246007] [PMID: 33353126]
[http://dx.doi.org/10.1007/BF03245963]
(b)Veisi, H.; Ghorbani, V.R.; Zolfigol, M.A. Recent progress in the use of N-halo compounds in organic synthesis. Org. Prep. Proced. Int., 2011, 43(6), 489-540.
[http://dx.doi.org/10.1080/00304948.2011.629553]
(c)Minakata, S. Utilization of N-X bonds in the synthesis of N-heterocycles. Acc. Chem. Res., 2009, 42(8), 1172-1182.
[http://dx.doi.org/10.1021/ar900059r] [PMID: 19480410]
[http://dx.doi.org/10.1055/s-2007-990871]
[http://dx.doi.org/10.2174/157017941006140206102255]
(b)Almeida, L.; Esteves, P.; Mattos, M. Tribromoisocyanuric acid: A green and versatile reagent. Curr. Green Chem., 2014, 1(2), 94-107.
[http://dx.doi.org/10.2174/2213346101999140109142834]
(c)Gaspa, S.; Carraro, M.; Pisano, L.; Porcheddu, A.; De Luca, L. Trichloroisocyanuric acid: A versatile and efficient chlorinating and oxidizing reagent. Eur. J. Org. Chem., 2019, 2019(22), 3544-3552.
[http://dx.doi.org/10.1002/ejoc.201900449]
[http://dx.doi.org/10.1021/op010103h]
(b)Ribeiro, R.S.; Esteves, P.M.; Mattos, M.C.S. Triiodoisocyanuric acid: A new and convenient reagent for regioselective iodination of activated arenes. J. Braz. Chem. Soc., 2008, 19(7), 1239-1243.
[http://dx.doi.org/10.1590/S0103-50532008000700002]
[http://dx.doi.org/10.1081/SCC-120016353]
(b)Dolenc, D. N-Iodosaccharin - a new reagent for iodination of alkenes and activated aromatics. Synlett, 2000, 544-546.
[http://dx.doi.org/10.1590/S0100-40422006000500028]
(b)Sharma, K.; Jain, I.; Sharma, V.K. N-Halosaccharin: A novel and versatile reagent. Oxid. Commun., 2015, 38, 631-647.
[http://dx.doi.org/10.1055/s-2005-861851]
[http://dx.doi.org/10.3762/bjoc.17.123] [PMID: 34386101]
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[http://dx.doi.org/10.3390/ph14090893] [PMID: 34577593]
(b)Philkhana, S.C.; Badmus, F.O.; Dos Reis, I.C.; Kartika, R. Recent advancements in pyrrole synthesis. Synthesis, 2021, 53(9), 1531-1555.
[http://dx.doi.org/10.1055/s-0040-1706713] [PMID: 34366491]
[http://dx.doi.org/10.2174/1570193X17666200226110645]
[http://dx.doi.org/10.3762/bjoc.17.114] [PMID: 34354770]
(b)Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-a review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/1570179417666200914142229] [PMID: 32928090]
[http://dx.doi.org/10.1007/s11244-022-01580-y]
[http://dx.doi.org/10.1007/s00706-012-0830-5]
[http://dx.doi.org/10.2174/15701786113106660091]
[http://dx.doi.org/10.1021/jo800035v] [PMID: 18357998]
[http://dx.doi.org/10.1055/s-0039-1690858]
[http://dx.doi.org/10.1002/chem.201605034] [PMID: 27862485]
[http://dx.doi.org/10.1016/j.tetlet.2018.08.039]
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
(b)Khan, E. Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. ChemistrySelect, 2021, 6(13), 3041-3064.
[http://dx.doi.org/10.1002/slct.202100332]
(c)Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
(d)Alizadeh, S.R.; Ebrahimzadeh, M.A. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini Rev. Med. Chem., 2021, 21(17), 2584-2611.
[http://dx.doi.org/10.2174/1389557521666210126143558] [PMID: 33573543]
[http://dx.doi.org/10.1016/j.molstruc.2021.131168]
(b)Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734]
(c)Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: A recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770]
[http://dx.doi.org/10.2174/1570193X18666210122154419]
[http://dx.doi.org/10.3389/fchem.2020.594717] [PMID: 33585397]
[http://dx.doi.org/10.2174/1389557520666201009162804] [PMID: 33038911]
[http://dx.doi.org/10.1002/adsc.202001219]
[http://dx.doi.org/10.1055/s-1976-23941]
(b)Shabalin, D.A. Recent advances and future challenges in the synthesis of 2,4,6-triarylpyridines. Org. Biomol. Chem., 2021, 19(38), 8184-8204.
[http://dx.doi.org/10.1039/D1OB01310F] [PMID: 34499071]
[http://dx.doi.org/10.1080/00304948.2015.1005990]
[http://dx.doi.org/10.1135/cccc2011021]
[http://dx.doi.org/10.1016/j.crci.2013.06.006]
[http://dx.doi.org/10.1002/slct.201900113]
[http://dx.doi.org/10.1002/jhet.2570]
[http://dx.doi.org/10.1039/C4RA10892B]
[http://dx.doi.org/10.1055/s-0036-1588886]
[http://dx.doi.org/10.1039/c3ra44496a]
[http://dx.doi.org/10.1080/00397911.2013.829237]
[http://dx.doi.org/10.1002/jhet.3869]
[http://dx.doi.org/10.1021/acsmedchemlett.8b00347] [PMID: 30655943]
[http://dx.doi.org/10.1016/j.ejmech.2021.113999] [PMID: 34838335]
[http://dx.doi.org/10.1002/jhet.3077]
[http://dx.doi.org/10.1002/jhet.4019]
[http://dx.doi.org/10.1016/j.tet.2011.01.024]
[http://dx.doi.org/10.1039/C4RA08617A]
[http://dx.doi.org/10.1039/C5RA10730J]
[http://dx.doi.org/10.1039/C8RA02827C] [PMID: 35542353]
[http://dx.doi.org/10.1007/s11164-016-2678-5]
[http://dx.doi.org/10.2174/1389557520666200807130215] [PMID: 32767934]
(b)Mishra, A.P.; Bajpai, A.; Rai, A.K. 1,4-Dihydropyridine: A dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev. Med. Chem., 2019, 19(15), 1219-1254.
[http://dx.doi.org/10.2174/1389557519666190425184749] [PMID: 31735158]
[http://dx.doi.org/10.1007/s11164-015-2310-0]
[http://dx.doi.org/10.1007/BF03246091]
[http://dx.doi.org/10.2174/1570179417666201207215710] [PMID: 33290199]
(b)Mohammadi, B.; Behbahani, F.K. Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol. Divers., 2018, 22(2), 405-446.
[http://dx.doi.org/10.1007/s11030-017-9806-z] [PMID: 29349521]
[http://dx.doi.org/10.3390/molecules26196022] [PMID: 34641566]
[http://dx.doi.org/10.2174/1570193X18666210122155016]
[http://dx.doi.org/10.1007/s10593-021-02916-4] [PMID: 34024913]
[http://dx.doi.org/10.1039/C5RA16646B]
[http://dx.doi.org/10.1002/hlca.201300361]
[http://dx.doi.org/10.1016/j.tetlet.2010.12.039]
[http://dx.doi.org/10.3987/REV-17-867]
[http://dx.doi.org/10.1007/s11030-013-9435-0] [PMID: 23588896]
[http://dx.doi.org/10.1007/s11030-013-9427-0] [PMID: 23412753]
[http://dx.doi.org/10.1016/j.crci.2013.02.015]
[http://dx.doi.org/10.3987/COM-21-14479]
[http://dx.doi.org/10.1007/s11164-014-1857-5]
[http://dx.doi.org/10.3389/fchem.2020.00623] [PMID: 32850645]
[http://dx.doi.org/10.2174/1570179414666171011162902]
(b)Ghahsare, A.G.; Nazifi, Z.S.; Nazifi, S.M.R. Structure-bioactivity relationship study of xanthene derivatives: A brief review. Curr. Org. Synth., 2020, 16(8), 1071-1077.
[http://dx.doi.org/10.2174/1570179416666191017094908] [PMID: 31984917]
[http://dx.doi.org/10.1080/10406638.2021.1962923]
[http://dx.doi.org/10.1590/S0103-50532011000500013]
[http://dx.doi.org/10.1080/00304948.2018.1468982]
[http://dx.doi.org/10.1002/jhet.2769]
[http://dx.doi.org/10.1002/hlca.201000243]
[http://dx.doi.org/10.5012/bkcs.2011.32.5.1697]
[http://dx.doi.org/10.1016/j.cclet.2009.06.024]
[http://dx.doi.org/10.1002/jccs.201700082]
[http://dx.doi.org/10.1039/C4RA04929B]
[http://dx.doi.org/10.2174/1385272825666210111112814]
[http://dx.doi.org/10.1080/10406638.2019.1584576]
[http://dx.doi.org/10.1002/jhet.2605]
[http://dx.doi.org/10.2174/1385272824999200608134859]