Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Illuminating the G-Quadruplex: A Review on Fluorescent Probes for Detecting Polymorphic G-Quartet DNA Structures

Author(s): Susantha K. Ganegamage and Michael D. Heagy*

Volume 26, Issue 11, 2022

Published on: 12 September, 2022

Page: [1004 - 1054] Pages: 51

DOI: 10.2174/1385272826666220811102939

Price: $65

Abstract

Modulating crucial biological processes such as gene regulation, aging, and relationship to globally important human health issues such as cancer has significantly brought considerable attention to G-quadruplex over the past few decades. As the impact of Gquadruplex emerges on so many biological roles, cancer prognosis and pathogenesis have not been fully understood, and selective small molecular binders with suitable chemical, photophysical and biological properties are potentially applicable biophysical tools for tracking Gquadruplex functions. The chemical properties include suitable water solubility, liphophilicity, etc., and the photophysical properties include excitation, emission, stoke-shift, lifetime, quantum yield, and measurable, selective changes of former photophysical parameters within the ideal spectral window upon interaction with the target. The biological properties include; toxicity, cellular infiltration, and selective binding with G-quadruplex over non-specific targets (e.g., duplex DNA, RNA, non-specific biomolecules etc.) in the complex cellular matrix. The development of G-quadruplex-selective probes, therefore, continues to be an important but challenging task for molecular therapeutic, diagnostic, imaging, and sensing applications. In this review, we have classified and summarized several classes of probes; carbocyanine, porphyrins, ethidium, carbazoles, acridines, tripodal or tetrapodal probes, pyrimidine carboxamides, tianguleniums, anthraquinones, polyaromatic hydrocarbons, BODIPY dyes, berberines, acetones and their derivatives for the variation of selectivity, photophysical, and biological properties with respect to the structural modifications, which ultimately provide helpful guidance for designing novel probes with optimal characteristics.

Keywords: G-quadruplex visualization, DNA, fluorescence probe, small molecules, hoogsteen base pairing, photophysical properties, detection.

Graphical Abstract

[1]
Todd, A.K.; Johnston, M.; Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res., 2005, 33(9), 2901-2907.
[http://dx.doi.org/10.1093/nar/gki553] [PMID: 15914666]
[2]
Cogoi, S.; Shchekotikhin, A.E.; Membrino, A.; Sinkevich, Y.B.; Xodo, L.E. Guanidino anthrathiophenediones as G-quadruplex binders: Uptake, intracellular localization, and anti-Harvey-Ras gene activity in bladder cancer cells. J. Med. Chem., 2013, 56(7), 2764-2778.
[http://dx.doi.org/10.1021/jm3019063] [PMID: 23458775]
[3]
Roy, S.; Ali, A.; Kamra, M.; Muniyappa, K.; Bhattacharya, S. Specific stabilization of promoter G-Quadruplex DNA by 2,6-disubstituted amidoanthracene-9,10-dione based dimeric distamycin analogues and their selective cancer cell cytotoxicity. Eur. J. Med. Chem., 2020, 195, 112202.
[http://dx.doi.org/10.1016/j.ejmech.2020.112202] [PMID: 32302880]
[4]
Mei, Y.; Deng, Z.; Vladimirova, O.; Gulve, N.; Johnson, F.B.; Drosopoulos, W.C.; Schildkraut, C.L.; Lieberman, P.M. TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci. Rep., 2021, 11(1), 3509.
[http://dx.doi.org/10.1038/s41598-021-82406-x] [PMID: 33568696]
[5]
Micco, M.; Collie, G.W.; Dale, A.G.; Ohnmacht, S.A.; Pazitna, I.; Gunaratnam, M.; Reszka, A.P.; Neidle, S. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J. Med. Chem., 2013, 56(7), 2959-2974.
[http://dx.doi.org/10.1021/jm301899y] [PMID: 23514618]
[6]
Redon, S.; Bombard, S.; Elizondo-Riojas, M.A.; Chottard, J.C. Platinum cross-linking of adenines and guanines on the quadruplex structures of the AG3(T2AG3)3 and (T2AG3)4 human telomere sequences in Na+ and K+ solutions. Nucleic Acids Res., 2003, 31(6), 1605-1613.
[http://dx.doi.org/10.1093/nar/gkg259] [PMID: 12626701]
[7]
Saha, A.; Bombard, S.; Granzhan, A.; Teulade-Fichou, M.P. Probing of G-quadruplex structures via ligand-sensitized photochemical reactions in BrU-substituted DNA. Sci. Rep., 2018, 8(1), 15814.
[http://dx.doi.org/10.1038/s41598-018-34141-z] [PMID: 30361545]
[8]
Ying, L.; Green, J.J.; Li, H.; Klenerman, D.; Balasubramanian, S. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 14629-14634.
[http://dx.doi.org/10.1073/pnas.2433350100] [PMID: 14645716]
[9]
Lee, J.Y.; Okumus, B.; Kim, D.S.; Ha, T. Extreme conformational diversity in human telomeric DNA. Proc. Natl. Acad. Sci. USA, 2005, 102(52), 18938-18943.
[http://dx.doi.org/10.1073/pnas.0506144102] [PMID: 16365301]
[10]
Gaynutdinov, T.I.; Neumann, R.D.; Panyutin, I.G. Iodine-125 radioprobing of intramolecular quadruplex conformation of human telomeric DNA in the presence of cationic porphyrin TMPyP4. Int. J. Radiat. Biol., 2008, 84(12), 984-990.
[http://dx.doi.org/10.1080/09553000802415747] [PMID: 19061122]
[11]
Qi, J.; Shafer, R.H. Covalent ligation studies on the human telomere quadruplex. Nucleic Acids Res., 2005, 33(10), 3185-3192.
[http://dx.doi.org/10.1093/nar/gki632] [PMID: 15933211]
[12]
Xu, Y.; Suzuki, Y.; Komiyama, M. Click chemistry for the identification of G-quadruplex structures: Discovery of a DNA-RNA G-quadruplex. Angew. Chem. Int. Ed. Engl., 2009, 48(18), 3281-3284.
[http://dx.doi.org/10.1002/anie.200806306] [PMID: 19334028]
[13]
Li, J.; Correia, J.J.; Wang, L.; Trent, J.O.; Chaires, J.B. Not so crystal clear: The structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res., 2005, 33(14), 4649-4659.
[http://dx.doi.org/10.1093/nar/gki782] [PMID: 16106044]
[14]
Chilka, P.; Desai, N.; Datta, B. Small molecule fluorescent probes for g- quadruplex visualization as potential cancer theranostic agents. Molecules, 2019, 24(4), 752.
[http://dx.doi.org/10.3390/molecules24040752] [PMID: 30791494]
[15]
de Lange, T. How telomeres solve the end-protection problem. Science, 2009, 326(5955), 948-952.
[http://dx.doi.org/10.1126/science.1170633] [PMID: 19965504]
[16]
Blackburn, E.H. Structure and function of telomeres. Nature, 1991, 350(6319), 569-573.
[http://dx.doi.org/10.1038/350569a0] [PMID: 1708110]
[17]
Xu, Y. Chemistry in human telomere biology: Structure, function and targeting of telomere DNA/RNA. Chem. Soc. Rev., 2011, 40(5), 2719-2740.
[http://dx.doi.org/10.1039/c0cs00134a] [PMID: 21301727]
[18]
Peska, V.; Garcia, S. Origin, diversity, and evolution of telomere sequences in plants. Front. Plant Sci., 2020, 11, 117.
[http://dx.doi.org/10.3389/fpls.2020.00117] [PMID: 32153618]
[19]
Meyne, J.; Ratliff, R.L.; Moyzis, R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA, 1989, 86(18), 7049-7053.
[http://dx.doi.org/10.1073/pnas.86.18.7049] [PMID: 2780561]
[20]
Vitturi, R.; Colomba, MS; Pirrone, A Libertini, A Physical mapping of rDNA genes, (TTAGGG)n telomeric sequence and other karyological features in two earthworms of the family Lumbricidae (Annelida: Oligochaeta). Heredity (Edinb), 2000, 85(3), 203-7.
[21]
Vitturi, R.; Libertini, A.; Sineo, L.; Sparacio, I.; Lannino, A.; Gregorini, A.; Colomba, M. Cytogenetics of the land snails Cantareus aspersus and C. mazzullii (Mollusca: Gastropoda: Pulmonata). Micron, 2005, 36(4), 351-357.
[http://dx.doi.org/10.1016/j.micron.2004.12.010] [PMID: 15857774]
[22]
Koroleva, A.G.; Evtushenko, E.V.; Maximova, N.V.; Vershinin, A.V.; Sintnikova, T.Y.; Kirilchik, S.V. Length and structure of telomeric DNA in three species of Baikal gastropods (Caenogastropoda: Hydrobioidea: Benedictiidae). Genetika, 2015, 51(3), 362-370.
[PMID: 26027375]
[23]
Tasaka, K.; Yokoyama, N.; Nodono, H.; Hoshi, M.; Matsumoto, M. Innate sexuality determines the mechanisms of telomere maintenance. Int. J. Dev. Biol., 2013, 57(1), 69-72.
[http://dx.doi.org/10.1387/ijdb.120114mm] [PMID: 23319366]
[24]
Okazaki, S.; Tsuchida, K.; Maekawa, H.; Ishikawa, H.; Fujiwara, H. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell. Biol., 1993, 13(3), 1424-1432.
[PMID: 8441388]
[25]
Schumpert, C.; Nelson, J.; Kim, E.; Dudycha, J.L.; Patel, R.C. Telomerase activity and telomere length in Daphnia. PLoS One, 2015, 10(5), e0127196.
[http://dx.doi.org/10.1371/journal.pone.0127196] [PMID: 25962144]
[26]
Wicky, C.; Villeneuve, A.M.; Lauper, N.; Codourey, L.; Tobler, H.; Müller, F. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 8983-8988.
[http://dx.doi.org/10.1073/pnas.93.17.8983] [PMID: 8799140]
[27]
Watson, J.M.; Riha, K. Comparative biology of telomeres: Where plants stand. FEBS Lett., 2010, 584(17), 3752-3759.
[http://dx.doi.org/10.1016/j.febslet.2010.06.017] [PMID: 20580356]
[28]
Wu, C.; Kim, Y.S.; Smith, K.M.; Li, W.; Hood, H.M.; Staben, C.; Selker, E.U.; Sachs, M.S.; Farman, M.L. Characterization of chromosome ends in the filamentous fungus Neurospora crassa. Genetics, 2009, 181(3), 1129-1145.
[http://dx.doi.org/10.1534/genetics.107.084392] [PMID: 19104079]
[29]
Sakai, M.; Okumura, S.I.; Onuma, K.; Senbokuya, H.; Yamamori, K. Identification of a telomere sequence type in three sponge species (Porifera) by fluorescence in situ hybridization analysis. Fish. Sci., 2007, 73(1), 77-80.
[http://dx.doi.org/10.1111/j.1444-2906.2007.01304.x]
[30]
Sandhu, R.; Li, B. Telomerase activity is required for the telomere G-overhang structure in Trypanosoma brucei. Sci. Rep., 2017, 7(1), 15983.
[http://dx.doi.org/10.1038/s41598-017-16182-y] [PMID: 29167542]
[31]
Eberhard, S.; Valuchova, S.; Ravat, J.; Fulneček, J.; Jolivet, P.; Bujaldon, S.; Lemaire, S.D.; Wollman, F.A.; Teixeira, M.T.; Riha, K.; Xu, Z. Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants. Life Sci. Alliance, 2019, 2(3), e201900315.
[http://dx.doi.org/10.26508/lsa.201900315] [PMID: 31160377]
[32]
Aubert, G.; Lansdorp, P.M. Telomeres and aging. Physiol. Rev., 2008, 88(2), 557-579.
[http://dx.doi.org/10.1152/physrev.00026.2007] [PMID: 18391173]
[33]
Huang, F.C.; Chang, C.C.; Lou, P.J.; Kuo, I.C.; Chien, C.W.; Chen, C.T.; Shieh, F.Y.; Chang, T.C.; Lin, J.J. G-quadruplex stabilizer 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide induces accelerated senescence and inhibits tumorigenic properties in cancer cells. Mol. Cancer Res., 2008, 6(6), 955-964.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0260] [PMID: 18515756]
[34]
Henderson, A.; Wu, Y.; Huang, Y.C.; Chavez, E.A.; Platt, J.; Johnson, F.B.; Brosh, R.M., Jr; Sen, D.; Lansdorp, P.M. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res., 2014, 42(2), 860-869.
[http://dx.doi.org/10.1093/nar/gkt957] [PMID: 24163102]
[35]
Sauer, M.; Paeschke, K. G-quadruplex unwinding helicases and their function in vivo. Biochem. Soc. Trans., 2017, 45(5), 1173-1182.
[http://dx.doi.org/10.1042/BST20170097] [PMID: 28939694]
[36]
Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; de Lange, T. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4), 503-514.
[http://dx.doi.org/10.1016/S0092-8674(00)80760-6] [PMID: 10338214]
[37]
Tomaska, L.; Nosek, J.; Kar, A.; Willcox, S.; Griffith, J.D. A New View of the T-Loop Junction: Implications for self-primed telomere extension, expansion of disease-related nucleotide repeat blocks, and telomere evolution. Front. Genet., 2019, 10, 792.
[http://dx.doi.org/10.3389/fgene.2019.00792] [PMID: 31475042]
[38]
Fish, J.; Raule, N.; Attardi, G. Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science, 2004, 306(5704), 2098-2101.
[http://dx.doi.org/10.1126/science.1102077] [PMID: 15604407]
[39]
Greider, C.W. Telomeres do D-loop-T-loop. Cell, 1999, 97(4), 419-422.
[http://dx.doi.org/10.1016/S0092-8674(00)80750-3] [PMID: 10338204]
[40]
Qin, M.; Chen, Z.; Luo, Q.; Wen, Y.; Zhang, N.; Jiang, H.; Yang, H. Two-quartet G-quadruplexes formed by DNA sequences containing four contiguous GG runs. J. Phys. Chem. B, 2015, 119(9), 3706-3713.
[http://dx.doi.org/10.1021/jp512914t] [PMID: 25689673]
[41]
Islam, B.; Stadlbauer, P.; Vorlíčková, M.; Mergny, J.L.; Otyepka, M.; Šponer, J. Stability of two-quartet G-quadruplexes and their dimers in atomistic simulations. J. Chem. Theory Comput., 2020, 16(6), 3447-3463.
[http://dx.doi.org/10.1021/acs.jctc.9b01068] [PMID: 32163706]
[42]
Li, N.; Wang, J.; Ma, K.; Liang, L.; Mi, L.; Huang, W.; Ma, X.; Wang, Z.; Zheng, W.; Xu, L.; Chen, J.H.; Yu, Z. The dynamics of forming a triplex in an artificial telomere inferred by DNA mechanics. Nucleic Acids Res., 2019, 47(15), e86.
[http://dx.doi.org/10.1093/nar/gkz464] [PMID: 31114915]
[43]
Hou, X.M.; Fu, Y.B.; Wu, W.Q.; Wang, L.; Teng, F.Y.; Xie, P.; Wang, P.Y.; Xi, X.G. Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res., 2017, 45(19), 11401-11412.
[http://dx.doi.org/10.1093/nar/gkx766] [PMID: 28977514]
[44]
Mukundan, V.T.; Phan, A.T. Bulges in G-quadruplexes: Broadening the definition of G-quadruplex-forming sequences. J. Am. Chem. Soc., 2013, 135(13), 5017-5028.
[http://dx.doi.org/10.1021/ja310251r] [PMID: 23521617]
[45]
Das, P.; Ngo, K.H.; Winnerdy, F.R.; Maity, A.; Bakalar, B.; Mechulam, Y.; Schmitt, E.; Phan, A.T. Bulges in left-handed G-quadruplexes. Nucleic Acids Res., 2021, 49(3), 1724-1736.
[http://dx.doi.org/10.1093/nar/gkaa1259] [PMID: 33503265]
[46]
Li, X.M.; Zheng, K.W.; Zhang, J.Y.; Liu, H.H.; He, Y.D.; Yuan, B.F.; Hao, Y.H.; Tan, Z. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14581-14586.
[http://dx.doi.org/10.1073/pnas.1516925112] [PMID: 26553979]
[47]
Gajarský, M.; Živković, M.L.; Stadlbauer, P.; Pagano, B.; Fiala, R.; Amato, J.; Tomáška, L.; Šponer, J.; Plavec, J.; Trantírek, L. Structure of a stable G-hairpin. J. Am. Chem. Soc., 2017, 139(10), 3591-3594.
[http://dx.doi.org/10.1021/jacs.6b10786] [PMID: 28217994]
[48]
Kim, M.Y.; Gleason-Guzman, M.; Izbicka, E.; Nishioka, D.; Hurley, L.H. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res., 2003, 63(12), 3247-3256.
[PMID: 12810655]
[49]
Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40(14), 2113-2116.
[http://dx.doi.org/10.1021/jm970199z] [PMID: 9216827]
[50]
Catalano, R.; Moraca, F.; Amato, J.; Cristofari, C.; Rigo, R.; Via, L.D.; Rocca, R.; Lupia, A.; Maruca, A.; Costa, G.; Catalanotti, B.; Artese, A.; Pagano, B.; Randazzo, A.; Sissi, C.; Novellino, E.; Alcaro, S. Targeting multiple G-quadruplex-forming DNA sequences: Design, biophysical and biological evaluations of indolo-naphthyridine scaffold derivatives. Eur. J. Med. Chem., 2019, 182, 111627.
[http://dx.doi.org/10.1016/j.ejmech.2019.111627] [PMID: 31446246]
[51]
Manzini, G.; Yathindra, N.; Xodo, L.E. Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res., 1994, 22(22), 4634-4640.
[http://dx.doi.org/10.1093/nar/22.22.4634] [PMID: 7984411]
[52]
Rangadurai, A.; Kremser, J.; Shi, H.; Kreutz, C.; Al-Hashimi, H.M. Direct evidence for (G)O6•••H2-N4(C)+ hydrogen bonding in transient G(syn)-C+ and G(syn)-m5C+ Hoogsteen base pairs in duplex DNA from cytosine amino nitrogen off-resonance R1ρ relaxation dispersion measurements. J. Magn. Reson., 2019, 308, 106589.
[http://dx.doi.org/10.1016/j.jmr.2019.106589] [PMID: 31539864]
[53]
Alvey, H.S.; Gottardo, F.L.; Nikolova, E.N.; Al-Hashimi, H.M. Widespread transient Hoogsteen base pairs in canonical duplex DNA with variable energetics. Nat. Commun., 2014, 5(1), 4786.
[http://dx.doi.org/10.1038/ncomms5786] [PMID: 25185517]
[54]
Spiegel, J.; Adhikari, S.; Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem., 2020, 2(2), 123-136.
[http://dx.doi.org/10.1016/j.trechm.2019.07.002] [PMID: 32923997]
[55]
Majhi, P.R.; Shafer, R.H. Characterization of an unusual folding pattern in a catalytically active guanine quadruplex structure. Biopolymers, 2006, 82(6), 558-569.
[http://dx.doi.org/10.1002/bip.20507] [PMID: 16538665]
[56]
Kwan, I.C.; She, Y.M.; Wu, G. Trivalent lanthanide metal ions promote formation of stacking G-quartets. Chem. Commun. (Camb.), 2007, (41), 4286-4288.
[http://dx.doi.org/10.1039/b710299b] [PMID: 18217607]
[57]
Bhattacharyya, D.; Mirihana Arachchilage, G.; Basu, S. Metal cations in G-quadruplex folding and stability. Front Chem., 2016, 4, 38.
[http://dx.doi.org/10.3389/fchem.2016.00038] [PMID: 27668212]
[58]
Rhodes, D.; Lipps, H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res., 2015, 43(18), 8627-8637.
[http://dx.doi.org/10.1093/nar/gkv862] [PMID: 26350216]
[59]
Ruggiero, E.; Richter, S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res., 2018, 46(7), 3270-3283.
[http://dx.doi.org/10.1093/nar/gky187] [PMID: 29554280]
[60]
Azzalin, C.M.; Reichenbach, P.; Khoriauli, L.; Giulotto, E.; Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007, 318(5851), 798-801.
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[61]
Collie, G.W.; Haider, S.M.; Neidle, S.; Parkinson, G.N. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res., 2010, 38(16), 5569-5580.
[http://dx.doi.org/10.1093/nar/gkq259] [PMID: 20413582]
[62]
Xu, Y.; Kaminaga, K.; Komiyama, M. Human telomeric RNA in G-quadruplex structure. Nucleic Acids Symposium. Series, 2008, 52, 175-6.
[63]
Xu, Y.; Kaminaga, K.; Komiyama, M. G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J. Am. Chem. Soc., 2008, 130(33), 11179-11184.
[http://dx.doi.org/10.1021/ja8031532] [PMID: 18642813]
[64]
Kimura, T.; Xu, Y.; Komiyama, M. Human telomeric RNA r (UAGGGU) sequence forms parallel tetraplex structure with U-quartet. Nucleic Acids Sympos. Ser., 2009, 53, 239-40.
[http://dx.doi.org/10.1093/nass/nrp120]
[65]
Biffi, G.; Tannahill, D.; Balasubramanian, S. An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J. Am. Chem. Soc., 2012, 134(29), 11974-11976.
[http://dx.doi.org/10.1021/ja305734x] [PMID: 22780456]
[66]
Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11593-11598.
[http://dx.doi.org/10.1073/pnas.182256799] [PMID: 12195017]
[67]
Artese, A.; Costa, G.; Ortuso, F.; Parrotta, L.; Alcaro, S. Identification of new natural DNA G-quadruplex binders selected by a structure-based virtual screening approach. Molecules, 2013, 18(10), 12051-12070.
[http://dx.doi.org/10.3390/molecules181012051] [PMID: 24084014]
[68]
Salsbury, A.M.; Dean, T.J.; Lemkul, J.A. Polarizable molecular dynamics simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of primary and secondary structure on loop and ion sampling. J. Chem. Theory Comput., 2020, 16(5), 3430-3444.
[http://dx.doi.org/10.1021/acs.jctc.0c00191] [PMID: 32307997]
[69]
Membrino, A.; Cogoi, S.; Pedersen, E.B.; Xodo, L.E. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One, 2011, 6(9), e24421.
[http://dx.doi.org/10.1371/journal.pone.0024421] [PMID: 21931711]
[70]
Fleming, A.M.; Zhou, J.; Wallace, S.S.; Burrows, C.J. A Role for the Fifth G-Track in G-Quadruplex forming oncogene promoter sequences during oxidative stress: Do these “Spare Tires” have an evolved function? ACS Cent. Sci., 2015, 1(5), 226-233.
[http://dx.doi.org/10.1021/acscentsci.5b00202] [PMID: 26405692]
[71]
Dai, J.; Chen, D.; Jones, R.A.; Hurley, L.H.; Yang, D. NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res., 2006, 34(18), 5133-5144.
[http://dx.doi.org/10.1093/nar/gkl610] [PMID: 16998187]
[72]
Wieland, M.; Hartig, J.S. RNA quadruplex-based modulation of gene expression. Chem. Biol., 2007, 14(7), 757-763.
[http://dx.doi.org/10.1016/j.chembiol.2007.06.005] [PMID: 17656312]
[73]
Paeschke, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H.J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol., 2005, 12(10), 847-854.
[http://dx.doi.org/10.1038/nsmb982] [PMID: 16142245]
[74]
Grand, C.L.; Han, H.; Muñoz, R.M.; Weitman, S.; Von Hoff, D.D.; Hurley, L.H.; Bearss, D.J. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther., 2002, 1(8), 565-573.
[PMID: 12479216]
[75]
Hsu, S.T.; Varnai, P.; Bugaut, A.; Reszka, A.P.; Neidle, S.; Balasubramanian, S. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc., 2009, 131(37), 13399-13409.
[http://dx.doi.org/10.1021/ja904007p] [PMID: 19705869]
[76]
Lavrado, J.; Brito, H.; Borralho, P.M.; Ohnmacht, S.A.; Kim, N.S.; Leitão, C.; Pisco, S.; Gunaratnam, M.; Rodrigues, C.M.; Moreira, R.; Neidle, S.; Paulo, A. KRAS onco-gene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci. Rep., 2015, 5, 9696.
[http://dx.doi.org/10.1038/srep09696] [PMID: 25853628]
[77]
Agrawal, P.; Hatzakis, E.; Guo, K.; Carver, M.; Yang, D. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: Insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res., 2013, 41(22), 10584-10592.
[http://dx.doi.org/10.1093/nar/gkt784] [PMID: 24005038]
[78]
Chen, H.; Long, H.; Cui, X.; Zhou, J.; Xu, M.; Yuan, G. Exploring the formation and recognition of an important G-quadruplex in a HIF1α promoter and its transcriptional inhibition by a benzo[c]phenanthridine derivative. J. Am. Chem. Soc., 2014, 136(6), 2583-2591.
[http://dx.doi.org/10.1021/ja412128w] [PMID: 24450937]
[79]
Islam, M.K.; Jackson, P.J.; Rahman, K.M.; Thurston, D.E. Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med. Chem., 2016, 8(11), 1259-1290.
[http://dx.doi.org/10.4155/fmc-2015-0017] [PMID: 27442231]
[80]
Haq, I. Thermodynamics of drug-DNA interactions. Arch. Biochem. Biophys., 2002, 403(1), 1-15.
[http://dx.doi.org/10.1016/S0003-9861(02)00202-3] [PMID: 12061796]
[81]
Erra, E.; Petraccone, L.; Esposito, V.; Randazzo, A.; Mayol, L.; Ladbury, J.; Barone, G.; Giancola, C. Interaction of porphyrin with G-quadruplex structures. Nucleosides Nucleotides Nucleic Acids, 2005, 24(5-7), 753-756.
[http://dx.doi.org/10.1081/NCN-200060070] [PMID: 16248030]
[82]
Del Villar-Guerra, R.; Trent, J.O.; Chaires, J.B. G‐quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. Engl., 2018, 57(24), 7171-7175.
[http://dx.doi.org/10.1002/anie.201709184] [PMID: 29076232]
[83]
Ihmels, H.; Jiang, S.; Mahmoud, M.M.A.; Schönherr, H.; Wesner, D.; Zamrik, I. Fluorimetric detection of G-quadruplex DNA in solution and adsorbed on surfaces with a selective trinuclear cyanine dye. Langmuir, 2018, 34(39), 11866-11877.
[http://dx.doi.org/10.1021/acs.langmuir.8b02382] [PMID: 30173518]
[84]
Gu, Y.; Lin, D.; Tang, Y.; Fei, X.; Wang, C.; Zhang, B.; Zhou, J. A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 191, 180-188.
[http://dx.doi.org/10.1016/j.saa.2017.10.012] [PMID: 29032342]
[85]
Wang, M.Q.; Ren, G.Y.; Zhao, S.; Lian, G.C.; Chen, T.T.; Ci, Y.; Li, H.Y. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 199, 441-447.
[http://dx.doi.org/10.1016/j.saa.2018.03.083] [PMID: 29649680]
[86]
Turaev, A.V.; Tsvetkov, V.B.; Tankevich, M.V.; Smirnov, I.P.; Aralov, A.V.; Pozmogova, G.E.; Varizhuk, A.M. Benzothiazole-based cyanines as fluorescent “light-up” probes for duplex and quadruplex DNA. Biochimie, 2019, 162, 216-228.
[http://dx.doi.org/10.1016/j.biochi.2019.04.018] [PMID: 31022429]
[87]
Lavrado, J.; Borralho, P.M.; Ohnmacht, S.A.; Castro, R.E.; Rodrigues, C.M.; Moreira, R.; dos Santos, D.J.; Neidle, S.; Paulo, A. Synthesis, G-quadruplex stabilisation, docking studies, and effect on cancer cells of indolo[3,2-b]quinolines with one, two, or three basic side chains. ChemMedChem, 2013, 8(10), 1648-1661.
[http://dx.doi.org/10.1002/cmdc.201300288] [PMID: 23960016]
[88]
Lifante, J.; Shen, Y.L.; Ximendes, E.; Rodriguez, E.M.; Ortgies, D.H. The role of tissue fluorescence in in vivo optical bioimaging. J. Appl. Phys., 2020, 128(17), 171101.
[http://dx.doi.org/10.1063/5.0021854]
[89]
Chen, Q.; Kuntz, I.D.; Shafer, R.H. Spectroscopic recognition of guanine dimeric hairpin quadruplexes by a carbocyanine dye. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2635-2639.
[http://dx.doi.org/10.1073/pnas.93.7.2635] [PMID: 8610093]
[90]
Kerwin, S.M.; Sun, D.; Kern, J.T.; Rangan, A.; Thomas, P.W. G-quadruplex DNA binding by a series of carbocyanine dyes. Bioorg. Med. Chem. Lett., 2001, 11(18), 2411-2414.
[http://dx.doi.org/10.1016/S0960-894X(01)00490-5] [PMID: 11549435]
[91]
Fujii, K.; Kuroda, T.; Sakoda, K.; Iyi, N. Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace. J Photoch Photobio A., 2011, 225(1), 125-134.
[http://dx.doi.org/10.1016/j.jphotochem.2011.10.009]
[92]
Brackmann, U. Lambdachrome laser dyes; Lambda Physik GmbH.: Goettingen, 1986.
[93]
Paramasivan, S.; Bolton, P.H. Mix and measure fluorescence screening for selective quadruplex binders. Nucleic Acids Res., 2008, 36(17), e106.
[http://dx.doi.org/10.1093/nar/gkn487] [PMID: 18663011]
[94]
Nygren, J.; Svanvik, N.; Kubista, M. The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers, 1998, 46(1), 39-51.
[http://dx.doi.org/10.1002/(SICI)1097-0282(199807)46:1<39::AID-BIP4>3.0.CO;2-Z] [PMID: 9612138]
[95]
Boger, D.L.; Tse, W.C. Thiazole orange as the fluorescent intercalator in a high resolution fid assay for determining DNA binding affinity and sequence selectivity of small molecules. Bioorg. Med. Chem., 2001, 9(9), 2511-2518.
[http://dx.doi.org/10.1016/S0968-0896(01)00243-7] [PMID: 11553493]
[96]
Spielmann, H.P.; Wemmer, D.E.; Jacobsen, J.P. Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy. Biochemistry, 1995, 34(27), 8542-8553.
[http://dx.doi.org/10.1021/bi00027a004] [PMID: 7612596]
[97]
Allain, C.; Monchaud, D.; Teulade-Fichou, M.P. FRET templated by G-quadruplex DNA: A specific ternary interaction using an original pair of donor/acceptor partners. J. Am. Chem. Soc., 2006, 128(36), 11890-11893.
[http://dx.doi.org/10.1021/ja062193h] [PMID: 16953629]
[98]
Monchaud, D.; Allain, C.; Teulade-Fichou, M.P. Thiazole orange: A useful probe for fluorescence sensing of G-quadruplex-ligand interactions. Nucleosides Nucleotides Nucleic Acids, 2007, 26(10-12), 1585-1588.
[http://dx.doi.org/10.1080/15257770701548212] [PMID: 18066832]
[99]
Guo, Y.H.; Sun, Y.; Shen, X.Q.; Chen, X.; Yao, W.R.; Xie, Y.F. Quantification of Zn(II) using a label-free sensor based on graphene oxide and G-quadruplex. Anal. Methods, 2015, 7(22), 9615-9618.
[http://dx.doi.org/10.1039/C5AY01840D]
[100]
Yang, Q.F.; Xiang, J.F.; Yang, S.; Zhou, Q.J.; Li, Q.A.; Guan, A.J. Recognizing hybrid/mixed G-quadruplex in human telomeres by using a cyanine dye supramolecule with confocal laser scanning microscopy. Chin. J. Chem., 2010, 28(7), 1126-1132.
[http://dx.doi.org/10.1002/cjoc.201090196]
[101]
Kovalska, V.B.; Losytskyy, M.Y.; Yarmoluk, S.M.; Lubitz, I.; Kotlyar, A.B. Mono and trimethine cyanines Cyan 40 and Cyan 2 as probes for highly selective fluorescent detection of non-canonical DNA structures. J. Fluoresc., 2011, 21(1), 223-230.
[http://dx.doi.org/10.1007/s10895-010-0709-y] [PMID: 20809136]
[102]
Lu, Y.J.; Yan, S.C.; Chan, F.Y.; Zou, L.; Chung, W.H.; Wong, W.L.; Qiu, B.; Sun, N.; Chan, P.H.; Huang, Z.S.; Gu, L.Q.; Wong, K.Y. Benzothiazole-substituted benzofu-roquinolinium dye: A selective switch-on fluorescent probe for G-quadruplex. Chem. Commun. (Camb.), 2011, 47(17), 4971-4973.
[http://dx.doi.org/10.1039/c1cc00020a] [PMID: 21431154]
[103]
Yan, J.W.; Ye, W.J.; Chen, S.B.; Wu, W.B.; Hou, J.Q.; Ou, T.M.; Tan, J.H.; Li, D.; Gu, L.Q.; Huang, Z.S. Development of a universal colorimetric indicator for G-quadruplex structures by the fusion of thiazole orange and isaindigotone skeleton. Anal. Chem., 2012, 84(15), 6288-6292.
[http://dx.doi.org/10.1021/ac300207r] [PMID: 22839657]
[104]
Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc., 2013, 135(1), 367-376.
[http://dx.doi.org/10.1021/ja309588h] [PMID: 23215453]
[105]
Gabelica, V.; Maeda, R.; Fujimoto, T.; Yaku, H.; Murashima, T.; Sugimoto, N.; Miyoshi, D. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Biochemistry, 2013, 52(33), 5620-5628.
[http://dx.doi.org/10.1021/bi4006072] [PMID: 23909872]
[106]
Liu, X.; Hua, X.; Fan, Q.; Chao, J.; Su, S.; Huang, Y.Q.; Wang, L.; Huang, W. Thioflavin T as an Efficient G-Quadruplex inducer for the highly sensitive detection of thrombin using a new föster resonance energy transfer system. ACS Appl. Mater. Interfaces, 2015, 7(30), 16458-16465.
[http://dx.doi.org/10.1021/acsami.5b03662] [PMID: 26173915]
[107]
Tseng, T.Y.; Chen, W.W.; Chu, I.T.; Wang, C.L.; Chang, C.C.; Lin, M.C.; Lou, P.J.; Chang, T.C. The G-quadruplex fluorescent probe 3,6-bis(1-methyl-2-vinyl-pyridinium) carbazole diiodide as a biosensor for human cancers. Sci. Rep., 2018, 8(1), 16082.
[http://dx.doi.org/10.1038/s41598-018-34378-8] [PMID: 30382130]
[108]
Luo, X.; Xue, B.; Feng, G.; Zhang, J.; Lin, B.; Zeng, P.; Li, H.; Yi, H.; Zhang, X.L.; Zhu, H.; Nie, Z. Lighting up the native viral RNA genome with a fluorogenic probe for the live-cell visualization of virus infection. J. Am. Chem. Soc., 2019, 141(13), 5182-5191.
[http://dx.doi.org/10.1021/jacs.8b10265] [PMID: 30860368]
[109]
Zhao, C.; Qin, G.; Niu, J.; Wang, Z.; Wang, C.; Ren, J.; Qu, X. Targeting RNA G-Quadruplex in SARS-CoV-2: A promising therapeutic target for COVID-19? Angew. Chem. Int. Ed. Engl., 2021, 60(1), 432-438.
[http://dx.doi.org/10.1002/anie.202011419] [PMID: 32939952]
[110]
Majee, P.; Pattnaik, A.; Sahoo, B.R.; Shankar, U.; Pattnaik, A.K.; Kumar, A.; Nayak, D. Inhibition of Zika virus replication by G-quadruplex-binding ligands. Mol. Ther. Nucleic Acids, 2021, 23, 691-701.
[http://dx.doi.org/10.1016/j.omtn.2020.12.030] [PMID: 33575115]
[111]
Fleming, A.M.; Ding, Y.; Alenko, A.; Burrows, C.J. Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the flaviviridae family. ACS Infect. Dis., 2016, 2(10), 674-681.
[http://dx.doi.org/10.1021/acsinfecdis.6b00109] [PMID: 27737553]
[112]
Jin, B.; Zhang, X.; Zheng, W.; Liu, X.; Zhou, J.; Zhang, N.; Wang, F.; Shangguan, D. Dicyanomethylene-functionalized squaraine as a highly selective probe for parallel G-quadruplexes. Anal. Chem., 2014, 86(14), 7063-7070.
[http://dx.doi.org/10.1021/ac501619v] [PMID: 24941428]
[113]
Lu, Y.J.; Wang, Z.Y.; Hu, D.P.; Deng, Q.; Huang, B.H.; Fang, Y.X. Benzothiazole-substituted benzofuroquinolinium dyes as new fluorescent probes for G-quadruplex DNA. Dyes Pigments, 2015, 122, 94-102.
[http://dx.doi.org/10.1016/j.dyepig.2015.06.018]
[114]
Chilka, P.; Patlolla, P.R.; Datta, B. Selective recognition of G-quadruplexes by a dimeric carbocyanine dye. RSC Advances, 2016, 6(90), 87400-87404.
[http://dx.doi.org/10.1039/C6RA05474A]
[115]
Guo, R.J.; Yan, J.W.; Chen, S.B.; Gu, L.Q.; Huang, Z.S.; Tan, J.H. A simple structural modification to thiazole orange to improve the selective detection of G-quadruplexes. Dyes Pigments, 2016, 126, 76-85.
[http://dx.doi.org/10.1016/j.dyepig.2015.11.010]
[116]
Pany, S.P.; Bommisetti, P.; Diveshkumar, K.V.; Pradeepkumar, P.I. Benzothiazole hydrazones of furylbenzamides preferentially stabilize c-MYC and c-KIT1 promoter G-quadruplex DNAs. Org. Biomol. Chem., 2016, 14(24), 5779-5793.
[http://dx.doi.org/10.1039/C6OB00138F] [PMID: 27021281]
[117]
Buchholz, I.; Karg, B.; Dickerhoff, J.; Sievers-Engler, A.; Lämmerhofer, M.; Weisz, K. Selective Targeting of G-quadruplex structures by a benzothiazole-based binding motif. Chemistry, 2017, 23(24), 5814-5823.
[http://dx.doi.org/10.1002/chem.201700298] [PMID: 28276093]
[118]
Jin, M.; Liu, X.; Zhang, X.; Wang, L.; Bing, T.; Zhang, N.; Zhang, Y.; Shangguan, D. Thiazole orange-modified carbon dots for ratiometric fluorescence detection of G-quadruplex and double-stranded DNA. ACS Appl. Mater. Interfaces, 2018, 10(30), 25166-25173.
[http://dx.doi.org/10.1021/acsami.8b07869] [PMID: 29979027]
[119]
Chang, C.C.; Chu, J.F.; Kao, F.J.; Chiu, Y.C.; Lou, P.J.; Chen, H.C.; Chang, T.C. Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-Bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule. Anal. Chem., 2006, 78(8), 2810-2815.
[http://dx.doi.org/10.1021/ac052218f] [PMID: 16615797]
[120]
Kaulage, M.H.; Maji, B.; Pasadi, S.; Ali, A.; Bhattacharya, S.; Muniyappa, K. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands. Eur. J. Med. Chem., 2018, 148, 178-194.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.091] [PMID: 29459277]
[121]
Ou, A.; Guédin, A.; Skelton, B.W.; Amrane, S.; Evans, C.W.; Norret, M.; Iyer, K.S.; Mergny, J.L.; Smith, N.M. Multicarbazole scaffolds for selective G-quadruplex binding. Chem. Commun. (Camb.), 2018, 54(69), 9647-9650.
[http://dx.doi.org/10.1039/C8CC03945C] [PMID: 30101241]
[122]
Hu, M.H.; Guo, R.J.; Chen, S.B.; Huang, Z.S.; Tan, J.H. Development of an engineered carbazole/thiazole orange conjugating probe for G-quadruplexes. Dyes Pigments, 2017, 137, 191-199.
[http://dx.doi.org/10.1016/j.dyepig.2016.10.022]
[123]
Long, W.; Lu, Y.J.; Zhang, K.; Huang, X.H.; Hou, J.Q.; Cai, S.Y. Boosting the turn-on fluorescent signaling ability of thiazole orange dyes: The effectiveness of structural modification site and its unusual interaction behavior with nucleic acids. Dyes Pigments, 2018, 159, 449-456.
[http://dx.doi.org/10.1016/j.dyepig.2018.07.008]
[124]
Li, D.L.; Long, W.; Hou, J.Q.; Deng, Q.; Guo, Q.; Wong, W.L. A series of modified thiazole orange dye as the highly fluorescent G-quadruplex DNA binders: The study of electronic effects of the substituent on 1-methylquinolinium moiety. J. Lumin., 2019, 205, 367-373.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.057]
[125]
Jin, J.; Hou, J.; Long, W.; Zhang, X.; Lu, Y.J.; Li, D.; Zhang, K.; Wong, W.L. Synthesis of fluorescent G-quadruplex DNA binding ligands for the comparison of terminal group effects in molecular interaction: Phenol versus methoxybenzene. Bioorg. Chem., 2020, 99, 103821.
[http://dx.doi.org/10.1016/j.bioorg.2020.103821] [PMID: 32279036]
[126]
Zhang, L.; Liu, X.; Lu, S.; Liu, J.; Zhong, S.; Wei, Y.; Bing, T.; Zhang, N.; Shangguan, D. Thiazole orange styryl derivatives as fluorescent probes for G-quadruplex DNA. ACS Appl. Bio Mater., 2020, 3(5), 2643-2650.
[http://dx.doi.org/10.1021/acsabm.9b01243] [PMID: 35025398]
[127]
Zhu, Y.W.; Hou, J.Q.; Huang, X.H.; Zhong, D.X.; Long, W.; Liu, W.J. Structural modification of nonspecific thiazole orange for ligand-DNA interaction study: Understanding the ligand recognition selectivity towards G4-DNA over duplex-DNA. J. Lumin., 2020, 226, 117488.
[http://dx.doi.org/10.1016/j.jlumin.2020.117488]
[128]
Wang, S.; Yang, D.; Singh, M.; Joo, H.; Rangel, V.M.; Tran, A.; Phan, E.; Xue, L. Thiazole orange - Spermine conjugate: A potent human telomerase inhibitor comparable to BRACO-19. Eur. J. Med. Chem., 2019, 175, 20-33.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.041] [PMID: 31071547]
[129]
Machireddy, B.; Kalra, G.; Jonnalagadda, S.; Ramanujachary, K.; Wu, C. Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. J. Chem. Inf. Model., 2017, 57(11), 2846-2864.
[http://dx.doi.org/10.1021/acs.jcim.7b00287] [PMID: 29028340]
[130]
Ritson, D.J.; Moses, J.E. A fragment based click chemistry approach towards hybrid G-quadruplex ligands: Design, synthesis and biophysical evaluation. Tetrahedron, 2012, 68(1), 197-203.
[http://dx.doi.org/10.1016/j.tet.2011.10.066]
[131]
Guan, L.; Li, A.; Song, Y.; Yan, M.; Gao, D.; Zhang, X.; Li, B.; Wang, L. Nonplanar Monocyanines: Meso-substituted thiazole orange with high photostability and their synthetic strategy as well as a cell association study. J. Org. Chem., 2016, 81(15), 6303-6313.
[http://dx.doi.org/10.1021/acs.joc.6b00928] [PMID: 27379526]
[132]
Guan, L.; Zhao, J.; Sun, W.; Deng, W.; Wang, L. Meso-substituted thiazole orange for selective fluorescence detection to G-Quadruplex DNA and molecular docking simulation. ACS Omega, 2020, 5(40), 26056-26062.
[http://dx.doi.org/10.1021/acsomega.0c03556] [PMID: 33073132]
[133]
Long, W.; Zheng, B.X.; Huang, X.H.; She, M.T.; Liu, A.L.; Zhang, K.; Wong, W.L.; Lu, Y.J. Molecular recognition and imaging of human telomeric G-Quadruplex DNA in live cells: A systematic advancement of thiazole orange scaffold to enhance binding specificity and inhibition of gene expression. J. Med. Chem., 2021, 64(4), 2125-2138.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01656] [PMID: 33559473]
[134]
Yu, L.J.; Yang, Q.F.; Tang, Y.L. A comparative study of assembly and disassembly process of dimeric and monomeric cyanine dyes with DNA templates. Chin. Chem. Lett., 2019, 30(3), 694-697.
[http://dx.doi.org/10.1016/j.cclet.2018.10.011]
[135]
Zheng, B.X.; She, M.T.; Long, W.; Xu, Y.Y.; Zhang, Y.H.; Huang, X.H.; Liu, W.; Hou, J.Q.; Wong, W.L.; Lu, Y.J. A small-sized benzothiazole-indolium fluorescent probe: The study of interaction specificity targeting c-MYC promoter G-quadruplex structures and live cell imaging. Chem. Commun. (Camb.), 2020, 56(95), 15016-15019.
[http://dx.doi.org/10.1039/D0CC06525K] [PMID: 33185205]
[136]
Kellner, S.; Kollar, L.B.; Ochel, A.; Ghate, M.; Helm, M. Structure-function relationship of substituted bromomethylcoumarins in nucleoside specificity of RNA alkylation. PLoS One, 2013, 8(7), e67945.
[http://dx.doi.org/10.1371/journal.pone.0067945] [PMID: 23844135]
[137]
Xie, L.J.; Chen, Y.H.; Wu, W.T.; Guo, H.M.; Zhao, J.Z.; Yu, X.R. Fluorescent coumarin derivatives with large stokes shift, dual emission and solid state luminescent properties: An experimental and theoretical study. Dyes Pigments, 2012, 92(3), 1361-1369.
[http://dx.doi.org/10.1016/j.dyepig.2011.09.023]
[138]
Yan, J.W.; Tian, Y.G.; Tan, J.H.; Huang, Z.S. Colorimetric and fluorescence detection of G-quadruplex nucleic acids with a coumarin-benzothiazole probe. Analyst (Lond.), 2015, 140(21), 7146-7149.
[http://dx.doi.org/10.1039/C5AN01573A] [PMID: 26365834]
[139]
Kumar, R.; Chand, K.; Bhowmik, S.; Das, R.N.; Bhattacharjee, S.; Hedenström, M.; Chorell, E. Subtle structural alterations in G-quadruplex DNA regulate site specificity of fluorescence light-up probes. Nucleic Acids Res., 2020, 48(3), 1108-1119.
[http://dx.doi.org/10.1093/nar/gkz1205] [PMID: 31912160]
[140]
Li, L.L.; Xu, H.R.; Li, K.; Yang, Q.; Pan, S.L.; Yu, X.Q. Mitochondrial G-quadruplex targeting probe with near-infrared fluorescence emission. Sens. Actuators B Chem., 2019, 286, 575-582.
[http://dx.doi.org/10.1016/j.snb.2019.01.169]
[141]
Kurutos, A.; Ilic-Tomic, T.; Kamounah, F.S.; Vasilev, A.A.; Nikodinovic-Runic, J. Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photoch Photobio A., 2020, 397, 112598.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112598]
[142]
Xu, B.; Wu, X.; Yeow, E.K.; Shao, F. A single thiazole orange molecule forms an exciplex in a DNA i-motif. Chem. Commun. (Camb.), 2014, 50(48), 6402-6405.
[http://dx.doi.org/10.1039/C4CC01147C] [PMID: 24811922]
[143]
Bowen, B.P.; Enderlein, J.; Woodbury, N.W. Single-molecule fluorescence spectroscopy of TOTO on poly-AT and poly-GC DNA. Photochem. Photobiol., 2003, 78(6), 576-581.
[http://dx.doi.org/10.1562/0031-8655(2003)078<0576:SFSOTO>2.0.CO;2] [PMID: 14743865]
[144]
Sailer, B.L.; Nastasi, A.J.; Valdez, J.G.; Steinkamp, J.A.; Crissman, H.A. Differential effects of deuterium oxide on the fluorescence lifetimes and intensities of dyes with different modes of binding to DNA. J. Histochem. Cytochem., 1997, 45(2), 165-175.
[http://dx.doi.org/10.1177/002215549704500203] [PMID: 9016307]
[145]
Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; Chen, H.; Tang, Y. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci. Rep., 2016, 6(1), 24793.
[http://dx.doi.org/10.1038/srep24793] [PMID: 27098781]
[146]
Renaud de la Faverie, A.; Guédin, A.; Bedrat, A.; Yatsunyk, L.A.; Mergny, J.L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res., 2014, 42(8), e65.
[http://dx.doi.org/10.1093/nar/gku111] [PMID: 24510097]
[147]
Zhang, X.; Wei, Y.; Bing, T.; Liu, X.; Zhang, N.; Wang, J.; He, J.; Jin, B.; Shangguan, D. Development of squaraine based G-quadruplex ligands using click chemistry. Sci. Rep., 2017, 7(1), 4766.
[http://dx.doi.org/10.1038/s41598-017-04344-x] [PMID: 28684846]
[148]
Wang, Y.Q.; Hu, M.H.; Guo, R.J.; Chen, S.B.; Huang, Z.S.; Tan, J.H. Tuning the selectivity of a commercial cyanine nucleic acid dye for preferential sensing of hybrid telomeric G-quadruplex DNA. Sens. Actuators B Chem., 2018, 266, 187-194.
[http://dx.doi.org/10.1016/j.snb.2018.03.125]
[149]
Yu, L.J.; Gai, W.; Yang, Q.F.; Xiang, J.F.; Sun, H.X.; Li, Q. Recognizing parallel-stranded G-quadruplex by cyanine dye dimer based on dual-site binding mode. Chin. Chem. Lett., 2015, 26(6), 705-708.
[http://dx.doi.org/10.1016/j.cclet.2015.02.002]
[150]
Meguellati, K.; Koripelly, G.; Ladame, S. DNA-templated synthesis of trimethine cyanine dyes: A versatile fluorogenic reaction for sensing G-quadruplex formation. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2738-2742.
[http://dx.doi.org/10.1002/anie.201000291] [PMID: 20229556]
[151]
Nanjunda, R.; Owens, E.A.; Mickelson, L.; Dost, T.L.; Stroeva, E.M.; Huynh, H.T.; Germann, M.W.; Henary, M.M.; Wilson, W.D. Selective G-quadruplex DNA recogni-tion by a new class of designed cyanines. Molecules, 2013, 18(11), 13588-13607.
[http://dx.doi.org/10.3390/molecules181113588] [PMID: 24192912]
[152]
Wang, B.L.; Jiang, C. DNA G-Quadruplexes as a template to direct cyanine dyes to form H-aggregates and application of the self-assembly entity as a new g-quadruplexes ligands screening platform. Anal. Chem., 2019, 91(2), 1541-1547.
[http://dx.doi.org/10.1021/acs.analchem.8b04677] [PMID: 30614679]
[153]
Jain, A.K.; Reddy, V.V.; Paul, A.; K,M.; Bhattacharya, S. Synthesis and evaluation of a novel class of G-quadruplex-stabilizing small molecules based on the 1,3-phenylene-bis(piperazinyl benzimidazole) system. Biochemistry, 2009, 48(45), 10693-10704.
[http://dx.doi.org/10.1021/bi9003815] [PMID: 19731964]
[154]
Loontiens, F.G.; Regenfuss, P.; Zechel, A.; Dumortier, L.; Clegg, R.M. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): Multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry, 1990, 29(38), 9029-9039.
[http://dx.doi.org/10.1021/bi00490a021] [PMID: 1702995]
[155]
Maiti, S.; Chaudhury, N.K.; Chowdhury, S. Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc. Biochem. Biophys. Res. Commun., 2003, 310(2), 505-512.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.052] [PMID: 14521939]
[156]
Li, Y.; Geyer, C.R.; Sen, D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry, 1996, 35(21), 6911-6922.
[http://dx.doi.org/10.1021/bi960038h] [PMID: 8639643]
[157]
Pleyer, H.L.; Strasdeit, H.; Fox, S. A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors. Orig. Life Evol. Biosph., 2018, 48(4), 347-371.
[http://dx.doi.org/10.1007/s11084-018-9567-4] [PMID: 30547367]
[158]
Arthanari, H.; Basu, S.; Kawano, T.L.; Bolton, P.H. Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res., 1998, 26(16), 3724-3728.
[http://dx.doi.org/10.1093/nar/26.16.3724] [PMID: 9685488]
[159]
Han, H.; Langley, D.R.; Rangan, A.; Hurley, L.H. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc., 2001, 123(37), 8902-8913.
[http://dx.doi.org/10.1021/ja002179j] [PMID: 11552797]
[160]
Shi, D.F.; Wheelhouse, R.T.; Sun, D.; Hurley, L.H. Quadruplex-interactive agents as telomerase inhibitors: Synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J. Med. Chem., 2001, 44(26), 4509-4523.
[http://dx.doi.org/10.1021/jm010246u] [PMID: 11741471]
[161]
Kimura, T.; Kawai, K.; Fujitsuka, M.; Majima, T. Detection of the G-quadruplex-TMPyP4 complex by 2-aminopurine modified human telomeric DNA. Chem. Commun. (Camb.), 2006, 4, 401-402.
[http://dx.doi.org/10.1039/B514526K] [PMID: 16493812]
[162]
Wei, C.; Han, G.; Jia, G.; Zhou, J.; Li, C. Study on the interaction of porphyrin with G-quadruplex DNAs. Biophys. Chem., 2008, 137(1), 19-23.
[http://dx.doi.org/10.1016/j.bpc.2008.06.006] [PMID: 18599180]
[163]
Liu, H.; Lv, C.; Ding, B.; Wang, J.; Li, S.; Zhang, Y. Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncol. Lett., 2014, 8(1), 409-413.
[http://dx.doi.org/10.3892/ol.2014.2125] [PMID: 24959286]
[164]
Lecerof, D.; Fodje, M.; Hansson, A.; Hansson, M.; Al-Karadaghi, S. Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J. Mol. Biol., 2000, 297(1), 221-232.
[http://dx.doi.org/10.1006/jmbi.2000.3569] [PMID: 10704318]
[165]
Lin, L.Y.; McCarthy, S.; Powell, B.M.; Manurung, Y.; Xiang, I.M.; Dean, W.L.; Chaires, B.; Yatsunyk, L.A. Biophysical and X-ray structural studies of the (GGGTT)3GGG G-quadruplex in complex with N-methyl mesoporphyrin IX. PLoS One, 2020, 15(11), e0241513.
[http://dx.doi.org/10.1371/journal.pone.0241513] [PMID: 33206666]
[166]
Hu, D.; Pu, F.; Huang, Z.; Ren, J.; Qu, X. A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. Chemistry, 2010, 16(8), 2605-2610.
[http://dx.doi.org/10.1002/chem.200902166] [PMID: 20077530]
[167]
McBrayer, D.; Schoonover, M.; Long, K.J.; Escobedo, R.; Kerwin, S.M. N-Methylmesoporphyrin IX exhibits G-Quadruplex-Specific photocleavage activity. ChemBioChem, 2019, 20(15), 1924-1927.
[http://dx.doi.org/10.1002/cbic.201900002] [PMID: 30850998]
[168]
Seenisamy, J.; Bashyam, S.; Gokhale, V.; Vankayalapati, H.; Sun, D.; Siddiqui-Jain, A.; Streiner, N.; Shin-Ya, K.; White, E.; Wilson, W.D.; Hurley, L.H. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J. Am. Chem. Soc., 2005, 127(9), 2944-2959.
[http://dx.doi.org/10.1021/ja0444482] [PMID: 15740131]
[169]
Ryazanova, O.A.; Zozulya, V.N.; Voloshin, I.M.; Dubey, L.V.; Ilchenko, M.M.; Dubey, I.Y. Pheophorbide-phenazinium conjugate as a fluorescent light-up probe for G-quadruplex structure. J. Mol. Struct., 2020, 1214, 128218.
[http://dx.doi.org/10.1016/j.molstruc.2020.128218]
[170]
Zhu, L.N.; Zhao, S.J.; Wu, B.; Li, X.Z.; Kong, D.M. A new cationic porphyrin derivative (TMPipEOPP) with large side arm substituents: A highly selective G-quadruplex optical probe. PLoS One, 2012, 7(5), e35586.
[http://dx.doi.org/10.1371/journal.pone.0035586] [PMID: 22629300]
[171]
Huang, X.X.; Zhu, L.N.; Wu, B.; Huo, Y.F.; Duan, N.N.; Kong, D.M. Two cationic porphyrin isomers showing different multimeric G-quadruplex recognition specificity against monomeric G-quadruplexes. Nucleic Acids Res., 2014, 42(13), 8719-8731.
[http://dx.doi.org/10.1093/nar/gku526] [PMID: 24939896]
[172]
Zhang, R.; Cheng, M.; Zhang, L.M.; Zhu, L.N.; Kong, D.M. Asymmetric Cationic Porphyrin as a New G-Quadruplex probe with wash-free cancer-targeted imaging ability under acidic microenvironments. ACS Appl. Mater. Interfaces, 2018, 10(16), 13350-13360.
[http://dx.doi.org/10.1021/acsami.8b01901] [PMID: 29619818]
[173]
Jin, S.F.; Zhao, P.; Xu, L.C.; Zheng, M.; Lu, J.Z.; Zhao, P.L.; Su, Q.L.; Chen, H.X.; Tang, D.T.; Chen, J.; Lin, J.Q. Synthesis, G-quadruplexes DNA binding, and photocyto-toxicity of novel cationic expanded porphyrins. Bioorg. Chem., 2015, 60, 110-117.
[http://dx.doi.org/10.1016/j.bioorg.2015.05.001] [PMID: 25989424]
[174]
Alzeer, J.; Vummidi, B.R.; Roth, P.J.; Luedtke, N.W. Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew. Chem. Int. Ed. Engl., 2009, 48(49), 9362-9365.
[http://dx.doi.org/10.1002/anie.200903685] [PMID: 19882707]
[175]
Alzeer, J.; Luedtke, N.W. pH-mediated fluorescence and G-quadruplex binding of amido phthalocyanines. Biochemistry, 2010, 49(20), 4339-4348.
[http://dx.doi.org/10.1021/bi9020583] [PMID: 20380429]
[176]
Ren, L.; Zhang, A.; Huang, J.; Wang, P.; Weng, X.; Zhang, L.; Liang, F.; Tan, Z.; Zhou, X. Quaternary ammonium zinc phthalocyanine: Inhibiting telomerase by stabilizing G quadruplexes and inducing G-quadruplex structure transition and formation. ChemBioChem, 2007, 8(7), 775-780.
[http://dx.doi.org/10.1002/cbic.200600554] [PMID: 17361982]
[177]
Ramos, C.I.V.; Almeida, S.P.; Lourenço, L.M.O.; Pereira, P.M.R.; Fernandes, R.; Faustino, M.A.F.; Tomé, J.P.C.; Carvalho, J.; Cruz, C.; Neves, M.G.P.M.S. Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules, 2019, 24(4), 733.
[http://dx.doi.org/10.3390/molecules24040733] [PMID: 30781675]
[178]
Lopes-Nunes, J.; Carvalho, J.; Figueiredo, J.; Ramos, C.I.V.; Lourenço, L.M.O.; Tomé, J.P.C.; Neves, M.G.P.M.S.; Mergny, J.L.; Queiroz, J.A.; Salgado, G.F.; Cruz, C. Phthalocyanines for G-quadruplex aptamers binding. Bioorg. Chem., 2020, 100, 103920.
[http://dx.doi.org/10.1016/j.bioorg.2020.103920] [PMID: 32413624]
[179]
Uchiyama, M.; Momotake, A.; Kobayashi, N.; Yamamoto, Y. Specific Binding of an Anionic Phthalocyanine Derivative to G-Quadruplex DNAs. Chem. Lett., 2020, 49(5), 530-533.
[http://dx.doi.org/10.1246/cl.200110]
[180]
Yılmaz, H.E.; Bağda, E.; Bağda, E.; Durmuş, M. Interaction of water soluble cationic gallium (III) phthalocyanines with different G-quadruplex DNAs. Polyhedron, 2021, 208, 115404.
[http://dx.doi.org/10.1016/j.poly.2021.115404]
[181]
Zhang, H.J.; Wang, X.F.; Wang, P.; Pang, S.P.; Ai, X.C.; Zhang, J.P. Interactions between meso-tetrakis(4-(N-methylpyridiumyl))porphyrin TMPyP4 and DNA G-quadruplex of telomeric repeated sequence TTAGGG. Sci China Ser B., 2008, 51(5), 452-456.
[http://dx.doi.org/10.1007/s11426-008-0051-2]
[182]
Rha, S.Y.; Izbicka, E.; Lawrence, R.; Davidson, K.; Sun, D.; Moyer, M.P.; Roodman, G.D.; Hurley, L.; Von Hoff, D. Effect of telomere and telomerase interactive agents on human tumor and normal cell lines. Clin. Cancer Res., 2000, 6(3), 987-993.
[PMID: 10741725]
[183]
Wei, C.; Jia, G.; Yuan, J.; Feng, Z.; Li, C. A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs. Biochemistry, 2006, 45(21), 6681-6691.
[http://dx.doi.org/10.1021/bi052356z] [PMID: 16716079]
[184]
Le, V.H.; Nagesh, N.; Lewis, E.A. Bcl-2 promoter sequence G-quadruplex interactions with three planar and non-planar cationic porphyrins: TMPyP4, TMPyP3, and TMPyP2. PLoS One, 2013, 8(8), e72462.
[http://dx.doi.org/10.1371/journal.pone.0072462] [PMID: 23977303]
[185]
Kubát, P.; Šebera, J.; Záliš, S.; Langmaier, J.; Fuciman, M.; Polívka, T.; Lang, K. Charge transfer in porphyrin-calixarene complexes: Ultrafast kinetics, cyclic voltammetry, and DFT calculations. Phys. Chem. Chem. Phys., 2011, 13(15), 6947-6954.
[http://dx.doi.org/10.1039/c0cp01726d] [PMID: 21399801]
[186]
Zhao, P.; Xu, L.C.; Huang, J.W.; Fu, B.; Yu, H.C.; Ji, L.N. Cationic porphyrin-anthraquinone dyads: Modes of interaction with G-quadruplex DNA. Dyes Pigments, 2009, 83(1), 81-87.
[http://dx.doi.org/10.1016/j.dyepig.2009.03.015]
[187]
Sabharwal, N.C.; Savikhin, V.; Turek-Herman, J.R.; Nicoludis, J.M.; Szalai, V.A.; Yatsunyk, L.A. N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J., 2014, 281(7), 1726-1737.
[http://dx.doi.org/10.1111/febs.12734] [PMID: 24494857]
[188]
Li, T.; Wang, E.; Dong, S. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion. Anal. Chem., 2010, 82(18), 7576-7580.
[http://dx.doi.org/10.1021/ac1019446] [PMID: 20726508]
[189]
Liu, Y.Y.; Wu, M.; Zhu, L.N.; Feng, X.Z.; Kong, D.M. Colorimetric and fluorescent bimodal ratiometric probes for pH sensing of living cells. Chem. Asian J., 2015, 10(6), 1304-1310.
[http://dx.doi.org/10.1002/asia.201500106] [PMID: 25779219]
[190]
Sigmon, J.; Larcom, L.L. The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis, 1996, 17(10), 1524-1527.
[http://dx.doi.org/10.1002/elps.1150171003] [PMID: 8957173]
[191]
Koeppel, F.; Riou, J.F.; Laoui, A.; Mailliet, P.; Arimondo, P.B.; Labit, D.; Petitgenet, O.; Hélène, C.; Mergny, J.L. Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes. Nucleic Acids Res., 2001, 29(5), 1087-1096.
[http://dx.doi.org/10.1093/nar/29.5.1087] [PMID: 11222758]
[192]
Breuzard, G.; Millot, J.M.; Riou, J.F.; Manfait, M. Selective interactions of ethidiums with G-quadruplex DNA revealed by surface-enhanced Raman scattering. Anal. Chem., 2003, 75(16), 4305-4311.
[http://dx.doi.org/10.1021/ac034123o] [PMID: 14632150]
[193]
Barber, L.; Prince, H.M.; Rossi, R.; Bertoncello, I. Fluoro-Gold: An alternative viability stain for multicolor flow cytometric analysis. Cytometry, 1999, 36(4), 349-354.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19990801)36:4<349::AID-CYTO10>3.0.CO;2-1] [PMID: 10404151]
[194]
Zhang, S.; Sun, H.; Chen, H.; Li, Q.; Guan, A.; Wang, L.; Shi, Y.; Xu, S.; Liu, M.; Tang, Y. Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(5), 1101-1106.
[http://dx.doi.org/10.1016/j.bbagen.2018.01.022] [PMID: 29410183]
[195]
Cosa, G.; Focsaneanu, K.S.; McLean, J.R.; McNamee, J.P.; Scaiano, J.C. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem. Photobiol., 2001, 73(6), 585-599.
[http://dx.doi.org/10.1562/0031-8655(2001)073<0585:PPOFDD>2.0.CO;2] [PMID: 11421063]
[196]
Chib, R.; Raut, S.; Sabnis, S.; Singhal, P.; Gryczynski, Z.; Gryczynski, I. Associated anisotropy decays of ethidium bromide interacting with DNA. Methods Appl. Fluoresc., 2014, 2(1), 015003.
[http://dx.doi.org/10.1088/2050-6120/2/1/015003]
[197]
Samanta, A.; Paul, B.K.; Guchhait, N. Photophysics of DNA staining dye Propidium Iodide encapsulated in bio-mimetic micelle and genomic fish sperm DNA. J. Photochem. Photobiol. B, 2012, 109, 58-67.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.02.001] [PMID: 22386775]
[198]
Chang, C.C.; Wu, J.Y.; Chien, C.W.; Wu, W.S.; Liu, H.; Kang, C.C.; Yu, L.J.; Chang, T.C. A fluorescent carbazole derivative: High sensitivity for quadruplex DNA. Anal. Chem., 2003, 75(22), 6177-6183.
[http://dx.doi.org/10.1021/ac034789i] [PMID: 14615998]
[199]
Tsai, Y.L.; Wang, Z.F.; Chen, W.W.; Chang, T.C. Emulsified BMVC derivative induced filtration for G-quadruplex DNA structural separation. Nucleic Acids Res., 2011, 39(17), e114.
[http://dx.doi.org/10.1093/nar/gkr499] [PMID: 21715373]
[200]
Dumat, B.; Bordeau, G.; Faurel-Paul, E.; Mahuteau-Betzer, F.; Saettel, N.; Bombled, M.; Metgé, G.; Charra, F.; Fiorini-Debuisschert, C.; Teulade-Fichou, M.P. N-phenyl-carbazole-based two-photon fluorescent probes: Strong sequence dependence of the duplex vs. quadruplex selectivity. Biochimie, 2011, 93(8), 1209-1218.
[http://dx.doi.org/10.1016/j.biochi.2011.05.035] [PMID: 21672604]
[201]
Lin, D.; Fei, X.; Gu, Y.; Wang, C.; Tang, Y.; Li, R.; Zhou, J. A benzindole substituted carbazole cyanine dye: A novel targeting fluorescent probe for parallel c-myc G-quadruplexes. Analyst (Lond.), 2015, 140(16), 5772-5780.
[http://dx.doi.org/10.1039/C5AN00866B] [PMID: 26176020]
[202]
Tseng, T.Y.; Chien, C.H.; Chu, J.F.; Huang, W.C.; Lin, M.Y.; Chang, C.C.; Chang, T.C. Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy. J. Biomed. Opt., 2013, 18(10), 101309.
[http://dx.doi.org/10.1117/1.JBO.18.10.101309] [PMID: 23839279]
[203]
Gao, F.L.; Cao, S.H.; Sun, W.; Long, S.R.; Fan, J.L.; Peng, X.J. Development of a two-photon carbazole derivative probe for fluorescent visualization of G-quadruplex DNA in cells. Dyes Pigments, 2019, 171, 107749.
[http://dx.doi.org/10.1016/j.dyepig.2019.107749]
[204]
Yu, Q.Q.; Wang, M.Q. Carbazole-based fluorescent probes for G-quadruplex DNA targeting with superior selectivity and low cytotoxicity. Bioorg. Med. Chem., 2020, 28(17), 115641.
[http://dx.doi.org/10.1016/j.bmc.2020.115641] [PMID: 32773092]
[205]
Read, M.; Harrison, R.J.; Romagnoli, B.; Tanious, F.A.; Gowan, S.H.; Reszka, A.P.; Wilson, W.D.; Kelland, L.R.; Neidle, S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. USA, 2001, 98(9), 4844-4849.
[http://dx.doi.org/10.1073/pnas.081560598] [PMID: 11309493]
[206]
Burger, A.M.; Dai, F.; Schultes, C.M.; Reszka, A.P.; Moore, M.J.; Double, J.A.; Neidle, S. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res., 2005, 65(4), 1489-1496.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2910] [PMID: 15735037]
[207]
Moore, M.J.; Schultes, C.M.; Cuesta, J.; Cuenca, F.; Gunaratnam, M.; Tanious, F.A.; Wilson, W.D.; Neidle, S. Trisubstituted acridines as G-quadruplex telomere targeting agents. Effects of extensions of the 3,6- and 9-side chains on quadruplex binding, telomerase activity, and cell proliferation. J. Med. Chem., 2006, 49(2), 582-599.
[http://dx.doi.org/10.1021/jm050555a] [PMID: 16420044]
[208]
Mahmood, T.; Wu, Y.; Loriot, D.; Kuimova, M.; Ladame, S. Closing the ring to bring up the light: Synthesis of a hexacyclic acridinium cyanine dye. Chemistry, 2012, 18(39), 12349-12356.
[http://dx.doi.org/10.1002/chem.201200802] [PMID: 22907584]
[209]
Ferreira, R.; Artali, R.; Benoit, A.; Gargallo, R.; Eritja, R.; Ferguson, D.M.; Sham, Y.Y.; Mazzini, S. Structure and stability of human telomeric G-quadruplex with preclinical 9-amino acridines. PLoS One, 2013, 8(3), e57701.
[http://dx.doi.org/10.1371/journal.pone.0057701] [PMID: 23554865]
[210]
Percivalle, C.; Mahmood, T.; Ladame, S. Two-in-one: A pH-sensitive, acridine-based, fluorescent probe binds G-quadruplexes in oncogene promoters. MedChemComm, 2013, 4(1), 211-215.
[http://dx.doi.org/10.1039/C2MD20173A]
[211]
Kessler, D.; Gmachl, M.; Mantoulidis, A.; Martin, L.J.; Zoephel, A.; Mayer, M.; Gollner, A.; Covini, D.; Fischer, S.; Gerstberger, T.; Gmaschitz, T.; Goodwin, C.; Greb, P.; Häring, D.; Hela, W.; Hoffmann, J.; Karolyi-Oezguer, J.; Knesl, P.; Kornigg, S.; Koegl, M.; Kousek, R.; Lamarre, L.; Moser, F.; Munico-Martinez, S.; Peinsipp, C.; Phan, J.; Rinnenthal, J.; Sai, J.; Salamon, C.; Scherbantin, Y.; Schipany, K.; Schnitzer, R.; Schrenk, A.; Sharps, B.; Siszler, G.; Sun, Q.; Waterson, A.; Wolkerstorfer, B.; Zeeb, M.; Pearson, M.; Fesik, S.W.; McConnell, D.B. Drugging an undruggable pocket on KRAS. Proc. Natl. Acad. Sci. USA, 2019, 116(32), 15823-15829.
[http://dx.doi.org/10.1073/pnas.1904529116] [PMID: 31332011]
[212]
Cogoi, S.; Xodo, L.E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res., 2006, 34(9), 2536-2549.
[http://dx.doi.org/10.1093/nar/gkl286] [PMID: 16687659]
[213]
Carvalho, J.; Pereira, E.; Marquevielle, J.; Campello, M.P.C.; Mergny, J.L.; Paulo, A.; Salgado, G.F.; Queiroz, J.A.; Cruz, C. Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie, 2018, 144, 144-152.
[http://dx.doi.org/10.1016/j.biochi.2017.11.004] [PMID: 29129745]
[214]
Martin, M.M.; Plaza, P.; Meyer, Y.H. Ultrafast conformational relaxation of triphenylmethane dyes - spectral characterization. J. Phys. Chem., 1991, 95(23), 9310-9314.
[http://dx.doi.org/10.1021/j100176a051]
[215]
Martin, M.M.; Plaza, P.; Meyer, Y.H. Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation. Chem. Phys., 1991, 153(1-2), 297-303.
[http://dx.doi.org/10.1016/0301-0104(91)90025-O]
[216]
Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. Toward quantitative prediction of molecular fluorescence quantum efficiency: Role of duschinsky rotation. J. Am. Chem. Soc., 2007, 129(30), 9333-9339.
[http://dx.doi.org/10.1021/ja067946e] [PMID: 17622142]
[217]
Bhasikuttan, A.C.; Mohanty, J.; Pal, H. Interaction of malachite green with guanine-rich single-stranded DNA: Preferential binding to a G-quadruplex. Angew. Chem. Int. Ed. Engl., 2007, 46(48), 9305-9307.
[http://dx.doi.org/10.1002/anie.200703251] [PMID: 17966964]
[218]
Babendure, J.R.; Adams, S.R.; Tsien, R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc., 2003, 125(48), 14716-14717.
[http://dx.doi.org/10.1021/ja037994o] [PMID: 14640641]
[219]
Baptista, M.S.; Indig, G.L. Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes. J. Phys. Chem. B, 1998, 102(23), 4678-4688.
[http://dx.doi.org/10.1021/jp981185n]
[220]
Szent-Gyorgyi, C.; Schmidt, B.F.; Creeger, Y.; Fisher, G.W.; Zakel, K.L.; Adler, S.; Fitzpatrick, J.A.; Woolford, C.A.; Yan, Q.; Vasilev, K.V.; Berget, P.B.; Bruchez, M.P.; Jarvik, J.W.; Waggoner, A. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat. Biotechnol., 2008, 26(2), 235-240.
[http://dx.doi.org/10.1038/nbt1368] [PMID: 18157118]
[221]
Yang, Q.; Li, D.; Chi, W.; Guo, R.; Yan, B.; Lan, J. Regulation of aggregation-induced emission behaviours and mechanofluorochromism of tetraphenylethene through different oxidation states of sulphur moieties. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(27), 8244-8249.
[http://dx.doi.org/10.1039/C9TC01848D]
[222]
Hong, Y.; Häussler, M.; Lam, J.W.; Li, Z.; Sin, K.K.; Dong, Y.; Tong, H.; Liu, J.; Qin, A.; Renneberg, R.; Tang, B.Z. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry, 2008, 14(21), 6428-6437.
[http://dx.doi.org/10.1002/chem.200701723] [PMID: 18512826]
[223]
Rananaware, A.; Bhosale, R.S.; Patil, H.; Al Kobaisi, M.; Abraham, A.; Shukla, R. Precise aggregation-induced emission enhancement via H+ sensing and its use in ratiometric detection of intracellular pH values. RSC Advances, 2014, 4(103), 59078-59082.
[http://dx.doi.org/10.1039/C4RA10511G]
[224]
Das, A.K.; Ihmels, H.; Kölsch, S. Diphenylaminostyryl-substituted quinolizinium derivatives as fluorescent light-up probes for duplex and quadruplex DNA. Photochem. Photobiol. Sci., 2019, 18(6), 1373-1381.
[http://dx.doi.org/10.1039/C9PP00096H] [PMID: 30916703]
[225]
Kotras, C.; Fossépré, M.; Roger, M.; Gervais, V.; Richeter, S.; Gerbier, P.; Ulrich, S.; Surin, M.; Clément, S. A Cationic Tetraphenylethene as a Light-Up Supramolecular Probe for DNA G-Quadruplexes. Front Chem., 2019, 7, 493.
[http://dx.doi.org/10.3389/fchem.2019.00493] [PMID: 31355185]
[226]
Prieto, D.; Aparicio, G.; Morande, P.E.; Zolessi, F.R. A fast, low cost, and highly efficient fluorescent DNA labeling method using methyl green. Histochem. Cell Biol., 2014, 142(3), 335-345.
[http://dx.doi.org/10.1007/s00418-014-1215-0] [PMID: 24671497]
[227]
Guo, J.H.; Zhu, L.N.; Kong, D.M.; Shen, H.X. Triphenylmethane dyes as fluorescent probes for G-quadruplex recognition. Talanta, 2009, 80(2), 607-613.
[http://dx.doi.org/10.1016/j.talanta.2009.07.034] [PMID: 19836527]
[228]
Kong, D.M.; Ma, Y.E.; Wu, J.; Shen, H.X. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry, 2009, 15(4), 901-909.
[http://dx.doi.org/10.1002/chem.200801441] [PMID: 19053101]
[229]
Liu, L-Y.; Liu, W.; Wang, K-N.; Zhu, B-C.; Xia, X-Y.; Ji, L-N. Content Detection of G‐Quadruplex DNA in Live Cells Based on Photon Counts and Complex Structures. Angew. Chem. Int. Ed., 2020, 132(24), 9806-9813.
[230]
Indig, G.L.; Jay, D.G.; Grabowski, J.J. The efficiency of malachite green, free and protein bound, as a photon-to-heat converter. Biophys. J., 1992, 61(3), 631-638.
[http://dx.doi.org/10.1016/S0006-3495(92)81868-4] [PMID: 19431819]
[231]
Brey, L.; Schuster, G.; Drickamer, H.G. High pressure studies of the effect of viscosity on fluorescence efficiency in crystal violet and auramine O. J. Chem. Phys., 1977, 67(6), 2648-2650.
[http://dx.doi.org/10.1063/1.435177]
[232]
Müller, S.; Sanders, D.A.; Di Antonio, M.; Matsis, S.; Riou, J.F.; Rodriguez, R.; Balasubramanian, S. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org. Biomol. Chem., 2012, 10(32), 6537-6546.
[http://dx.doi.org/10.1039/c2ob25830g] [PMID: 22790277]
[233]
Yang, P.; De Cian, A.; Teulade-Fichou, M.P.; Mergny, J.L.; Monchaud, D. Engineering bisquinolinium/thiazole orange conjugates for fluorescent sensing of G-quadruplex DNA. Angew. Chem. Int. Ed. Engl., 2009, 48(12), 2188-2191.
[http://dx.doi.org/10.1002/anie.200805613] [PMID: 19199323]
[234]
Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem., 2013, 5(3), 182-186.
[http://dx.doi.org/10.1038/nchem.1548] [PMID: 23422559]
[235]
Di Antonio, M.; Biffi, G.; Mariani, A.; Raiber, E.A.; Rodriguez, R.; Balasubramanian, S. Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angew. Chem. Int. Ed. Engl., 2012, 51(44), 11073-11078.
[http://dx.doi.org/10.1002/anie.201206281] [PMID: 23038154]
[236]
Biffi, G.; Di Antonio, M.; Tannahill, D.; Balasubramanian, S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem., 2014, 6(1), 75-80.
[http://dx.doi.org/10.1038/nchem.1805] [PMID: 24345950]
[237]
Rodriguez, R.; Miller, K.M.; Forment, J.V.; Bradshaw, C.R.; Nikan, M.; Britton, S.; Oelschlaegel, T.; Xhemalce, B.; Balasubramanian, S.; Jackson, S.P. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol., 2012, 8(3), 301-310.
[http://dx.doi.org/10.1038/nchembio.780] [PMID: 22306580]
[238]
Verga, D.; Hamon, F.; Poyer, F.; Bombard, S.; Teulade-Fichou, M.P. Photo-cross-linking probes for trapping G-quadruplex DNA. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 994-998.
[http://dx.doi.org/10.1002/anie.201307413] [PMID: 24338872]
[239]
Laursen, B.W.; Sørensen, T.J. Synthesis of super stable triangulenium dye. J. Org. Chem., 2009, 74(8), 3183-3185.
[http://dx.doi.org/10.1021/jo9002486] [PMID: 19281195]
[240]
Barsuk, I.; Lainé, P.P.; Maurel, F.; Brémond, É. Triangulenium dyes: The comprehensive photo-absorption and emission story of a versatile family of chromophores. Phys. Chem. Chem. Phys., 2020, 22(36), 20673-20684.
[http://dx.doi.org/10.1039/D0CP02990D] [PMID: 32895673]
[241]
Shivalingam, A.; Izquierdo, M.A.; Marois, A.L.; Vyšniauskas, A.; Suhling, K.; Kuimova, M.K.; Vilar, R. The interactions between a small molecule and G-quadruplexes are visualized by fluorescence lifetime imaging microscopy. Nat. Commun., 2015, 6, 8178.
[http://dx.doi.org/10.1038/ncomms9178] [PMID: 26350962]
[242]
Rosenberg, M.; Santella, M.; Bogh, S.A.; Muñoz, A.V.; Andersen, H.O.B.; Hammerich, O.; Bora, I.; Lincke, K.; Laursen, B.W. Extended Triangulenium Ions: Syntheses and Characterization of Benzo-Bridged Dioxa- and Diazatriangulenium Dyes. J. Org. Chem., 2019, 84(5), 2556-2567.
[http://dx.doi.org/10.1021/acs.joc.8b02978] [PMID: 30694674]
[243]
Rosenberg, M.; Rostgaard, K.R.; Liao, Z.; Madsen, A.O.; Martinez, K.L.; Vosch, T.; Laursen, B.W. Design, synthesis, and time-gated cell imaging of carbon-bridged trian-gulenium dyes with long fluorescence lifetime and red emission. Chem. Sci. (Camb.), 2018, 9(12), 3122-3130.
[http://dx.doi.org/10.1039/C8SC00089A] [PMID: 29780456]
[244]
Santella, M.; Della Pia, E.; Sørensen, J.K.; Laursen, B.W. Synthesis and properties of sulfur-functionalized triarylmethylium, acridinium and triangulenium dyes. Beilstein J. Org. Chem., 2019, 15(1), 2133-2141.
[http://dx.doi.org/10.3762/bjoc.15.210] [PMID: 31579076]
[245]
Shivalingam, A.; Vyšniauskas, A.; Albrecht, T.; White, A.J.; Kuimova, M.K.; Vilar, R. Trianguleniums as Optical Probes for G-Quadruplexes: A Photophysical, Electro-chemical, and Computational Study. Chemistry, 2016, 22(12), 4129-4139.
[http://dx.doi.org/10.1002/chem.201504099] [PMID: 26880483]
[246]
Martin, J.C.; Smith, R.G. Factors Influencing the Basicities of Triarylcarbinols. The Synthesis of Sesquixanthydrol. J. Am. Chem. Soc., 2002, 86(11), 2252-2256.
[http://dx.doi.org/10.1021/ja01065a030]
[247]
Chowdhury, A.; Basu, S. Interactions between 9,10-anthraquinone and aromatic amines in homogeneous and micellar media: A laser flash photolysis and magnetic field effect study. J. Lumin., 2006, 121(1), 113-122.
[http://dx.doi.org/10.1016/j.jlumin.2005.11.001]
[248]
Bober, P.; Li, Y.; Acharya, U.; Panthi, Y.; Pfleger, J.; Humpolicek, P. Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth. Met., 2018, 237, 40-49.
[http://dx.doi.org/10.1016/j.synthmet.2018.01.010]
[249]
Chen, K.; Leona, M.; Vo-Dinh, K.C.; Yan, F.; Wabuyele, M.B.; Vo-Dinh, T. Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art. J. Raman Spectrosc., 2006, 37(4), 520-527.
[http://dx.doi.org/10.1002/jrs.1426]
[250]
De Santis, D.; Moresi, M. Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Ind. Crops Prod., 2007, 26(2), 151-162.
[http://dx.doi.org/10.1016/j.indcrop.2007.02.002]
[251]
Armitage, B.; Koch, T.; Frydenlund, H.; Orum, H.; Batz, H.G.; Schuster, G.B. Peptide nucleic acid-anthraquinone conjugates: Strand invasion and photoinduced cleavage of duplex DNA. Nucleic Acids Res., 1997, 25(22), 4674-4678.
[http://dx.doi.org/10.1093/nar/25.22.4674] [PMID: 9358181]
[252]
Kan, Y.; Armitage, B.; Schuster, G.B. Selective stabilization of triplex DNA by anthraquinone sulfonamide derivatives. Biochemistry, 1997, 36(6), 1461-1466.
[http://dx.doi.org/10.1021/bi962335s] [PMID: 9063894]
[253]
Santhosh, U.; Schuster, G.B. long-range charge transport in duplex DNA: Anthraquinone sensitization results are independent of terminal ionic distribution. J. Am. Chem. Soc., 2002, 124(37), 10986-10987.
[http://dx.doi.org/10.1021/ja026932f] [PMID: 12224939]
[254]
Kang, H.; Rokita, S.E. Site-specific and photo-induced alkylation of DNA by a dimethylanthraquinone-oligodeoxynucleotide conjugate. Nucleic Acids Res., 1996, 24(20), 3896-3902.
[http://dx.doi.org/10.1093/nar/24.20.3896] [PMID: 8918789]
[255]
Lin, Y.H.; Chuang, S.M.; Wu, P.C.; Chen, C.L.; Jeyachandran, S.; Lo, S.C.; Huang, H.S.; Hou, M.H. Selective recognition and stabilization of new ligands targeting the potassium form of the human telomeric G-quadruplex DNA. Sci. Rep., 2016, 6(1), 31019.
[http://dx.doi.org/10.1038/srep31019] [PMID: 27511133]
[256]
Cao, H.; Chang, V.; Hernandez, R.; Heagy, M.D. Matrix screening of substituted N-aryl-1,8-naphthalimides reveals new dual fluorescent dyes and unusually bright pyridine derivatives. J. Org. Chem., 2005, 70(13), 4929-4934.
[http://dx.doi.org/10.1021/jo050157f] [PMID: 15960490]
[257]
Nandhikonda, P.; Heagy, M.D. Dual fluorescent N-aryl-2,3- naphthalimides: Applications in ratiometric DNA detection and white organic light-emitting devices. Org. Lett., 2010, 12(21), 4796-4799.
[http://dx.doi.org/10.1021/ol101760m] [PMID: 20882971]
[258]
Nandhikonda, P.; Heagy, M.D. An abiotic fluorescent probe for cardiac troponin I. J. Am. Chem. Soc., 2011, 133(38), 14972-14974.
[http://dx.doi.org/10.1021/ja205211a] [PMID: 21863849]
[259]
Cao, H.; Diaz, D.I.; DiCesare, N.; Lakowicz, J.R.; Heagy, M.D. Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose. Org. Lett., 2002, 4(9), 1503-1505.
[http://dx.doi.org/10.1021/ol025723x] [PMID: 11975614]
[260]
Cao, Z.; Nandhikonda, P.; Heagy, M.D. Highly water-soluble monoboronic acid probes that show optical sensitivity to glucose based on 4-sulfo-1,8-naphthalic anhydride. J. Org. Chem., 2009, 74(9), 3544-3546.
[http://dx.doi.org/10.1021/jo9002008] [PMID: 19351178]
[261]
Cao, H.; McGill, T.; Heagy, M.D. Substituent effects on monoboronic acid sensors for saccharides based on N-phenyl-1,8-naphthalenedicarboximides. J. Org. Chem., 2004, 69(9), 2959-2966.
[http://dx.doi.org/10.1021/jo035760h] [PMID: 15104432]
[262]
Nandhikonda, P.; Begaye, M.P.; Heagy, M.D. Highly water-soluble, OFF-ON, dual fluorescent probes for sodium and potassium ions. Tetrahedron Lett., 2009, 50(21), 2459-2461.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.197]
[263]
Nandhikonda, P.; Begaye, M.P.; Cao, Z.; Heagy, M.D. Discovery of dual fluorescent 1,8-naphthalimide dyes based on balanced seesaw photophysical model. Chem. Commun. (Camb.), 2009, (33), 4941-4943.
[http://dx.doi.org/10.1039/b911768g] [PMID: 19668809]
[264]
Bao, L.; Zou, Y.; Kirk, A.; Heagy, M.D. Electronic Properties and Electroluminescent OLED Performance of Panchromatic Emissive N-Aryl-2,3-naphthalimides. J. Phys. Chem. A, 2017, 121(51), 9708-9719.
[http://dx.doi.org/10.1021/acs.jpca.7b08110] [PMID: 29182864]
[265]
Nandhikonda, P.; Begaye, M.P.; Cao, Z.; Heagy, M.D. Frontier molecular orbital analysis of dual fluorescent dyes: Predicting two-color emission in N-aryl-1,8-naphthalimides. Org. Biomol. Chem., 2010, 8(14), 3195-3201.
[http://dx.doi.org/10.1039/c001912g] [PMID: 20626080]
[266]
Paudel, S.; Nandhikonda, P.; Heagy, M.D. A comparative study into two dual fluorescent mechanisms via positional isomers of N-hydroxyarene-1,8-naphthalimides. J. Fluoresc., 2009, 19(4), 681-691.
[http://dx.doi.org/10.1007/s10895-009-0462-2] [PMID: 19191013]
[267]
DiCesare, N.; Adhikari, D.P.; Heynekamp, J.J.; Heagy, M.D.; Lakowicz, J.R. Spectroscopic and photophysical characterization of fluorescent chemosensors for monosac-charides based on N-phenylboronic acid derivatives of 1,8-naphthalimide. J. Fluoresc., 2002, 12(2), 147-154.
[http://dx.doi.org/10.1023/A:1016884011396] [PMID: 32132808]
[268]
Nikan, M.; Sherman, J.C. Template-assembled synthetic G-quartets (TASQs). Angew. Chem. Int. Ed. Engl., 2008, 47(26), 4900-4902.
[http://dx.doi.org/10.1002/anie.200704199] [PMID: 18496796]
[269]
Laguerre, A.; Stefan, L.; Larrouy, M.; Genest, D.; Novotna, J.; Pirrotta, M.; Monchaud, D. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J. Am. Chem. Soc., 2014, 136(35), 12406-12414.
[http://dx.doi.org/10.1021/ja506331x] [PMID: 25101894]
[270]
Laguerre, A.; Hukezalie, K.; Winckler, P.; Katranji, F.; Chanteloup, G.; Pirrotta, M.; Perrier-Cornet, J.M.; Wong, J.M.; Monchaud, D. Visualization of RNA-quadruplexes in live cells. J. Am. Chem. Soc., 2015, 137(26), 8521-8525.
[http://dx.doi.org/10.1021/jacs.5b03413] [PMID: 26056849]
[271]
Laguerre, A.; Wong, J.M.; Monchaud, D. Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method. Sci. Rep., 2016, 6(1), 32141.
[http://dx.doi.org/10.1038/srep32141] [PMID: 27535322]
[272]
Zhai, Q.; Gao, C.; Ding, J.; Zhang, Y.; Islam, B.; Lan, W.; Hou, H.; Deng, H.; Li, J.; Hu, Z.; Mohamed, H.I.; Xu, S.; Cao, C.; Haider, S.M.; Wei, D. Selective recognition of c-MYC Pu22 G-quadruplex by a fluorescent probe. Nucleic Acids Res., 2019, 47(5), 2190-2204.
[http://dx.doi.org/10.1093/nar/gkz059] [PMID: 30759259]
[273]
Ren, J.; Chaires, J.B. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry, 1999, 38(49), 16067-16075.
[http://dx.doi.org/10.1021/bi992070s] [PMID: 10587429]
[274]
Zhou, J.; Roembke, B.T.; Paragi, G.; Laguerre, A.; Sintim, H.O.; Fonseca Guerra, C.; Monchaud, D. Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers. Sci. Rep., 2016, 6(1), 33888.
[http://dx.doi.org/10.1038/srep33888] [PMID: 27667717]
[275]
Kim, H.N.; Lee, E.H.; Xu, Z.; Kim, H.E.; Lee, H.S.; Lee, J.H.; Yoon, J. A pyrene-imidazolium derivative that selectively recognizes G-quadruplex DNA. Biomaterials, 2012, 33(7), 2282-2288.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.073] [PMID: 22196901]
[276]
Jiang, C.; Li, L.L.; Yu, X.Q. A pyrene-based fast-responsive fluorescent probe for G-quadruplexes. Anal. Methods, 2017, 9(16), 2397-2400.
[http://dx.doi.org/10.1039/C7AY00556C]
[277]
Zhu, H.; Lewis, F.D. Pyrene excimer fluorescence as a probe for parallel G-quadruplex formation. Bioconjug. Chem., 2007, 18(4), 1213-1217.
[http://dx.doi.org/10.1021/bc060279u] [PMID: 17477498]
[278]
Xu, Y.; Suzuki, Y.; Ito, K.; Komiyama, M. Telomeric repeat-containing RNA structure in living cells. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14579-14584.
[http://dx.doi.org/10.1073/pnas.1001177107] [PMID: 20679250]
[279]
Switalska, A.; Kierzek, R.; Dembska, A.; Juskowiak, B. Spectroscopic study of fluorescent probes based on G-quadruplex oligonucleotides labeled with ethynylpyrenyldeoxyuridine. Int. J. Biol. Macromol., 2017, 105(Pt 1), 862-872.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.107] [PMID: 28729218]
[280]
Dembska, A.; Pedzinski, T.; Takenaka, S.; Juskowiak, B. Emission lifetime study of fluorescence probes based on G-quadruplex oligonucleotides end-labeled with pyrene moieties. Spectrosc-Int J., 2010, 24(3-4), 325-331.
[http://dx.doi.org/10.1155/2010/591086]
[281]
Han, H.; Cliff, C.L.; Hurley, L.H. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry, 1999, 38(22), 6981-6986.
[http://dx.doi.org/10.1021/bi9905922] [PMID: 10353809]
[282]
Kern, J.T.; Thomas, P.W.; Kerwin, S.M. The relationship between ligand aggregation and G-quadruplex DNA selectivity in a series of 3,4,9,10-perylenetetracarboxylic acid diimides. Biochemistry, 2002, 41(38), 11379-11389.
[http://dx.doi.org/10.1021/bi0263107] [PMID: 12234180]
[283]
Samudrala, R.; Zhang, X.; Wadkins, R.M.; Mattern, D.L. Synthesis of a non-cationic, water-soluble perylenetetracarboxylic diimide and its interactions with G-quadruplex-forming DNA. Bioorg. Med. Chem., 2007, 15(1), 186-193.
[http://dx.doi.org/10.1016/j.bmc.2006.09.075] [PMID: 17079147]
[284]
Han, H.; Bennett, R.J.; Hurley, L.H. Inhibition of unwinding of G-quadruplex structures by Sgs1 helicase in the presence of N,N′-bis[2-(1-piperidino)ethyl]-3,4,9,10-perylenetetracarboxylic diimide, a G-quadruplex-interactive ligand. Biochemistry, 2000, 39(31), 9311-9316.
[http://dx.doi.org/10.1021/bi000482r] [PMID: 10924124]
[285]
Casagrande, V.; Alvino, A.; Bianco, A.; Ortaggi, G.; Franceschin, M. Study of binding affinity and selectivity of perylene and coronene derivatives towards duplex and quadruplex DNA by ESI-MS. J. Mass Spectrom., 2009, 44(4), 530-540.
[http://dx.doi.org/10.1002/jms.1529] [PMID: 19034888]
[286]
Kern, J.T.; Kerwin, S.M. The aggregation and G-quadruplex DNA selectivity of charged 3,4,9,10-perylenetetracarboxylic acid diimides. Bioorg. Med. Chem. Lett., 2002, 12(23), 3395-3398.
[http://dx.doi.org/10.1016/S0960-894X(02)00763-1] [PMID: 12419369]
[287]
Cuenca, F.; Greciano, O.; Gunaratnam, M.; Haider, S.; Munnur, D.; Nanjunda, R.; Wilson, W.D.; Neidle, S. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg. Med. Chem. Lett., 2008, 18(5), 1668-1673.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.050] [PMID: 18243701]
[288]
Hampel, S.M.; Sidibe, A.; Gunaratnam, M.; Riou, J.F.; Neidle, S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(22), 6459-6463.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.066] [PMID: 20932753]
[289]
Zuffo, M.; Ladame, S.; Doria, F.; Freccero, M. Tuneable coumarin-NDI dyads as G-quadruplex specific light-up probes. Sens. Actuators B Chem., 2017, 245, 780-788.
[http://dx.doi.org/10.1016/j.snb.2017.01.144]
[290]
Hussain, E.; Hu, Z.Z.; Zhou, H.P.; He, C.H.; Shahzad, S.A.; Yu, C. Benzo[ghi]perylene and coronene: Ratiometric fluorescent probes for the sensing of microenvironment changes and micelle formation in aqueous medium. New J. Chem., 2018, 42(9), 6949-6954.
[http://dx.doi.org/10.1039/C8NJ00739J]
[291]
Franceschin, M.; Alvino, A.; Casagrande, V.; Mauriello, C.; Pascucci, E.; Savino, M.; Ortaggi, G.; Bianco, A. Specific interactions with intra- and intermolecular G-quadruplex DNA structures by hydrosoluble coronene derivatives: A new class of telomerase inhibitors. Bioorg. Med. Chem., 2007, 15(4), 1848-1858.
[http://dx.doi.org/10.1016/j.bmc.2006.11.032] [PMID: 17150364]
[292]
Franceschin, M.; Alvino, A.; Ortaggi, G.; Bianco, A. New hydrosoluble perylene and coronene derivatives. Tetrahedron Lett., 2004, 45(49), 9015-9020.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.040]
[293]
Treibs, A.; Kreuzer, F-H. Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Justus Liebigs Ann. Chem., 1968, 718(1), 208-223.
[http://dx.doi.org/10.1002/jlac.19687180119]
[294]
Zhao, C.C.; Zhang, Y.F.; Wang, X.Z.; Cao, J. Development of BODIPY-based fluorescent DNA intercalating probes. J Photoch Photobio A., 2013, 264, 41-47.
[http://dx.doi.org/10.1016/j.jphotochem.2013.05.003]
[295]
Tera, M.; Iida, K.; Ikebukuro, K.; Seimiya, H.; Shin-Ya, K.; Nagasawa, K. Visualization of G-quadruplexes by using a BODIPY-labeled macrocyclic heptaoxazole. Org. Biomol. Chem., 2010, 8(12), 2749-2755.
[http://dx.doi.org/10.1039/c002117b] [PMID: 20414484]
[296]
Zhang, L.; Er, J.C.; Ghosh, K.K.; Chung, W.J.; Yoo, J.; Xu, W.; Zhao, W.; Phan, A.T.; Chang, Y.T. Discovery of a structural-element specific G-quadruplex “light-up” probe. Sci. Rep., 2014, 4(1), 3776.
[http://dx.doi.org/10.1038/srep03776] [PMID: 24441075]
[297]
Wang, M.Q.; Gao, J.J.; Yu, Q.Q.; Liu, H.B. An amphiphilic BODIPY-based selective probe for parallel G4 DNA targeting via disaggregation-induced emission. New J. Chem., 2020, 44(32), 13557-13564.
[http://dx.doi.org/10.1039/D0NJ02887H]
[298]
Domitrović, R.; Jakovac, H.; Blagojević, G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl(4)-intoxicated mice. Toxicology, 2011, 280(1-2), 33-43.
[http://dx.doi.org/10.1016/j.tox.2010.11.005] [PMID: 21095217]
[299]
Mehrzadi, S.; Fatemi, I.; Esmaeilizadeh, M.; Ghaznavi, H.; Kalantar, H.; Goudarzi, M. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed. Pharmacother., 2018, 97, 233-239.
[http://dx.doi.org/10.1016/j.biopha.2017.10.113] [PMID: 29091871]
[300]
Tan, J.; Wang, J.; Yang, C.; Zhu, C.; Guo, G.; Tang, J.; Shen, H. Antimicrobial characteristics of Berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types. BMC Complement. Altern. Med., 2019, 19(1), 218.
[http://dx.doi.org/10.1186/s12906-019-2558-9] [PMID: 31419978]
[301]
Pongkittiphan, V.; Chavasiri, W.; Supabphol, R. Antioxidant effect of berberine and its phenolic derivatives against human fibrosarcoma cells. Asian Pac. J. Cancer Prev., 2015, 16(13), 5371-5376.
[http://dx.doi.org/10.7314/APJCP.2015.16.13.5371] [PMID: 26225680]
[302]
Racková, L.; Májeková, M.; Kost’álová, D.; Stefek, M. Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects. Bioorg. Med. Chem., 2004, 12(17), 4709-4715.
[http://dx.doi.org/10.1016/j.bmc.2004.06.035] [PMID: 15358297]
[303]
Zhang, C.; Shi, Y.R.; Liu, X.R.; Cao, Y.C.; Zhen, D.; Jia, Z.Y.; Jiang, J.Q.; Tian, J.H.; Gao, J.M. The anti-apoptotic role of berberine in preimplantation embryo in vitro development through regulation of miRNA-21. PLoS One, 2015, 10(6), e0129527.
[http://dx.doi.org/10.1371/journal.pone.0129527] [PMID: 26042820]
[304]
Xu, J.; Long, Y.; Ni, L.; Yuan, X.; Yu, N.; Wu, R.; Tao, J.; Zhang, Y. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis. BMC Cancer, 2019, 19(1), 589.
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[305]
Cai, Y.; Xia, Q.; Luo, R.; Huang, P.; Sun, Y.; Shi, Y.; Jiang, W. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J. Nat. Med., 2014, 68(1), 53-62.
[http://dx.doi.org/10.1007/s11418-013-0766-z] [PMID: 23604974]
[306]
Lu, Z.; He, B.; Chen, Z.; Yan, M.; Wu, L. Anti-inflammatory activity of berberine in non-alcoholic fatty liver disease via the Angptl2 pathway. BMC Immunol., 2020, 21(1), 28.
[http://dx.doi.org/10.1186/s12865-020-00358-9] [PMID: 32429849]
[307]
Xu, X.; Zhang, L.; Zhao, Y.; Xu, B.; Qin, W.; Yan, Y.; Yin, B.; Xi, C.; Ma, L. Anti-inflammatory mechanism of berberine on lipopolysaccharide-induced IEC-18 models based on comparative transcriptomics. Mol. Med. Rep., 2020, 22(6), 5163-5180.
[http://dx.doi.org/10.3892/mmr.2020.11602] [PMID: 33174609]
[308]
Yuan, N.N.; Cai, C.Z.; Wu, M.Y.; Su, H.X.; Li, M.; Lu, J.H. Neuroprotective effects of berberine in animal models of Alzheimer’s disease: A systematic review of pre-clinical studies. BMC Complement. Altern. Med., 2019, 19(1), 109.
[http://dx.doi.org/10.1186/s12906-019-2510-z] [PMID: 31122236]
[309]
Chen, C.C.; Hung, T.H.; Lee, C.Y.; Wang, L.F.; Wu, C.H.; Ke, C.H.; Chen, S.F. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS One, 2014, 9(12), e115694.
[http://dx.doi.org/10.1371/journal.pone.0115694] [PMID: 25546475]
[310]
Kim, T.S.; Kang, B.Y.; Cho, D.; Kim, S.H. Induction of interleukin-12 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid, deviates CD4+ T cells from a Th2 to a Th1 response. Immunology, 2003, 109(3), 407-414.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01673.x] [PMID: 12807487]
[311]
Yue, S.J.; Liu, J.; Wang, W.X.; Wang, A.T.; Yang, X.Y.; Guan, H.S.; Wang, C.Y.; Yan, D. Berberine treatment-emergent mild diarrhea associated with gut microbiota dysbiosis. Biomed. Pharmacother., 2019, 116, 109002.
[http://dx.doi.org/10.1016/j.biopha.2019.109002] [PMID: 31154270]
[312]
Li, M.; Dang, Y.; Li, Q.; Zhou, W.; Zuo, J.; Yao, Z.; Zhang, L.; Ji, G. Berberine alleviates hyperglycemia by targeting hepatic glucokinase in diabetic db/db mice. Sci. Rep., 2019, 9(1), 8003.
[http://dx.doi.org/10.1038/s41598-019-44576-7] [PMID: 31142783]
[313]
Colina, A.N.; Diaz, M.S.; Gutierrez, M.I. Fluorescence of berberine in microheterogeneous systems. J. Lumin., 2013, 144, 198-202.
[http://dx.doi.org/10.1016/j.jlumin.2013.07.023]
[314]
Wickhorst, P.J.; Ihmels, H. Selective, pH-Dependent Colorimetric and Fluorimetric Detection of quadruplex DNA with 4-dimethylamino(phenyl)-substituted berberine derivatives. Chemistry, 2021, 27(33), 8580-8589.
[http://dx.doi.org/10.1002/chem.202100297] [PMID: 33855748]
[315]
Franceschin, M.; Rossetti, L.; D’Ambrosio, A.; Schirripa, S.; Bianco, A.; Ortaggi, G.; Savino, M.; Schultes, C.; Neidle, S. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg. Med. Chem. Lett., 2006, 16(6), 1707-1711.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.001] [PMID: 16377184]
[316]
Bazzicalupi, C.; Ferraroni, M.; Bilia, A.R.; Scheggi, F.; Gratteri, P. The crystal structure of human telomeric DNA complexed with berberine: An interesting case of stacked ligand to G-tetrad ratio higher than 1:1. Nucleic Acids Res., 2013, 41(1), 632-638.
[http://dx.doi.org/10.1093/nar/gks1001] [PMID: 23104378]
[317]
Xiong, Y.X.; Su, H.F.; Lv, P.; Ma, Y.; Wang, S.K.; Miao, H.; Liu, H.Y.; Tan, J.H.; Ou, T.M.; Gu, L.Q.; Huang, Z.S. A newly identified berberine derivative induces cancer cell senescence by stabilizing endogenous G-quadruplexes and sparking a DNA damage response at the telomere region. Oncotarget, 2015, 6(34), 35625-35635.
[http://dx.doi.org/10.18632/oncotarget.5521] [PMID: 26462146]
[318]
Becher, J.; Berdnikova, D.V.; Ihmels, H.; Stremmel, C. Synthesis and investigation of quadruplex-DNA-binding, 9-O-substituted berberine derivatives. Beilstein J. Org. Chem., 2020, 16(1), 2795-2806.
[http://dx.doi.org/10.3762/bjoc.16.230] [PMID: 33281983]
[319]
Wickhorst, P.J.; Ihmels, H. Berberrubine phosphate: a selective fluorescent probe for quadruplex DNA. Molecules, 2021, 26(9), 2566.
[http://dx.doi.org/10.3390/molecules26092566] [PMID: 33924894]
[320]
Papi, F.; Bazzicalupi, C.; Ferraroni, M.; Ciolli, G.; Lombardi, P.; Khan, A.Y.; Kumar, G.S.; Gratteri, P. Pyridine derivative of the natural alkaloid berberine as human Telomeric G4-DNA binder: A solution and solid-state study. ACS Med. Chem. Lett., 2020, 11(5), 645-650.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00516] [PMID: 32435365]
[321]
Zhang, W.J.; Ou, T.M.; Lu, Y.J.; Huang, Y.Y.; Wu, W.B.; Huang, Z.S.; Zhou, J.L.; Wong, K.Y.; Gu, L.Q. 9-Substituted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA. Bioorg. Med. Chem., 2007, 15(16), 5493-5501.
[http://dx.doi.org/10.1016/j.bmc.2007.05.050] [PMID: 17574421]
[322]
Yang, C.; Hu, R.; Li, Q.; Li, S.; Xiang, J.; Guo, X.; Wang, S.; Zeng, Y.; Li, Y.; Yang, G. Visualization of parallel G-quadruplexes in cells with a series of new developed bis(4-aminobenzylidene)acetone derivatives. ACS Omega, 2018, 3(9), 10487-10492.
[http://dx.doi.org/10.1021/acsomega.8b01190] [PMID: 30320244]
[323]
Chung, W.J.; Heddi, B.; Hamon, F.; Teulade-Fichou, M.P.; Phan, A.T. Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC(3). Angew. Chem. Int. Ed. Engl., 2014, 53(4), 999-1002.
[http://dx.doi.org/10.1002/anie.201308063] [PMID: 24356977]
[324]
Di Leva, F.S.; Zizza, P.; Cingolani, C.; D’Angelo, C.; Pagano, B.; Amato, J.; Salvati, E.; Sissi, C.; Pinato, O.; Marinelli, L.; Cavalli, A.; Cosconati, S.; Novellino, E.; Randazzo, A.; Biroccio, A. Exploring the chemical space of G-quadruplex binders: Discovery of a novel chemotype targeting the human telomeric sequence. J. Med. Chem., 2013, 56(23), 9646-9654.
[http://dx.doi.org/10.1021/jm401185b] [PMID: 24256368]
[325]
Xie, X.; Reznichenko, O.; Chaput, L.; Martin, P.; Teulade-Fichou, M.P.; Granzhan, A. Topology-selective, fluorescent “light-up” probes for G-quadruplex DNA based on photoinduced electron transfer. Chemistry, 2018, 24(48), 12638-12651.
[http://dx.doi.org/10.1002/chem.201801701] [PMID: 29878408]
[326]
Li, J.; Jin, X.; Hu, L.; Wang, J.; Su, Z. Identification of nonplanar small molecule for G-quadruplex grooves: Molecular docking and molecular dynamic study. Bioorg. Med. Chem. Lett., 2011, 21(23), 6969-6972.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.125] [PMID: 22018460]
[327]
Dhamodharan, V.; Harikrishna, S.; Jagadeeswaran, C.; Halder, K.; Pradeepkumar, P.I. Selective G-quadruplex DNA stabilizing agents based on bisquinolinium and bispyridinium derivatives of 1,8-naphthyridine. J. Org. Chem., 2012, 77(1), 229-242.
[http://dx.doi.org/10.1021/jo201816g] [PMID: 22126189]
[328]
Marchand, A.; Granzhan, A.; Iida, K.; Tsushima, Y.; Ma, Y.; Nagasawa, K.; Teulade-Fichou, M.P.; Gabelica, V. Ligand-induced conformational changes with cation ejection upon binding to human telomeric DNA G-quadruplexes. J. Am. Chem. Soc., 2015, 137(2), 750-756.
[http://dx.doi.org/10.1021/ja5099403] [PMID: 25525863]
[329]
Dai, J.; Punchihewa, C.; Ambrus, A.; Chen, D.; Jones, R.A.; Yang, D. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation. Nucleic Acids Res., 2007, 35(7), 2440-2450.
[http://dx.doi.org/10.1093/nar/gkm009] [PMID: 17395643]
[330]
Cousins, A.R.; Ritson, D.; Sharma, P.; Stevens, M.F.; Moses, J.E.; Searle, M.S. Ligand selectivity in stabilising tandem parallel folded G-quadruplex motifs in human telomeric DNA sequences. Chem. Commun. (Camb.), 2014, 50(96), 15202-15205.
[http://dx.doi.org/10.1039/C4CC07487D] [PMID: 25338751]
[331]
Maji, B.; Kumar, K.; Muniyappa, K.; Bhattacharya, S. New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer. Org. Biomol. Chem., 2015, 13(30), 8335-8348.
[http://dx.doi.org/10.1039/C5OB00675A] [PMID: 26149178]
[332]
Collie, G.W.; Promontorio, R.; Hampel, S.M.; Micco, M.; Neidle, S.; Parkinson, G.N. Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands. J. Am. Chem. Soc., 2012, 134(5), 2723-2731.
[http://dx.doi.org/10.1021/ja2102423] [PMID: 22280460]
[333]
Gavathiotis, E.; Heald, R.A.; Stevens, M.F.; Searle, M.S. Drug recognition and stabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat. J. Mol. Biol., 2003, 334(1), 25-36.
[http://dx.doi.org/10.1016/j.jmb.2003.09.018] [PMID: 14596797]
[334]
Gavathiotis, E.; Searle, M.S. Structure of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat: Evidence for A-tetrad formation from NMR and molecular dynamics simulations. Org. Biomol. Chem., 2003, 1(10), 1650-1656.
[http://dx.doi.org/10.1039/b300845m] [PMID: 12926351]
[335]
Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc., 2008, 130(21), 6722-6724.
[http://dx.doi.org/10.1021/ja8016973] [PMID: 18457389]
[336]
Uytterhoeven, K.; Sponer, J.; Van Meervelt, L. Two 1: 1 binding modes for distamycin in the minor groove of d(GGCCAATTGG). Eur. J. Biochem., 2002, 269(12), 2868-2877.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02952.x] [PMID: 12071949]
[337]
Ambrus, A.; Chen, D.; Dai, J.; Jones, R.A.; Yang, D. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry, 2005, 44(6), 2048-2058.
[http://dx.doi.org/10.1021/bi048242p] [PMID: 15697230]
[338]
Phan, A.T.; Kuryavyi, V.; Gaw, H.Y.; Patel, D.J. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol., 2005, 1(3), 167-173.
[http://dx.doi.org/10.1038/nchembio723] [PMID: 16408022]
[339]
Głuszyńska, A.; Juskowiak, B.; Kuta-Siejkowska, M.; Hoffmann, M.; Haider, S. Carbazole Derivatives’ Binding to c-KIT G-Quadruplex DNA. Molecules, 2018, 23(5), 1134.
[http://dx.doi.org/10.3390/molecules23051134] [PMID: 29747481]
[340]
Collie, G.W.; Sparapani, S.; Parkinson, G.N.; Neidle, S. Structural basis of telomeric RNA quadruplex--acridine ligand recognition. J. Am. Chem. Soc., 2011, 133(8), 2721-2728.
[http://dx.doi.org/10.1021/ja109767y] [PMID: 21291211]
[341]
Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; Chen, H.; Tang, Y. Directly lighting up RNA G-quadruplexes from test tubes to living human cells. Nucleic Acids Res., 2015, 43(20), 9575-9586.
[http://dx.doi.org/10.1093/nar/gkv1040] [PMID: 26476445]
[342]
Yu, L.; Verwilst, P.; Shim, I.; Zhao, Y-Q.; Zhou, Y.; Kim, J.S. Fluorescent Visualization of Nucleolar G-Quadruplex RNA and Dynamics of Cytoplasm and Intranuclear Viscosity. CCS Chemistry., 2021, 3(11), 2725-2739.
[http://dx.doi.org/10.31635/ccschem.020.202000479]
[343]
Yan, J.W.; Chen, S.B.; Liu, H.Y.; Ye, W.J.; Ou, T.M.; Tan, J.H.; Li, D.; Gu, L.Q.; Huang, Z.S. Development of a new colorimetric and red-emitting fluorescent dual probe for G-quadruplex nucleic acids. Chem. Commun. (Camb.), 2014, 50(52), 6927-6930.
[http://dx.doi.org/10.1039/C4CC01472C] [PMID: 24841696]
[344]
Yu, K.K.; Li, K.; He, H.Z.; Liu, Y.H.; Bao, J.K.; Yu, X.Q. A label-free fluorescent probe for accurate mitochondrial G-quadruplex structures tracking via assembly hindered rotation induced emission. Sens. Actuators B Chem., 2020, 321, 128479.
[http://dx.doi.org/10.1016/j.snb.2020.128479]
[345]
Nicoludis, J.M.; Barrett, S.P.; Mergny, J.L.; Yatsunyk, L.A. Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids Res., 2012, 40(12), 5432-5447.
[http://dx.doi.org/10.1093/nar/gks152] [PMID: 22362740]
[346]
Liu, L.; Shao, Y.; Peng, J.; Huang, C.; Liu, H.; Zhang, L. Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor. Anal. Chem., 2014, 86(3), 1622-1631.
[http://dx.doi.org/10.1021/ac403326m] [PMID: 24405563]
[347]
Głuszyńska, A.; Rajczak, E.; Juskowiak, B. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator. Chem. Pap., 2013, 67(9), 1231-1239.
[http://dx.doi.org/10.2478/s11696-013-0343-7]
[348]
Zhao, J.; Yang, Z.; Zhai, Q.; Wei, D. Specific recognition of telomeric multimeric G-quadruplexes by a simple-structure quinoline derivative. Anal. Chim. Acta, 2020, 1132, 93-100.
[http://dx.doi.org/10.1016/j.aca.2020.07.017] [PMID: 32980115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy