Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

New Imidazo[1,2-a]pyridin-2-yl Derivatives as AChE, BChE, and LOX Inhibitors; Design, Synthesis, and Biological Evaluation

Author(s): Roghayeh Esfandiari, Parsa Moghimi-Rad, Mohammed Hussen Bule, Effat Souri, Hamid Nadri, Mohammad Mahdavi, Roshanak Ghobadian and Mohsen Amini*

Volume 20, Issue 11, 2023

Published on: 22 September, 2022

Page: [1784 - 1798] Pages: 15

DOI: 10.2174/1570180819666220608111906

Price: $65

Abstract

Background: Inhibition of cholinesterase enzyme has been recognized as an important target in the symptomatic treatment of Alzheimer’s disease.

Objective: In the current work, a series of new N-(4-(imidazo[1,2-a]pyridin-2-yl)phenyl)cinnamamide derivatives were synthesized and their inhibitory activities against acetyl cholinesterase, butrylcholinesterase, and Lipoxygenase were evaluated.

Methods: The target compounds were synthesized as the literature reported with some modifications. The AChE, BChE, and LOX inhibitory activities of the synthesized compounds were evaluated using in vitro methods. The docking and kinetic studies were performed for the most potent compounds to evaluate the inhibition mechanism.

Results: The structural elucidation of the synthesized imidazo-pyridine derivatives was performed by different spectroscopic techniques including IR, NMR, and Mass. Most of the synthesized compounds demonstrated good AChE, BChE, and LOX inhibitory activities. The most active AChE, BChE, and sLOX-1 inhibitors were found for compounds 4a, 4g, and 4l, respectively. The docking study also revealed that the three compounds, 4a, 4g, and 4l, have important binding interactions with the AChE, BChE, and sLOX-1 enzyme active sites, respectively.

Conclusion: The results of current study shows imidazo[1,2-a]pyridine derivatives have potential for development of novel drug candidate for AD as AChE, BChE and sLOX-1 inhibitors.

Keywords: Imidazopyridine, synthesis, cholinesterase, lipoxygenase, docking study, alzheimer.

Graphical Abstract

[1]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[2]
Hirbod, K. Jalili-baleh, l.; Nadri, H.; Sadat Ebrahimi, S.E.; Moradi, A.; Pakseresht, B.; Foroumadi, A.; Shafiee, A.; Khoobi, M. Coumarin derivatives bearing benzoheterocycle moiety: Synthesis, cholinesterase inhibitory, and docking simulation study. Iran JBMS, 2017, 20, 631-638.
[3]
Ghobadian, R.; Mahdavi, M.; Nadri, H.; Moradi, A.; Edraki, N.; Akbarzadeh, T.; Sharifzadeh, M.; Bukhari, S.N.A.; Amini, M. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities. Eur. Med. Chem, 2018, 155, 49-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.031] [PMID: 29857276]
[4]
Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; Guerra, V.; Sardone, R.; Abbrescia, D.I.; Bellomo, A.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Sabbá, C.; Panza, F. Relationships of dietary patterns, foods, and micro- and macronutrients with alzheimer’s disease and late-life cognitive disorders: A systematic review. J. Alzheimers Dis., 2017, 59(3), 815-849.
[http://dx.doi.org/10.3233/JAD-170248] [PMID: 28697569]
[5]
Akrami, H.; Mirjalili, B.F.; Khoobi, M.; Nadri, H.; Moradi, A.; Sakhteman, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Indolinone-based acetylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling. Eur. J. Med. Chem., 2014, 84, 375-381.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.017] [PMID: 25036795]
[6]
Mohajeri, M.H.B.; Troesch, B.; Weber, P. Inadequate supply of vitamins and DHA in the elderly: Implications for brain aging and Alzheimer-type dementia. Nutrition, 2015, 31(2), 261-275.
[http://dx.doi.org/10.1016/j.nut.2014.06.016] [PMID: 25592004]
[7]
Pordel, M.; Chegini, H.; Ramezani, S.; Daee, M. New fluorescent heterocyclic systems from imidazo [1, 2-a] pyridine: Design, synthesis, spectral studies and quantum-chemical investigations. J. Mol. Struct., 2017, 1129, 105-112.
[http://dx.doi.org/10.1016/j.molstruc.2016.08.085]
[8]
Bule, M.H.; Ahmed, I.; Maqbool, F.; Muhammad Anjum Zia, M. Quinazolinone derivatives as a potential class of compounds in malaria drug discovery. Int. J. Pharmacol., 2017, 13(7), 818-831.
[http://dx.doi.org/10.3923/ijp.2017.818.831]
[9]
Assadieskandar, A.; Amini, M.; Salehi, M.; Sadeghian, H.; Alimardani, M.; Sakhteman, A.; Nadri, H.; Shafiee, A. Synthesis and SAR study of 4,5-diaryl-1H-imidazole-2(3H)-thione derivatives, as potent 15-lipoxygenase inhibitors. Bioorg. Med. Chem., 2012, 20(24), 7160-7166.
[http://dx.doi.org/10.1016/j.bmc.2012.09.050] [PMID: 23117172]
[10]
Lefin, R.; van der Walt, M.M.; Milne, P.J. Terre’Blanche, G. Imidazo[1,2-α]pyridines possess adenosine A1 receptor affinity for the potential treatment of cognition in neurological disorders. Bioorg. Med. Chem. Lett., 2017, 27(17), 3963-3967.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.071] [PMID: 28789895]
[11]
Marchand, P.; Bazin, M.A.; Pagniez, F.; Rivière, G.; Bodero, L.; Marhadour, S.; Nourrisson, M.R.; Picot, C.; Ruchaud, S.; Bach, S.; Baratte, B.; Sauvain, M.; Pareja, D.C.; Vaisberg, A.J.; Le Pape, P. Synthesis, antileishmanial activity and cytotoxicity of 2,3-diaryl- and 2,3,8-trisubstituted imidazo[1,2-a]pyrazines. Eur. J. Med. Chem., 2015, 103, 381-395.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.002] [PMID: 26383125]
[12]
Dam, J.; Ismail, Z.; Kurebwa, T.; Gangat, N.; Harmse, L.; Marques, H.M.; Lemmerer, A.; Bode, M.L.; de Koning, C.B. Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity. Eur. J. Med. Chem., 2017, 126, 353-368.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.041] [PMID: 27907874]
[13]
Marcinkowska, M.; Kołaczkowski, M.; Kamiński, K.; Bucki, A.; Pawłowski, M.; Siwek, A.; Karcz, T.; Mordyl, B.; Starowicz, G.; Kubowicz, P.; Pękala, E.; Wesołowska, A.; Samochowiec, J.; Mierzejewski, P.; Bienkowski, P. Design, synthesis, and biological evaluation of fluorinated imidazo[1,2-a]pyridine derivatives with potential antipsychotic activity. Eur. J. Med. Chem., 2016, 124, 456-467.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.059] [PMID: 27598234]
[14]
Xi, G.L.; Liu, Z.Q. Introducing ferrocene into imidazo[1,2-a]pyridine by Groebke three-component-reaction for scavenging radicals and inhibiting DNA oxidation. Tetrahedron, 2015, 71(52), 9602-9610.
[http://dx.doi.org/10.1016/j.tet.2015.10.080]
[15]
Wisniewska, J.M.; Rödl, C.B.; Kahnt, A.S.; Buscató, E.; Ulrich, S.; Tanrikulu, Y.; Achenbach, J.; Rörsch, F.; Grösch, S.; Schneider, G.; Cinatl, J., Jr; Proschak, E.; Steinhilber, D.; Hofmann, B. Molecular characterization of EP6-A novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochem. Pharmacol., 2012, 83(2), 228-240.
[http://dx.doi.org/10.1016/j.bcp.2011.10.012] [PMID: 22027220]
[16]
Lawson, M.; Rodrigo, J.; Baratte, B.; Robert, T.; Delehouzé, C.; Lozach, O.; Ruchaud, S.; Bach, S.; Brion, J.D.; Alami, M.; Hamze, A. Synthesis, biological evaluation and molecular modeling studies of imidazo[1,2-a]pyridines derivatives as protein kinase inhibitors. Eur. J. Med. Chem., 2016, 123, 105-114.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.040] [PMID: 27474927]
[17]
Praticò, D.; Zhukareva, V.; Yao, Y.; Uryu, K.; Funk, C.D.; Lawson, J.A.; Trojanowski, J.Q.; Lee, V.M.Y. 12/15-lipoxygenase is increased in Alzheimer’s disease: Possible involvement in brain oxidative stress. Am. J. Pathol., 2004, 164(5), 1655-1662.
[http://dx.doi.org/10.1016/S0002-9440(10)63724-8] [PMID: 15111312]
[18]
Saeedi, M.; Golipoor, M.; Mahdavi, M.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Phthalimide-Derived N-Benzylpyridinium halides targeting cholinesterases: Synthesis and bioactivity of new potential Anti-Alzheimer’s disease agents. Arch. Pharm. (Weinheim), 2016, 349(4), 293-301.
[http://dx.doi.org/10.1002/ardp.201500425] [PMID: 26898241]
[19]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[20]
Baharloo, F.; Moslemin, M.H.; Nadri, H.; Asadipour, A.; Mahdavi, M.; Emami, S.; Firoozpour, L.; Mohebat, R.; Shafiee, A.; Foroumadi, A. Benzofuran-derived benzylpyridinium bromides as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2015, 93, 196-201.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.009] [PMID: 25681712]
[21]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.008] [PMID: 27863370]
[22]
MarvinSketch 19.1; ChemAxon Budapest, 2018.
[23]
Visualizer, D.S. 2017 Accelrys software inc. Discovery Studio Visualizer, , 2.
[24]
Schrodinger, L.L.C. The AxPyMOL molecular graphics plugin for microsoft powerpoint. Version, 2018, 1, 8.
[25]
Steere, J.; Wolf, S. The ultrasound promoted Knoevenenagel condensation of aromatic aldehydes. Tetrahedron Lett., 1998, 39, 8013-8016.
[http://dx.doi.org/10.1016/S0040-4039(98)01789-4]
[26]
Xu, Y.; Wang, N.Y.; Song, X.J.; Lei, Q.; Ye, T.H.; You, X.Y.; Zuo, W.Q.; Xia, Y.; Zhang, L.D.; Yu, L.T. Discovery of novel N-(5-(tert-butyl)isoxazol-3-yl)-N′-phenylurea analogs as potent FLT3 inhibitors and evaluation of their activity against acute myeloid leukemia in vitro and in vivo. Bioorg. Med. Chem., 2015, 23(15), 4333-4343.
[http://dx.doi.org/10.1016/j.bmc.2015.06.033] [PMID: 26142317]
[27]
Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol., 1978, 4(4), 273-277.
[http://dx.doi.org/10.1111/j.1365-2990.1978.tb00545.x] [PMID: 703927]
[28]
Molochkina, E.M.; Treshchenkova, Y.A. The Effect of alpha-tocopherol on the activity of acetylcholinesterases from different sources. Neurochem. J., 2019, 13(1), 36-42.
[http://dx.doi.org/10.1134/S1819712419010161]
[29]
Bharate, S.B.; Guo, L.; Reeves, T.E.; Cerasoli, D.M.; Thompson, C.M. Bisquaternary pyridinium oximes: Comparison of in vitro reactivation potency of compounds bearing aliphatic linkers and heteroaromatic linkers for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase. Bioorg. Med. Chem., 2010, 18(2), 787-794.
[http://dx.doi.org/10.1016/j.bmc.2009.11.052] [PMID: 20005727]
[30]
Ng, C.H.; Rullah, K.; Aluwi, M.F.F.; Abas, F.; Lam, K.W.; Ismail, I.S.; Narayanaswamy, R.; Jamaludin, F.; Shaari, K. Synthesis and docking studies of 2,4,6-trihydroxy-3-geranylacetophenone analogs as potential lipoxygenase inhibitor. Molecules, 2014, 19(8), 11645-11659.
[http://dx.doi.org/10.3390/molecules190811645] [PMID: 25100256]
[31]
Sahin, S.C.; Cavas, L. Can soybean lipoxygenases be real models for mammelian lipoxygenase? A bioinformatic approch. J. Turkish Chem. Soc., 2021, 8, 79-102.
[32]
Muñoz-Ramírez, A.; Mascayano-Collado, C.; Barriga, A.; Echeverría, J.; Urzúa, A. Inhibition of soybean 15-lipoxygenase and human 5-lipoxygenase by extracts of leaves, stem bark, phenols and catechols isolated from lithraea caustica (Anacardiaceae). Front. Pharmacol., 2020, 11, 594257.
[PMID: 33390977]
[33]
Wecksler, A.T.; Garcia, N.K.; Holman, T.R. Substrate specificity effects of lipoxygenase products and inhibitors on soybean lipoxygenase-1. Bioorg. Med. Chem., 2009, 17(18), 6534-6539.
[http://dx.doi.org/10.1016/j.bmc.2009.08.005] [PMID: 19716306]
[34]
Sawatzky, E.; Wehle, S.; Kling, B.; Wendrich, J.; Bringmann, G.; Sotriffer, C.A.; Heilmann, J.; Decker, M. Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J. Med. Chem., 2016, 59(5), 2067-2082.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01674] [PMID: 26886849]
[35]
Brus, B.; Košak, U.; Turk, S.; Pišlar, A.; Coquelle, N.; Kos, J.; Stojan, J.; Colletier, J.P.; Gobec, S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J. Med. Chem., 2014, 57(19), 8167-8179.
[http://dx.doi.org/10.1021/jm501195e] [PMID: 25226236]

© 2024 Bentham Science Publishers | Privacy Policy