Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Preparation of Metformin Biodegradable Polymeric Microparticles by O/O Emulsion Solvent Evaporation: A 32 Full Factorial Design Approach

Author(s): Jayesh Shivaji Patil* and Yogesh Dagadu Pawar

Volume 20, Issue 11, 2023

Published on: 13 September, 2022

Page: [1775 - 1783] Pages: 9

DOI: 10.2174/1570180819666220704105022

Price: $65

conference banner
Abstract

Background: Sustained release of synthetic polymeric microparticles has gained more attention as drug delivery carriers because of their properties such as good stability, low toxicity, dosing frequency, and simple and mild preparation method. The present work was envisaged to reduce the dosing frequency by preparing drug loaded biodegradable microspheres by the O/O emulsion solvent evaporation technique.

Objective: The objective behind microspheres’ preparation is to sustain the metformin release by using ethyl cellulose as a synthetic polymer. The model drug metformin having a low biological half-life (1.5-3 hours) is selected.

Methods: As the metformin is highly water soluble in nature, the oil-in-oil solvent evaporation techniques are used and span 80 is utilized as surfactant. The effect of stirring rate and surfactant concentration on the characteristics of encapsulation efficiency and drug release from the microsphere are investigated.

Results: The results show that the drug-polymer (1:1) ratio gives better sustained release results. The obtained microparticles are characterized by X-RD analysis and Fe-SEM, and release behavior is checked for release patterns. A 32 full factorial design is employed for the responses. The free-flowing spherical microspheres show high drug entrapment efficiency.

Conclusion: The data obtained suggest that microspheres can be successfully designed with sustained release for diabetic treatment.

Keywords: Microspheres, sustained release, factorial design, oil-in-oil solvent evaporation, metformin, ethyl cellulose.

[1]
Arias, J.L.; López-Viota, M.; López-Viota, J.; Delgado, Á.V. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Int. J. Pharm., 2009, 382(1-2), 270-276.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.019] [PMID: 19712736]
[2]
Freitas, S.; Merkle, H.P.; Gander, B. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. J. Control. Release, 2005, 102(2), 313-332.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.015] [PMID: 15653154]
[3]
Hu, L.D.; Liu, Y.; Tang, X.; Zhang, Q. Preparation and in vitro/in vivo evaluation of sustained-release metformin hydrochloride pellets. Eur. J. Pharm. Biopharm., 2006, 64(2), 185-192.
[http://dx.doi.org/10.1016/j.ejpb.2006.04.004] [PMID: 16797948]
[4]
Janjetovic, K.; Vucicevic, L.; Misirkic, M.; Vilimanovich, U.; Tovilovic, G.; Zogovic, N.; Nikolic, Z.; Jovanovic, S.; Bumbasirevic, V.; Trajkovic, V.; Harhaji-Trajkovic, L. Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur. J. Pharmacol., 2011, 651(1-3), 41-50.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.005] [PMID: 21114978]
[5]
Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia, 2017, 60(9), 1586-1593.
[http://dx.doi.org/10.1007/s00125-017-4336-x] [PMID: 28770321]
[6]
Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013] [PMID: 15336378]
[7]
Deshmukh, R.K.; Naik, J.B. Aceclofenac microspheres: Quality by design approach. Mater. Sci. Eng. C, 2014, 36, 320-328.
[http://dx.doi.org/10.1016/j.msec.2013.12.024] [PMID: 24433918]
[8]
Baş, D.; Boyacı, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng., 2007, 78(3), 836-845.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.11.024]
[9]
Chopra, S.; Patil, G.V.; Motwani, S.K. Release modulating hydrophilic matrix systems of losartan potassium: Optimization of formulation using statistical experimental design. Eur. J. Pharm. Biopharm., 2007, 66(1), 73-82.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.001] [PMID: 17056238]
[10]
Kehoe, S.; Kilcup, N.; Boyd, D. Evaluation of cytotoxicity for novel composite embolic microspheres: Material optimization by response surface methodology. Mater. Lett., 2012, 86, 13-17.
[http://dx.doi.org/10.1016/j.matlet.2012.06.087]
[11]
Wang, P.; Zhiwei, W.; Wu, Z. Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett–Burman design experiments. Chem. Eng. J., 2012, 193, 50-58.
[http://dx.doi.org/10.1016/j.cej.2012.04.017]
[12]
Liu, R.S.; Tang, Y.J. Tuber melanosporum fermentation medium optimization by Plackett-Burman design coupled with Draper-Lin small composite design and desirability function. Bioresour. Technol., 2010, 101(9), 3139-3146.
[http://dx.doi.org/10.1016/j.biortech.2009.12.022] [PMID: 20045637]
[13]
Li, X.; Ouyang, J.; Xu, Y.; Chen, M.; Song, X.; Yong, Q.; Yu, S. Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology. Bioresour. Technol., 2009, 100(14), 3613-3617.
[http://dx.doi.org/10.1016/j.biortech.2009.03.001] [PMID: 19342227]
[14]
Kim, C.K.; Kim, S.C.; Shin, H.J.; Kim, K.M.; Oh, K.H.; Lee, Y.B.; Oh, I.J. Preparation and characterization of cytarabine-loaded w/o/w multiple emulsions. Int. J. Pharm., 1995, 124(1), 61-67.
[http://dx.doi.org/10.1016/0378-5173(95)00074-S]
[15]
Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm., 2008, 363(1-2), 26-39.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.018] [PMID: 18706988]
[16]
Maji, R.; Ray, S.; Das, B.; Nayak, A.K. Ethyl cellulose microparticles containing metformin HCl by emulsification-solvent evaporation technique: Effect of formulation variables. ISRN Polymer Science, 2012. Article ID 801827.
[17]
McGinity, J.W.; O’Donnell, P.B. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev., 1997, 28(1), 25-42.
[http://dx.doi.org/10.1016/S0169-409X(97)00049-5] [PMID: 10837563]
[18]
Mokale, V. J.; Naik, J. B.; Yadava, S. K.; Patil, J. S.; Verma, U. Glibenclamide loaded PLA nanoparticles using single emulsion O/W solvent evaporation method: A factorial design approach 2014, 18(1), 1.
[19]
Patil, J.S.; Patil, P.B.; Sonawane, P.; Naik, J.B. Design and development of sustained-release glyburide-loaded silica nanoparticles. Bull. Mater. Sci., 2017, 40(2), 263-270.
[http://dx.doi.org/10.1007/s12034-017-1369-1]
[20]
Jani, G.K.; Gohel, M.C. Effects of selected formulation parameters on the entrapment of diclofenac sodium in ethyl cellulose microspheres. J. Control. Release, 1997, 43(2-3), 245-250.
[http://dx.doi.org/10.1016/S0168-3659(96)01489-7]
[21]
Yang, Y.Y.; Chia, H.H.; Chung, T.S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J. Control. Release, 2000, 69(1), 81-96.
[http://dx.doi.org/10.1016/S0168-3659(00)00291-1] [PMID: 11018548]
[22]
Patil, J.; Rajput, R.; Nemade, R.; Naik, J. Preparation and characterization of artemether loaded solid lipid nanoparticles: A 32 factorial design approach. Mater. Technol., 2018, 35(11-12), 719-726.
[http://dx.doi.org/10.1080/10667857.2018.1475142]
[23]
Maravajhala, V.; Dasari, N.; Sepuri, A.; Joginapalli, S. Design and evaluation of niacin microspheres. Indian J. Pharm. Sci., 2009, 71(6), 663-669.
[http://dx.doi.org/10.4103/0250-474X.59549] [PMID: 20376220]
[24]
Yadava, S.K.; Patil, J.S.; Mokale, V.J.; Naik, J.B. Sodium alginate/HPMC/liquid paraffin emulsified (o/w) gel beads, by factorial design approach; and in vitro analysis. J. Sol-Gel Sci. Technol., 2014, 71(1), 60-68.
[http://dx.doi.org/10.1007/s10971-014-3325-5]
[25]
Jelvehgari, M.; Nokhodchi, A.; Rezapour, M.; Valizadeh, H. Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method. Indian J. Pharm. Sci., 2010, 72(1), 72-78.
[http://dx.doi.org/10.4103/0250-474X.62251] [PMID: 20582193]
[26]
Das, M.K.; Rao, K.R. Evaluation of zidovudine encapsulated ethylcellulose microspheres prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion technique. Acta Pol. Pharm., 2006, 63(2), 141-148.
[PMID: 17514878]
[27]
Mokale, V.; Rajput, R.; Patil, J.; Yadava, S.; Naik, J. Formulation of metformin hydrochloride nanoparticles by using spray drying technique and in vitro evaluation of sustained release with 32-level factorial design approach. Dry. Technol., 2016, 34(12), 1455-1461.
[http://dx.doi.org/10.1080/07373937.2015.1125916]
[28]
Jagtap, Y.M.; Bhujbal, R.K.; Ranade, A.N.; Ranpise, N.S. Effect of various polymers concentrations on physicochemical properties of floating microspheres. Indian J. Pharm. Sci., 2012, 74(6), 512-520.
[http://dx.doi.org/10.4103/0250-474X.110578] [PMID: 23798776]
[29]
Deshmukh, R.K.; Naik, J.B. Diclofenac sodium-loaded Eudragit® microspheres: Optimization using statistical experimental design. J. Pharm. Innov., 2013, 8(4), 276-287.
[http://dx.doi.org/10.1007/s12247-013-9167-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy