Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

1,2,4 Triazoles and 1,2,4 Oxadiazoles Scaffold as SGLT2 Inhibitors: Molecular Docking and ADMET Studies

Author(s): Shivani Sharma and Amit Mittal*

Volume 20, Issue 11, 2023

Published on: 29 August, 2022

Page: [1799 - 1811] Pages: 13

DOI: 10.2174/1570180819666220610142359

Price: $65

Abstract

Background: Diabetes mellitus (DM) is a metabolic disorder in which blood sugar levels are elevated over a prolonged period of time. SGLT2 inhibitors have recently demonstrated positive effects on diabetes care by minimizing hyperglycemia through decreased glucosuria.

Objective: The aim was to carry out molecular docking and ADMET studies of 1,2,4 triazole and 1,2,4 oxadiazole scaffolds as SGLT2 inhibitors.

Methods: Structures of newer molecules of two series of 1,2,4 triazoles and 1,2,4 oxadiazoles were drawn by using Chem Draw Ultra 8.0 software. The AutoDock Vina 1.5.6 software was used for the molecular docking studies. In silico ADMET properties were calculated online using admetSAR and pkCSM predictors.

Results: We have designed 1563 different 1,2,4 triazoles and 1,2,4 oxadiazoles as SGLT2 inhibitors. A total of 14 compounds from both the triazole and oxadiazole series were shown to have better binding affinity to the SGLT2 protein than canagliflozin. Among them, SSN 10 and SSON 7 showed the highest docking score and binding affinity of -10.7 kcal/mol and -10.5 kcal/mol, respectively. In silico ADMET properties were also calculated in order to determine physiochemical properties, pharmacokinetics and toxicity of best binding molecules. In addition, these molecules were predicted to be non-carcinogens, showing good oral bioavailability and physiochemical characteristics safer with optimal partition coefficient (LogP = 2.07-5.24).

Conclusion: Novel SGLT2 inhibitors were designed based on the scaffold of 1,2,4 triazoles and 1,2,4 oxadiazoles resulting in a new lead molecule with a maximum binding affinity; these molecules were also estimated to be noncarcinogenic with low LogP.

Keywords: Type-2 Diabetes Mellitus, 3DH4, ADMET, SGLT2 Inhibitors, Molecular docking, Auto Dock Vina.

Graphical Abstract

[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Ramachandran, U.; Kumar, R.; Mittal, A. Fine tuning of PPAR ligands for type 2 diabetes and metabolic syndrome. Mini Rev. Med. Chem., 2006, 6(5), 563-573.
[http://dx.doi.org/10.2174/138955706776876140] [PMID: 16719831]
[3]
Bharatam, P.V.; Patel, D.S.; Adane, L.; Mittal, A.; Sundriyal, S. Modeling and informatics in designing anti-diabetic agents. Curr. Pharm. Des., 2007, 13(34), 3518-3530.
[http://dx.doi.org/10.2174/138161207782794239] [PMID: 18220788]
[4]
Bolen, S.; Feldman, L.; Vassy, J.; Wilson, L.; Yeh, H-C.; Marinopoulos, S.; Wiley, C.; Selvin, E.; Wilson, R.; Bass, E.B.; Brancati, F.L. Systematic review: Comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann. Intern. Med., 2007, 147(6), 386-399.
[http://dx.doi.org/10.7326/0003-4819-147-6-200709180-00178] [PMID: 17638715]
[5]
Kaur, P.; Mittal, A.; Nayak, S.K.; Vyas, M.; Mishra, V.; Khatik, G.L. Current Strategies and Drug Targets in the Management of Type 2 Diabetes Mellitus. Curr. Drug Targets, 2018, 19(15), 1738-1766.
[http://dx.doi.org/10.2174/1389450119666180727142902] [PMID: 30051787]
[6]
Mackenzie, B.; Panayotova-Heiermann, M.; Loo, D.D.; Lever, J.E.; Wright, E.M. SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. J. Biol. Chem., 1994, 269(36), 22488-22491.
[http://dx.doi.org/10.1016/S0021-9258(17)31672-1] [PMID: 8077195]
[7]
Lee, Y.J.; Lee, Y.J.; Han, H.J. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int. Suppl., 2007, 72(106), S27-S35.
[http://dx.doi.org/10.1038/sj.ki.5002383] [PMID: 17653207]
[8]
Wright, E.M.; Turk, E. The sodium/glucose cotransport family SLC5. Pflugers Arch., 2004, 447(5), 510-518.
[http://dx.doi.org/10.1007/s00424-003-1202-0] [PMID: 12748858]
[9]
Kanai, Y.; Lee, W.S.; You, G.; Brown, D.; Hediger, M.A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest., 1994, 93(1), 397-404.
[http://dx.doi.org/10.1172/JCI116972] [PMID: 8282810]
[10]
Baker, W.L.; Smyth, L.R.; Riche, D.M.; Bourret, E.M.; Chamberlin, K.W.; White, W.B. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J. Am. Soc. Hypertens., 2014, 8(4), 262-75.e9.
[http://dx.doi.org/10.1016/j.jash.2014.01.007] [PMID: 24602971]
[11]
Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.; Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(4), 262-274.
[http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00007] [PMID: 24026259]
[12]
Bołdys, A.; Okopień, B. Inhibitors of type 2 sodium glucose co-transporters--a new strategy for diabetes treatment. Pharmacol. Rep., 2009, 61(5), 778-784.
[http://dx.doi.org/10.1016/S1734-1140(09)70133-1] [PMID: 19904000]
[13]
Sarnoski-Brocavich, S.; Hilas, O. Canagliflozin (invokana), a novel oral agent for type-2 diabetes. P&T, 2013, 38(11), 656-666.
[PMID: 24391386]
[14]
Miao, Z.; Nucci, G.; Amin, N.; Sharma, R.; Mascitti, V.; Tugnait, M.; Vaz, A.D.; Callegari, E.; Kalgutkar, A.S. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab. Dispos., 2013, 41(2), 445-456.
[http://dx.doi.org/10.1124/dmd.112.049551] [PMID: 23169609]
[15]
White, J.R. Jr Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence. Ann. Pharmacother., 2015, 49(5), 582-598.
[http://dx.doi.org/10.1177/1060028015573564] [PMID: 25712444]
[16]
Markham, A. Remogliflozin Etabonate: First Global Approval. Drugs, 2019, 79(10), 1157-1161.
[http://dx.doi.org/10.1007/s40265-019-01150-9] [PMID: 31201711]
[17]
Poole, R.M.; Dungo, R.T. Ipragliflozin: First global approval. Drugs, 2014, 74(5), 611-617.
[http://dx.doi.org/10.1007/s40265-014-0204-x] [PMID: 24668021]
[18]
Markham, A.; Elkinson, S. Luseogliflozin: First global approval. Drugs, 2014, 74(8), 945-950.
[http://dx.doi.org/10.1007/s40265-014-0230-8] [PMID: 24848756]
[19]
Poole, R.M.; Prossler, J.E. Tofogliflozin: First global approval. Drugs, 2014, 74(8), 939-944.
[http://dx.doi.org/10.1007/s40265-014-0229-1] [PMID: 24848755]
[20]
Yong, X.; Wen, A.; Liu, X.; Liu, H.; Liu, Y-P.; Li, N.; Hu, T.; Chen, Y.; Wang, M.; Wang, L.; Dai, X.; Huang, J.; Li, J.; Shen, H. Pharmacokinetics and Pharmacodynamics of Henagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, in Chinese Patients with Type 2 Diabetes Mellitus. Clin. Drug Investig., 2016, 36(3), 195-202.
[http://dx.doi.org/10.1007/s40261-015-0366-7] [PMID: 26692004]
[21]
Halvorsen, Y.C.; Walford, G.A.; Massaro, J.; Aftring, R.P.; Freeman, M.W. A 96-week, multinational, randomized, double-blind, parallel-group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes. Metab., 2019, 21(11), 2496-2504.
[http://dx.doi.org/10.1111/dom.13833] [PMID: 31297965]
[22]
Kaur, K.; Kaur, P.; Mittal, A.; Nayak, S.K.; Khatik, G.L. Design and molecular docking studies of novel antimicrobial peptides using Autodock molecular docking software. Asian J. Pharm. Clin. Res., 2017, 10(16), 28-31.
[http://dx.doi.org/10.22159/ajpcr.2017.v10s4.21332]
[23]
Chaurasiya, S.; Kaur, P.; Nayak, S.K.; Khatik, G.L. Virtual screening for identification of novel potent EGFR inhibitors through AutoDock Vina molecular modeling software. J. Chem. Pharm. Res., 2016, 8, 353-360.
[24]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[25]
Energy minimizations were performed MM2 interface program on Chem3D Ultra 8.0, and structures were drawn by ChemDraw Ultra 8.0; Cambridge Soft: Cambridge, 1985.
[26]
Abramson, J.F.S.; Cascio, D. Crystal structure of sodium/Sugar symporter with bound galactose from vibrio parahaemolyticus. Available from: https://www.rcsb.org/structure/3DH4 (Accessed on May 7, 2019).
[27]
admetSAR prediction. Available from: http://lmmd.ecust.edu.cn/admetsar1 (Accessed on March 10, 2020).
[28]
pkCSM prediction. Available from: http://biosig.unimelb.edu.au/pkcsm/prediction (Accessed on Jan 19, 2020).
[29]
Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Miri, R.; Shahabipour, S. Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Struct. Chem., 2015, 26(2), 607-621.
[http://dx.doi.org/10.1007/s11224-014-0523-2]
[30]
da Silva-Junior, E.F.; Barcellos Franca, P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of Cruzain inhibitors. Curr. Comput-Aided Drug Des., 2018, 14(1), 68-78.
[http://dx.doi.org/10.2174/1573409913666170519112758] [PMID: 28523999]
[31]
Kumar, S.; Khatik, G.L.; Mittal, A. In-silico Molecular Docking Study to Search New SGLT2 Inhibitor based on Dioxabicy- clo[3.2.1] octane Scaffold. Curr. Comput-Aided Drug Des., 2020, 16(2), 145-154.
[PMID: 30345926]
[32]
Li, A.R.; Zhang, J.; Greenberg, J.; Lee, T.; Liu, J. Discovery of non-glucoside SGLT2 inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(8), 2472-2475.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.056] [PMID: 21398124]
[33]
Caldwell, G.W.; Yan, Z.; Tang, W.; Dasgupta, M.; Hasting, B. ADME optimization and toxicity assessment in early- and late-phase drug discovery. Curr. Top. Med. Chem., 2009, 9(11), 965-980.
[http://dx.doi.org/10.2174/156802609789630929] [PMID: 19747120]
[34]
Fatima, S.; Gupta, P.; Sharma, S.; Sharma, A.; Agarwal, S.M. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med. Chem., 2020, 12(1), 69-87.
[http://dx.doi.org/10.4155/fmc-2019-0206] [PMID: 31793338]
[35]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[36]
Ghaleb, A.; Aouidate, A.; Bouachrine, M.; Lakhlifi, T.; Sbai, A. In silico exploration of aryl halides analogues as checkpoint kinase 1 inhibitors by using 3D QSAR, molecular docking study, and ADMET screening. Adv. Pharm. Bull., 2019, 9(1), 84-92.
[http://dx.doi.org/10.15171/apb.2019.011] [PMID: 31011562]

© 2024 Bentham Science Publishers | Privacy Policy