Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Pathophysiology of SARS-CoV2 Mediated Depression, Therapeutics, and Consequences: A Comprehensive Narrative

Author(s): Khushboo, Nikhat J. Siddiqi and Bechan Sharma*

Volume 23, Issue 2, 2023

Published on: 23 August, 2022

Page: [217 - 229] Pages: 13

DOI: 10.2174/1381612828666220603150637

Price: $65

Abstract

The Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), belongs to emerging and reemerging diseases, which was first identified and reported in Wuhan, China, in December 2019. The genetic sequence of SARS-CoV-2 was similar to the SARS virus, a β-coronavirus. The epidemiological studies suggest that the transmission of SARS-CoV-2 mainly occurs from an infected person to others through close contact with the respiratory droplets or by having contact with SARS-CoV-2 adhering to objects and surfaces. The incubation period ranges from 5 to14 days. The symptoms include fever, dry cough, tiredness, aches, chest pain, conjunctivitis, diarrhea, headache, difficulty in breathing or short breath, loss of taste, smell, rashes on the skin, and sore throat. Some reports indicated that males exhibited lower scores than females, the younger populations displayed increased symptoms, Chinese/Taiwanese people registered only scarce symptoms, and Canadians experienced more symptoms. The results of several studies suggested that while COVID-19 had a significant effect on depression, job instability affected anxiety and depression. The diagnostics to detect the presence of coronavirus involve ELISA and RT-PCR. There is no specific treatment available to eradicate COVID-19. The therapeutics used to treat COVID 19 exhibited severe side effects. Recently, some Indian traditional medicinal plants have shown promise in reducing the risk of viral infection and also boosting the immunity of an individual. This paper presents an overview of the current status of depression in the SARS CoV2 infected people and the measures required to overcome COVID-19 induced depression in patients even after recovery.

Keywords: Corona virus, COVID-19, Depression, Risk factors, Protection, Plant-products, Review

Graphical Abstract

[1]
Chen, Y.; Zhou, H.; Zhou, Y.; Zhou, F. Prevalence of self-reported depression and anxiety among pediatric medical staff members during the COVID-19 outbreak in Guiyang, China. Psychiatry Res., 2020, 288, 113005.
[http://dx.doi.org/10.1016/j.psychres.2020.113005] [PMID: 32315886]
[2]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in Chi-na. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[3]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[4]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[5]
To, K.K.; Tsang, O.T.; Yip, C.C.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.; Choi, C.Y.; Kandamby, D.H.; Lung, D.C.; Tam, A.R.; Poon, R.W.; Fung, A.Y.; Hung, I.F.; Cheng, V.C.; Chan, J.F.; Yuen, K.Y. Consistent detection of 2019 novel coronavirus in sa-liva. Clin. Infect. Dis., 2020, 71(15), 841-843.
[http://dx.doi.org/10.1093/cid/ciaa149] [PMID: 32047895]
[6]
Yang, Y.; Li, W.; Zhang, Q.; Zhang, L.; Cheung, T.; Xiang, Y-T. Mental health services for older adults in China during the COVID-19 outbreak. Lancet Psychiatry, 2020, 7(4), e19.
[http://dx.doi.org/10.1016/S2215-0366(20)30079-1] [PMID: 32085843]
[7]
Mahase, M.E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ, 2020, 368.
[8]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[9]
Murhekar, M.V. SARS-CoV-2 Sero-Prevalence Among General Population and Healthcare Workers in India, December 2020 - January 2021 Preprint SSRN, 2021.
[10]
Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the ini-tial stage of the 2019 Coronavirus Disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health, 2020, 17(5), 1729.
[http://dx.doi.org/10.3390/ijerph17051729] [PMID: 32155789]
[11]
Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; Ho, C. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav. Immun., 2020, 87, 40-48.
[http://dx.doi.org/10.1016/j.bbi.2020.04.028]
[12]
Jeelani, G.; Gupta, I. Covid-19: Centre steps in as doctors get infected 2020. Available from: https://www.indiatoday.in/mail-today/story/covid-19-centre-steps-doctors-get-infected-1662377-2020-04-02 (Accessed on 2020, April 17).
[13]
Roy, D.; Tripathy, S.; Kar, S.K.; Sharma, N.; Verma, S.K.; Kaushal, V. Study of knowledge, attitude, anxiety & perceived mental healthca-re need in Indian population during COVID-19 pandemic. Asian J. Psychiatr., 2020, 51, 102083.
[http://dx.doi.org/10.1016/j.ajp.2020.102083] [PMID: 32283510]
[14]
Mojtahedi, D.; Dagnall, N.; Denovan, A.; Clough, P.; Hull, S.; Canning, D.; Lilley, C.; Papageorgiou, K.A. The relationship between mental toughness, job loss, and mental health issues during the COVID-19 pandemic. Front. Psychiatry, 2021, 11, 607246.
[http://dx.doi.org/10.3389/fpsyt.2020.607246] [PMID: 33613333]
[15]
Posel, D.; Oyenubi, A.; Kollamparambil, U. Job loss and mental health during the COVID-19 lockdown: Evidence from South Africa. PLoS One, 2021, 16(3), e0249352.
[http://dx.doi.org/10.1371/journal.pone.0249352] [PMID: 33784339]
[16]
Rizk, D.N.; Abo Ghanima, M. Anxiety and depression among vaccinated anesthesia and intensive care doctors during COVID-19 pande-mic in United Arab Emirates: A cross-sectional study. Middle East Curr. Psychiatry, 2022, 29(1), 10.
[http://dx.doi.org/10.1186/s43045-022-00179-z]
[17]
Xiaoming, X.; Ming, A.; Su, H.; Wo, W.; Jianmei, C.; Qi, Z.; Hua, H.; Xuemei, L.; Lixia, W.; Jun, C.; Lei, S.; Zhen, L.; Lian, D.; Jing, L.; Handan, Y.; Haitang, Q.; Xiaoting, H.; Xiaorong, C.; Ran, C.; Qinghua, L.; Xinyu, Z.; Jian, T.; Jing, T.; Guanghua, J.; Zhiqin, H.; Nkundi-mana, B.; Li, K. The psychological status of 8817 hospital workers during COVID-19 Epidemic: A cross-sectional study in Chongqing. J. Affect. Disord., 2020, 276, 555-561.
[http://dx.doi.org/10.1016/j.jad.2020.07.092] [PMID: 32871686]
[18]
Flesia, L.; Monaro, M.; Mazza, C.; Fietta, V.; Colicino, E.; Segatto, B.; Roma, P. Predicting perceived stress related to the Covid-19 out-break through stable psychological traits and machine learning models. J. Clin. Med., 2020, 9(10), 3350.
[http://dx.doi.org/10.3390/jcm9103350] [PMID: 33086558]
[19]
Rehman, U.; Shahnawaz, M.G.; Khan, N.H.; Kharshiing, K.D.; Khursheed, M.; Gupta, K.; Kashyap, D.; Uniyal, R. Depression, anxiety and stress among Indians in times of COVID-19 lockdown. Community Ment. Health J., 2021, 57(1), 42-48.
[http://dx.doi.org/10.1007/s10597-020-00664-x] [PMID: 32577997]
[20]
Gao, Y.D.; Ding, M.; Dong, X. Risk factors for severe and critically ill COVID-19 patients. A review. Allergy, 2021, 76, 428-455.
[21]
Shaw, A.C.; Joshi, S.; Greenwood, H.; Panda, A.; Lord, J.M. Aging of the innate immune system. Curr. Opin. Immunol., 2010, 22, 507-513.
[http://dx.doi.org/10.1016/j.coi.2010.05.003]
[22]
Papadopoulos, V.; Li, L.; Samplaski, M. Why does COVID-19 kill more elderly men than women? Is there a role for testosterone? Andrology, 2021, 9, 65-72.
[23]
Lisco, G.; De Tullio, A.; Stragapede, A.; Solimando, A.G.; Albanese, F.; Capobianco, M.; Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Vacca, A.; Racanelli, V.; Triggiani, V. COVID-19 and the endocrine system: A comprehensive review on the theme. J. Clin. Med., 2021, 10(13), 2920.
[http://dx.doi.org/10.3390/jcm10132920] [PMID: 34209964]
[24]
Zheng, Z.; Peng, F.; Xu, B. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and metaanalysis. J. Infect., 2020, 81, e16-e25.
[25]
Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for Covid-19 severity and fatality: A structured literature review. Infection, 2021, 49(1), 15-28.
[http://dx.doi.org/10.1007/s15010-020-01509-1] [PMID: 32860214]
[26]
Abedi, V.; Olulana, O.; Avula, V.; Chaudhary, D.; Khan, A.; Shahjouei, S.; Li, J.; Zand, R. Racial, economic, and health inequality and COVID-19 infection in the United States. J. Racial Ethn. Health Disparities, 2021, 8(3), 732-742.
[http://dx.doi.org/10.1007/s40615-020-00833-4] [PMID: 32875535]
[27]
Zachariah, P.; Johnson, C.L.; Halabi, K.C. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a Children’s Hospital in New York City. New York. JAMA Pediatr., 2020, 174, e202430.
[28]
Cummings, M.J.; Baldwin, M.R.; Abrams, D. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet, 2020, 395, 1763-1770.
[29]
Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I. Hematological findings and complications of COVID-19. Am. J. Hematol., 2020, 95, 834-847.
[30]
Cao, M.; Zhang, D.; Wang, Y. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. medRxiv, 2020, 20030395.
[31]
Fu, L.; Fei, J.; Xu, S. Acute liver injury and its association with death risk of patients with COVID-19: A hospital-based prospective case-cohort study. medRxiv, 2020, 20050997.
[32]
Chen, Y.; Wang, Y.; Fleming, J. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv, 2020, 20033795.
[33]
Chakraborty, S.; Mallajosyula, V.; Tato, C.M.; Tan, G.S.; Wang, T.T. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv. Drug Deliv. Rev., 2021, 172, 314-338.
[34]
Shakoor, H.; Feehan, J.; Al Dhaheri, A.S. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas, 2021, 143, 1-9.
[35]
Bouillon, R.; Marcocci, C.; Carmeliet, G. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev., 2019, 40, 1109-1151.
[http://dx.doi.org/10.1210/er]
[36]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.; French, C.; Aliano, J.; Bhattoa, H. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988]
[37]
Khan, H.M.; Parikh, N.; Megala, S.M.; Predeteanu, G.S. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C. Am. J. Case Rep., 2020, 21, e925521.
[38]
Boechat, J.L.; Wandalsen, G.F.; Kuschnir, F.C.; Delgado, L. COVID-19 and pediatric asthma: Clinical and management challenges. Int. J. Environ. Res. Public Health, 2021, 18(3), 1093.
[39]
Jackson, D.J.; Busse, W.W.; Bacharier, L.B.; Kattan, M.; O’Connor, G.T.; Wood, R.A.; Visness, C.M.; Durham, S.R.; Larson, D.; Esnault, S.; Ober, C.; Gergen, P.J.; Becker, P.; Togias, A.; Gern, J.E.; Altman, M.C. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J. Allergy Clin. Immunol., 2020, 146(1), 203-206.e3.
[http://dx.doi.org/10.1016/j.jaci.2020.04.009] [PMID: 32333915]
[40]
Taquechel, K.; Diwadkar, A.R.; Sayed, S. Pediatric asthma health care utilization, viral testing, and air pollution changes during the CO-VID-19 pandemic. J. Allergy Clin. Immunol. Pract., 2020, 8, 3378-3387.
[41]
Pradhan, A.; Olsson, P.E. Sex differences in severity and mortality from COVID-19: Are males more vulnerable? Biol. Sex Differ., 2020, 11(1), 53.
[http://dx.doi.org/10.1186/s13293-020-00330-7] [PMID: 32948238]
[42]
Amruta, N.; Chastain, W.H.; Paz, M.; Solch, R.J.; Murray-Brown, I.C.; Befeler, J.B.; Gressett, T.E.; Longo, M.T.; Engler-Chiurazzi, E.B.; Bix, G. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev., 2021, 58, 1-15.
[http://dx.doi.org/10.1016/j.cytogfr.2021.02.002] [PMID: 33674185]
[43]
Leung, N.H.L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol., 2021, 19(8), 528-545.
[http://dx.doi.org/10.1038/s41579-021-00535-6] [PMID: 33753932]
[44]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[45]
Patone, M.; Handunnetthi, L.; Saatci, D.; Pan, J.; Katikireddi, S.V.; Razvi, S.; Hunt, D.; Mei, X.W.; Dixon, S.; Zaccardi, F.; Khunti, K.; Watkinson, P.; Coupland, C.A.C.; Doidge, J.; Harrison, D.A.; Ravanan, R.; Sheikh, A.; Robertson, C.; Hippisley-Cox, J. Neurological com-plications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat. Med., 2021, 27(12), 2144-2153.
[http://dx.doi.org/10.1038/s41591-021-01556-7] [PMID: 34697502]
[46]
Ahmad, S. Matarneh, Alia Hani Al‐battah, Khalid Farooqui, Mohamed Ghamoodi, MohammedAlhatou, COVID‐19 vaccine causing Gui-llain‐Barre syndrome, a rare potential side effect. Clin. Case Rep., 2021, 9(9), 9.
[http://dx.doi.org/10.1002/ccr3.4756]
[47]
Adhikari, S.P.; Meng, S.; Wu, Y-J.; Mao, Y-P.; Ye, R-X.; Wang, Q-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[48]
Chan, J.F.; Yuan, S.; Kok, K-H.; To, K.K-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C-Y.; Poon, R.W-S.; Tsoi, H-W.; Lo, S.K-F.; Chan, K-H.; Poon, V.K.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.; Chen, H.; Hui, C.K.; Yuen, K.Y. A familial cluster of pneumonia as-sociated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[49]
Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) From publicly reported confirmed cases: Estimation and application. Ann. Intern. Med., 2020, 172(9), 577-582.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[50]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immu-ne responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[51]
Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol., 2020, 92(6), 568-576.
[http://dx.doi.org/10.1002/jmv.25748] [PMID: 32134116]
[52]
Chen, C.J.; Michaelis, M.; Hsu, H.K.; Tsai, C.C.; Yang, K.D.; Wu, Y.C.; Cinatl, J., Jr; Doerr, H.W. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J. Ethnopharmacol., 2008, 120(1), 108-111.
[http://dx.doi.org/10.1016/j.jep.2008.07.048] [PMID: 18762235]
[53]
Service, R.F. Standard coronavirus test, if available, works well— but can new diagnostics help in this pandemic? Science Available from: www.sciencemag.org/news/2020/03/standard-coronavirus-test-if-available-works-well-can-new-diagnostics-help-pandemic (Accessed on March 22, 2020).
[54]
Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; Jervey, S.R.; Liu, C. Assay Techniques and test development for COVID-19 diagnosis. ACS Cent. Sci., 2020, 6(5), 591-605.
[http://dx.doi.org/10.1021/acscentsci.0c00501] [PMID: 32382657]
[55]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromy-cin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[56]
Rosendaal, F.R. Review of: "Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label nonrandomized clinical trial Gautret et al 2010 Int J. Antimicrob. Agents, 2020, 56(1), 106063.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949]
[57]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Napoli, R.D. Features, Evaluation and Treatment Coronavirus (COVID-19); StatPearls: Treasure Island, FL, 2020.
[58]
Jahan, I.; Onay, A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol., 2020, 44(3), 228-241.
[http://dx.doi.org/10.3906/biy-2005-114]
[59]
Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents, 2020, 55(5), 105951.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[60]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[61]
Swelum, A.A.; Shafi, M.E.; Albaqami, N.M.; El-Saadony, M.T.; Elsify, A.; Abdo, M.; Taha, A.E.; Abdel-Moneim, A.E.; Al-Gabri, N.A.; Almaiman, A.A.; Saleh Al-Wajeeh, A.; Tufarelli, V.; Staffa, V.N.; Abd El-Hack, M.E. COVID-19 in human, animal, and environment: a review. Front. Vet. Sci., 2020, 7, 578.
[http://dx.doi.org/10.3389/fvets.2020.00578] [PMID: 33102545]
[62]
Englund, J.A.; Kim, Y.J.; McIntosh, K. Human coronaviruses, including Middle East respiratory syndrome coronavirus. In: Cherry, J.; DemmlerHarrison, G.J.; Kaplan, S.L.; Steinbach, W.J.; Hotez, P.J., Eds.; Feigin and Cherry's Textbook of Pediatric Infectious Disease, 8th Ed.; Elsevier Inc.: Philadelphia (PA), , 2020; pp. 1846-54.
[63]
Park, S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin. Exp. Pediatr., 2020, 63(4), 119-124.
[http://dx.doi.org/10.3345/cep.2020.00493]
[64]
Brian, D.A.; Baric, R.C. Coronavirus genome structure and replication.In: Enjuanes, L., Ed.; Coronavirus Replication and Reverse Gene-tics; Springer: Berlin, Germany, 2005, pp. 1-30.
[http://dx.doi.org/10.1007/3-540-26765-4_1]
[65]
Mariano, G.; Farthing, R.J.; Lale-Farjat, S.L.M.; Bergeron, J.R.C. structural characterization of SARS-CoV-2: where we are, and where we need to be. Front. Mol. Biosci., 2020, 7, 605236.
[http://dx.doi.org/10.3389/fmolb.2020.605236] [PMID: 33392262]
[66]
Park, H.R.; Yoon, H.; Kim, M.K.; Lee, S.D.; Chong, Y. Synthesis and antiviral evaluation of 7-O-arylmethylquercetin derivatives against SARS-associated coronavirus (SCV) and hepatitis C virus (HCV). Arch. Pharm. Res., 2012, 35(1), 77-85.
[http://dx.doi.org/10.1007/s12272-012-0108-9] [PMID: 22297745]
[67]
Fava, G.A.; Sonino, N.; Wise, T.N. Principles of Psychosomatic Assessment. Adv. Psychosom. Med., 2012, 32, 1-18.
[http://dx.doi.org/10.1159/000329997]
[68]
Ho, C.S.; Chee, C.Y.; Ho, R.C. Mental health strategies to combat the psychological impact of COVID-19 beyond paranoia and panic. Ann. Acad. Med, 2009, 49, 1-3.
[69]
Bao, Y.; Sun, Y.; Meng, S.; Shi, J.; Lu, L. 2019-nCoV epidemic: Address mental health care to empower society. Lancet, 2020, 395(10224), e37-e38.
[http://dx.doi.org/10.1016/S0140-6736(20)30309-3] [PMID: 32043982]
[70]
Liu, S.; Yang, L.; Zhang, C.; Xiang, Y.T.; Liu, Z.; Hu, S.; Zhang, B. Online mental health services in China during the COVID-19 outbreak. Lancet Psychiatry, 2020, 7(4), e17-e18.
[http://dx.doi.org/10.1016/S2215-0366(20)30077-8] [PMID: 32085841]
[71]
Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr., 2020, 52, 102066.
[72]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019‐new coro-navirus (SARS‐CoV‐2): A review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[73]
Ribeiro, D.E.; Oliveira-Giacomelli, A.; Glaser, T.; Arnaud-Sampaio, V.F.; Andrejew, R.; Dieckmann, L.; Baranova, J.; Lameu, C.; Rata-jczak, M.Z.; Ulrich, H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol. Psychiatry, 2021, 26, 1044-1059.
[74]
Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry, 2020, 66(4), 317-320.
[http://dx.doi.org/10.1177/0020764020915212] [PMID: 32233719]
[75]
Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Bene-detti, F.; Outp, C-B. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[76]
Taquet, M.; Luciano, S.; Geddes, J.R.; Harrison, P.J. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry, 2021, 8(1), E1-E1.
[http://dx.doi.org/10.1016/S2215-0366(20)30462-4]
[77]
Vizheh, M.; Qorbani, M.; Arzaghi, S.M.; Muhidin, S.; Javanmard, Z.; Esmaeili, M. The mental health of healthcare workers in the COVID-19 pandemic: A systematic review. J. Diabetes Metab. Disord., 2020, 19(2), 1-12.
[http://dx.doi.org/10.1007/s40200-020-00643-9] [PMID: 33134211]
[78]
Pappa, S.; Ntella, V.; Giannakas, T.; Giannakoulis, V.G.; Papoutsi, E.; Katsaounou, P. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav. Immun., 2020, 88, 901-907.
[http://dx.doi.org/10.1016/j.bbi.2020.05.026] [PMID: 32437915]
[79]
De Boni, R.B.; Balanzá-Martínez, V.; Mota, J.C.; Cardoso, T.A.; Ballester, P.; Atienza-Carbonell, B.; Bastos, F.I.; Kapczinski, F. Depres-sion, anxiety, and lifestyle among essential workers: A web survey from Brazil and Spain during the COVID-19 pandemic. J. Med. Internet Res., 2020, 22(10), e22835.
[http://dx.doi.org/10.2196/22835] [PMID: 33038075]
[80]
Czeisler, M.E.; Lane, R.I.; Petrosky, E.; Wiley, J.F.; Christensen, A.; Njai, R.; Weaver, M.D.; Robbins, R.; Facer-Childs, E.R.; Barger, L.K.; Czeisler, C.A.; Howard, M.E.; Rajaratnam, S.M.W. Health Mental. Substance use, and suicidal ideation during the COVID-19 pandemic - United States, June 24-30 2020 MmwrMorbid Mortal W, 2020, 69(32), pp. 1049-1057.
[81]
Steardo, L., Jr; Steardo, L.; Verkhratsky, A. Psychiatric face of COVID-19. Transl. Psychiatry, 2020, 10(1), 261.
[http://dx.doi.org/10.1038/s41398-020-00949-5] [PMID: 32732883]
[82]
Loftis, J.M.; Huckans, M.; Morasco, B.J. Neuroimmune mechanisms of cytokine-induced depression: Current theories and novel treat-ment strategies. Neurobiol. Dis., 2010, 37(3), 519-533.
[http://dx.doi.org/10.1016/j.nbd.2009.11.015] [PMID: 19944762]
[83]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depres-sion. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[84]
Ménard, C.; Hodes, G.E.; Russo, S.J. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 2016, 321, 138-162.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.053] [PMID: 26037806]
[85]
Wohleb, E.S.; Franklin, T.; Iwata, M.; Duman, R.S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci., 2016, 17(8), 497-511.
[http://dx.doi.org/10.1038/nrn.2016.69] [PMID: 27277867]
[86]
Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 2014, 71(12), 1381-1391.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1611] [PMID: 25322082]
[87]
Wu, P.; Fang, Y.; Guan, Z.; Fan, B.; Kong, J.; Yao, Z.; Liu, X.; Fuller, C.J.; Susser, E.; Lu, J.; Hoven, C.W. The psychological impact of the SARS epidemic on hospital employees in China: Exposure, risk perception, and altruistic acceptance of risk. Can. J. Psychiatry, 2009, 54(5), 302-311.
[http://dx.doi.org/10.1177/070674370905400504] [PMID: 19497162]
[88]
Vindegaard, N.; Benros, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav. Immun., 2020, 89(May), 531-542.
[http://dx.doi.org/10.1016/j.bbi.2020.05.048] [PMID: 32485289]
[89]
Khateb, M.; Bosak, N.; Muqary, M. Coronaviruses and Central Nervous System Manifestations. Front. Neurol., 2020, 11, 715.
[http://dx.doi.org/10.3389/fneur.2020.00715] [PMID: 32655490]
[90]
Woo, P.C.; Lau, S.K.; Huang, Y.; Yuen, K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood), 2009, 234(10), 1117-1127.
[http://dx.doi.org/10.3181/0903-MR-94] [PMID: 19546349]
[91]
Chan, J.F.; Li, K.S.; To, K.K.; Cheng, V.C.; Chen, H.; Yuen, K.Y. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J. Infect., 2012, 65(6), 477-489.
[http://dx.doi.org/10.1016/j.jinf.2012.10.002] [PMID: 23072791]
[92]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[93]
Das Sarma, J.; Fu, L.; Tsai, J.C.; Weiss, S.R.; Lavi, E. Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J. Virol., 2000, 74(19), 9206-9213.
[http://dx.doi.org/10.1128/JVI.74.19.9206-9213.2000] [PMID: 10982367]
[94]
Lavi, E.; Constantinescu, C.S. Experimental Models of Multiple Sclerosis; Springer Science & Business Media: New York, NY, 2008.
[95]
Mecha, M.; Carrillo-Salinas, F.J.; Mestre, L.; Feliú, A.; Guaza, C. Viral models of multiple sclerosis: Neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog. Neurobiol., 2013, 101-102, 46-64.
[http://dx.doi.org/10.1016/j.pneurobio.2012.11.003] [PMID: 23201558]
[96]
Coronavirus and the Nervous System. 2021. Available from: https://www.ninds.nih.gov/Current-Research/Coronavirus-and-NINDS/nervous-system
[97]
Nazari, S.; Azari Jafari, A.; Mirmoeeni, S.; Sadeghian, S.; Heidari, M.E.; Sadeghian, S.; Assarzadegan, F.; Puormand, S.M.; Ebadi, H.; Fat-hi, D.; Dalvand, S. Central nervous system manifestations in COVID-19 patients: A systematic review and meta-analysis. Brain Behav., 2021, 11(5), e02025.
[http://dx.doi.org/10.1002/brb3.2025] [PMID: 33421351]
[98]
Yuan, B.; Li, W.; Liu, H.; Cai, X.; Song, S.; Zhao, J.; Hu, X.; Li, Z.; Chen, Y.; Zhang, K.; Liu, Z.; Peng, J.; Wang, C.; Wang, J.; An, Y. Co-rrelation between immune response and self-reported depression during convalescence from COVID-19. Brain Behav. Immun., 2020, 88, 39-43.
[http://dx.doi.org/10.1016/j.bbi.2020.05.062] [PMID: 32464158]
[99]
Pape, K.; Tamouza, R.; Leboyer, M.; Zipp, F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nat. Rev. Neurol., 2019, 15(6), 317-328.
[http://dx.doi.org/10.1038/s41582-019-0174-4] [PMID: 30988501]
[100]
Novellino, F.; Saccà, V.; Donato, A.; Zaffino, P.; Spadea, M.F.; Vismara, M.; Arcidiacono, B.; Malara, N.; Presta, I.; Donato, G. Innate immunity: A common denominator between neurodegenerative and neuropsychiatric diseases. Int. J. Mol. Sci., 2020, 21(3), 21.
[http://dx.doi.org/10.3390/ijms21031115] [PMID: 32046139]
[101]
Shafiee, M.; Tayefi, M.; Hassanian, S.M.; Ghaneifar, Z.; Parizadeh, M.R.; Avan, A.; Rahmani, F.; Khorasanchi, Z.; Azarpajouh, M.R.; Safarian, H.; Moohebati, M.; Heidari-Bakavoli, A.; Esmaeili, H.; Nematy, M.; Safarian, M.; Ebrahimi, M.; Ferns, G.A.; Mokhber, N.; Gha-your-Mobarhan, M. Depression and anxiety symptoms are associated with white blood cell count and red cell distribution width: A sex-stratified analysis in a population-based study. Psychoneuroendocrinology, 2017, 84, 101-108.
[http://dx.doi.org/10.1016/j.psyneuen.2017.06.021] [PMID: 28697416]
[102]
Haapakoski, R.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 66, 63-72.
[http://dx.doi.org/10.1016/j.pnpbp.2015.11.012] [PMID: 26631274]
[103]
Maes, M.; Verkerk, R.; Vandoolaeghe, E.; Van Hunsel, F.; Neels, H.; Wauters, A.; Demedts, P.; Scharpé, S. Serotonin-immune interactions in major depression: Lower serum tryptophan as a marker of an immune-inflammatory response. Eur. Arch. Psychiatry Clin. Neurosci., 1997, 247(3), 154-161.
[http://dx.doi.org/10.1007/BF03033069] [PMID: 9224908]
[104]
Ali, M.J.; Hanif, M.; Haider, M.A.; Ahmed, M.U.; Sundas, F.; Hirani, A.; Khan, I.A.; Anis, K.; Karim, A.H. Treatment options for COVID-19: A review. Front. Med. (Lausanne), 2020, 7, 480.
[http://dx.doi.org/10.3389/fmed.2020.00480] [PMID: 32850922]
[105]
Elfiky, A.A. El fiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 117477, 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477]
[106]
Yamamoto, N.; Matsuyama, S.; Hoshino, T.; Yamamoto, N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavi-rus 2 in vitro. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.06.026476]
[107]
Yethindra, V. Role of GS-5734(Remdesivir) in inhibiting SARSCoV and MERS-CoV: The expected role of GS-5734 (Remdesivir) in COVID-19 (2019-nCoV)-VYTR hypothesis. Int. J. Res. Pharm. Sci., 2020, 11(SPL1), 1-6.
[http://dx.doi.org/10.26452/ijrps.v11iSPL1.1973]
[108]
Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis., 2020, 34, 101615.
[109]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[110]
Huang, J.; Song, W.; Huang, H.; Sun, Q. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: From mechanistic studies to clinical trials for COVID-19. J. Clin. Med., 2020, 9(4), 1131.
[http://dx.doi.org/10.3390/jcm9041131] [PMID: 32326602]
[111]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.26.964882]
[112]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with Fa-vipiravir for COVID-19: An open-label control study. Engineering, 2020, 6(10), 1192-1198.
[113]
Vafaei, S.; Razmi, M.; Mansoori, M.; Asadi-Lari, M.; Madjd, Z. Spotlight of remdesivirin in comparison with ribavirin, favipiravir, osel-tamivir and umifenovir in coronavirus disease 2019 (COVID-19) pandemic. Favipiravir, oseltamivir and umifenovir in coronavirus disea-se. SSRN, 2019.
[http://dx.doi.org/10.2139/ssrn.3569866]
[114]
Jean, S.S.; Lee, P.I.; Hsueh, P.R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect., 2020, 53(3), 436-443.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[115]
Abd El-Aziz, T.M.; Stockand, J.D. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect. Genet. Evol., 2020, 83, 104327.
[http://dx.doi.org/10.1016/j.meegid.2020.104327] [PMID: 32320825]
[116]
Mantlo, E.K.; Bukreyeva, N.; Maruyama, J.; Paessler, S.; Huang, C. Potent antiviral activities of type I interferons to SARS-CoV-2 infec-tion. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.02.022764]
[117]
Shin, W.J.; Lee, K.H.; Park, M.H.; Seong, B.L. Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiol. Immunol., 2010, 54(1), 11-19.
[http://dx.doi.org/10.1111/j.1348-0421.2009.00173.x] [PMID: 20055938]
[118]
Mosaddeghi, P.; Negahdaripour, M.; Dehghani, Z.; Farahmandnejad, M.; Moghadami, M.; Nezafat, N.; Masoompur, S.M. Therapeutic approaches for COVID-19 based on the dynamics of interferon-mediated immune responses. Preprints, 2020.
[119]
Deng, X.; Yu, X.; Pei, J. Regulation of interferon production as a potential strategy for COVID-19 treatment. arXivpreprintarXiv, 2020.
[120]
Prokunina-Olsson, L.; Alphonse, N.; Dickenson, R.E.; Durbin, J.E.; Glenn, J.S.; Hartmann, R.; Kotenko, S.V.; Lazear, H.M.; O’Brien, T.R.; Odendall, C.; Onabajo, O.O.; Piontkivska, H.; Santer, D.M.; Reich, N.C.; Wack, A.; Zanoni, I. COVID-19 and emerging viral infec-tions: The case for interferon lambda. J. Exp. Med., 2020, 217(5), e20200653.
[http://dx.doi.org/10.1084/jem.20200653] [PMID: 32289152]
[121]
Wang, Q.; Ding, Z-H.; Liu, J-K.; Zheng, Y-T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antiviral Res., 2004, 64(3), 189-194.
[http://dx.doi.org/10.1016/S0166-3542(04)00201-3] [PMID: 15550272]
[122]
Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phe-nanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus trans-missible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[123]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[124]
Chang, F.R.; Yen, C.T.; Ei-Shazly, M.; Lin, W.H.; Yen, M.H.; Lin, K.H.; Wu, Y.C. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat. Prod. Commun., 2012, 7(11), 1415-1417.
[http://dx.doi.org/10.1177/1934578X1200701103] [PMID: 23285797]
[125]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[126]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[127]
Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res., 2007, 75(3), 179-187.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[128]
Wang, S-Q.; Du, Q-S.; Zhao, K.; Li, A-X.; Wei, D-Q.; Chou, K-C. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids, 2007, 33(1), 129-135.
[http://dx.doi.org/10.1007/s00726-006-0403-1] [PMID: 16998715]
[129]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS CoV-2 treatment and prevention, encoura-ging using herbal medicine for COVID‐19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(05), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[130]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J., Jr Antiviral activity of gly-cyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[131]
Ma, S.C.; Du, J.; But, P.P.; Deng, X.L.; Zhang, Y.W.; Ooi, V.E.; Xu, H.X.; Lee, S.H.; Lee, S.F. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol., 2002, 79(2), 205-211.
[http://dx.doi.org/10.1016/S0378-8741(01)00389-0] [PMID: 11801383]
[132]
He, J.; Qi, W.B.; Wang, L.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Ye, W.C.; Liao, M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic ex-port of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir. Viruses, 2013, 7(6), 922-931.
[http://dx.doi.org/10.1111/irv.12035] [PMID: 23136954]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy