Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Insight into the Polymeric Nanoparticles Applications in Diabetes Diagnosis and Treatment

Author(s): Parisa Dehghani, Monireh Esmaeili Rad, Atefeh Zarepour, Ponnurengam Malliappan Sivakumar* and Ali Zarrabi*

Volume 23, Issue 2, 2023

Published on: 14 January, 2022

Page: [192 - 216] Pages: 25

DOI: 10.2174/1389557521666211116123002

Price: $65

Abstract

Diabetes Mellitus (DM) is a type of chronic metabolic disease that has affected millions of people worldwide and is known with a defect in the amount of insulin secretion, insulin functions, or both. This deficiency leads to an increase in the amounts of glucose, which could be accompanied by long-term damages to other organs such as eyes, kidneys, heart, and nervous system. Thus, introducing an appropriate approach for diagnosis and treatment of different types of DM is the aim of several researches. By the emergence of nanotechnology and its application in medicine, new approaches were presented for these purposes. The object of this review article is to introduce different types of polymeric nanoparticles (PNPs), as one of the most important classes of nanoparticles, for diabetic management. To achieve this goal, at first, some of the conventional therapeutic and diagnostic methods of DM will be reviewed. Then, different types of PNPs, in two forms of natural and synthetic polymers with different properties, as a new method for DM treatment and diagnosis will be introduced. In the next section, the transport mechanisms of these types of nano-carriers across the epithelium, via paracellular and transcellular pathways will be explained. Finally, the clinical use of PNPs in the treatment and diagnosis of DM will be summarized. Based on the results of this literature review, PNPs could be considered one of the most promising methods for DM management.

Keywords: Diabetes mellitus, polymeric nanoparticles, nano-carrier, insulin, sensor, hemoglobin A1C.

Graphical Abstract

[1]
Woldu, M.A.; Lenjisa, J.L. Nanoparticles and the new era in diabetes management. Int. J. Basic Clin. Pharmacol., 2014, 3(2), 277-284.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20140405]
[2]
Xie, J.; Li, A.; Li, J. Advances in pH-sensitive polymers for smart insulin delivery. Macromol. Rapid Commun., 2017, 38(23), 1700413.
[http://dx.doi.org/10.1002/marc.201700413] [PMID: 28976043]
[3]
Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[4]
Sonia, T.A.; Sharma, C.P. An overview of natural polymers for oral insulin delivery. Drug Discov. Today, 2012, 17(13-14), 784-792.
[http://dx.doi.org/10.1016/j.drudis.2012.03.019] [PMID: 22521664]
[5]
Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Polymerbased nanoparticle strategies for insulin delivery. Polymers (Basel), 2019, 11(9), 1380.
[http://dx.doi.org/10.3390/polym11091380] [PMID: 31443473]
[6]
Zaric, B.L.; Obradovic, M.; Sudar-Milovanovic, E.; Nedeljkovic, J.; Lazic, V.; Isenovic, E.R. Drug delivery systems for diabetes treatment. Curr. Pharm. Des., 2019, 25(2), 166-173.
[http://dx.doi.org/10.2174/1381612825666190306153838] [PMID: 30848184]
[7]
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Kapoor, B.; Gulati, M.; Kumar, R.; Ramanunny, A.K.; Awasthi, A.; Dua, K. Treatment strategies against diabetes: success so far and challenges ahead. Eur. J. Pharmacol., 2019, 862, 172625.
[http://dx.doi.org/10.1016/j.ejphar.2019.172625] [PMID: 31449807]
[8]
Devadasu, V.R.; Alshammari, T.M.; Aljofan, M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int. J. Diabetes Dev. Ctries., 2018, 38(1), 11-19.
[http://dx.doi.org/10.1007/s13410-017-0558-1]
[9]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[10]
Uppal, S.; Italiya, K.S.; Chitkara, D.; Mittal, A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomater., 2018, 81, 20-42.
[http://dx.doi.org/10.1016/j.actbio.2018.09.049] [PMID: 30268916]
[11]
El-Sappagh, S.; Ali, F. DDO: A diabetes mellitus diagnosis ontology. Appl. Informatics, 2016, 3, 5.
[12]
Iyer, A.; Jeyalatha, S.; Sumbaly, R. Diagnosis of diabetes using classification mining techniques. arXiv preprint, 2015, 150203774.
[13]
Hulman, A.; Vistisen, D.; Glümer, C.; Bergman, M.; Witte, D.R.; Færch, K. Glucose patterns during an oral glucose tolerance test and asso-ciations with future diabetes, cardiovascular disease and all-cause mortality rate. Diabetologia, 2018, 61(1), 101-107.
[http://dx.doi.org/10.1007/s00125-017-4468-z] [PMID: 28983719]
[14]
Katulanda, G.W.; Katulanda, P.; Dematapitiya, C.; Dissanayake, H.A.; Wijeratne, S.; Sheriff, M.H.R.; Matthews, D.R. Plasma glucose in screening for diabetes and pre-diabetes: how much is too much? Analysis of fasting plasma glucose and oral glucose tolerance test in Sri Lankans. BMC Endocr. Disord., 2019, 19(1), 11.
[http://dx.doi.org/10.1186/s12902-019-0343-x] [PMID: 30670002]
[15]
Chamberlain, J.J.; Rhinehart, A.S.; Shaefer, C.F., Jr; Neuman, A. Diagnosis and management of diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann. Intern. Med., 2016, 164(8), 542-552.
[http://dx.doi.org/10.7326/M15-3016] [PMID: 26928912]
[16]
American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care, 2018, 41(Suppl. 1), S13-S27.
[http://dx.doi.org/10.2337/dc18-S002] [PMID: 29222373]
[17]
Baynes, H.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus. J. Diabetes Metab., 2015, 6(5), 1-9.
[18]
Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Rajab, A.; Jazayeri, H.E.; Tayebi, L. Evaluation of Glycated Albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: a comprehensive review. Crit. Rev. Clin. Lab. Sci., 2017, 54(4), 219-232.
[http://dx.doi.org/10.1080/10408363.2017.1299684] [PMID: 28393586]
[19]
Ramachandra Bhat, L.; Vedantham, S.; Krishnan, U.M.; Rayappan, J.B.B. Methylglyoxal - An emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens. Bioelectron., 2019, 133, 107-124.
[http://dx.doi.org/10.1016/j.bios.2019.03.010] [PMID: 30921627]
[20]
Regnell, S.E.; Lernmark, Å. Early prediction of autoimmune (type 1) diabetes. Diabetologia, 2017, 60(8), 1370-1381.
[http://dx.doi.org/10.1007/s00125-017-4308-1] [PMID: 28550517]
[21]
Ismail, H.M.; Xu, P.; Libman, I.M.; Becker, D.J.; Marks, J.B.; Skyler, J.S.; Palmer, J.P.; Sosenko, J.M. The shape of the glucose concentra-tion curve during an oral glucose tolerance test predicts risk for type 1 diabetes. Diabetologia, 2018, 61(1), 84-92.
[http://dx.doi.org/10.1007/s00125-017-4453-6] [PMID: 28956083]
[22]
Bonifacio, E. Predicting type 1 diabetes using biomarkers. Diabetes Care, 2015, 38(6), 989-996.
[http://dx.doi.org/10.2337/dc15-0101] [PMID: 25998291]
[23]
Velluzzi, F.; Secci, G.; Sepe, V.; Klersy, C.; Shattock, M.; Foxon, R.; Songini, M.; Mariotti, S.; Locatelli, M.; Bottazzo, G.F.; Loviselli, A. Prediction of type 1 diabetes in Sardinian schoolchildren using islet cell autoantibodies: 10-year follow-up of the Sardinian schoolchildren type 1 diabetes prediction study. Acta Diabetol., 2016, 53(1), 73-79.
[http://dx.doi.org/10.1007/s00592-015-0751-y] [PMID: 25896008]
[24]
Leighton, E.; Sainsbury, C.A.; Jones, G.C. A practical review of C-peptide testing in diabetes. Diabetes Ther., 2017, 8(3), 475-487.
[http://dx.doi.org/10.1007/s13300-017-0265-4] [PMID: 28484968]
[25]
Raveendran, A.V.; Chacko, E.C.; Pappachan, J.M. Non-pharmacological treatment options in the management of diabetes mellitus. Eur. Endocrinol., 2018, 14(2), 31-39.
[http://dx.doi.org/10.17925/EE.2018.14.2.31] [PMID: 30349592]
[26]
McMacken, M.; Shah, S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol., 2017, 14(5), 342-354.
[PMID: 28630614]
[27]
Villani, V.; Perin, L. Diet as a therapeutic approach to diabetes management and pancreas regeneration. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas; Elsevier: Amsterdam, 2020, pp. 215-227.
[28]
Azad, S.S.; Isenovic, E.R.; Yaturu, S.; Mousa, S.A. Insulin therapy for diabetes. Type 2 Diabetes; IntechOpen: London, 2013.
[29]
Longo, M.; Bellastella, G.; Maiorino, M.I.; Meier, J.J.; Esposito, K.; Giugliano, D. Diabetes and aging: from treatment goals to pharmacolo-gic therapy. Front. Endocrinol. (Lausanne), 2019, 10, 45.
[http://dx.doi.org/10.3389/fendo.2019.00045] [PMID: 30833929]
[30]
Wright, L.A.; Hirsch, I.B. Non-insulin treatments for Type 1 diabetes: critical appraisal of the available evidence and insight into future directions. Diabet. Med., 2019, 36(6), 665-678.
[http://dx.doi.org/10.1111/dme.13941] [PMID: 30801765]
[31]
Inzucchi, S.E.; Lipska, K.J.; Mayo, H.; Bailey, C.J.; McGuire, D.K. Metformin in patients with type 2 diabetes and kidney disease: a sys-tematic review. JAMA, 2014, 312(24), 2668-2675.
[http://dx.doi.org/10.1001/jama.2014.15298] [PMID: 25536258]
[32]
Lv, W.; Wang, X.; Xu, Q.; Lu, W. Mechanisms and characteristics of sulfonylureas and glinides. Curr. Top. Med. Chem., 2020, 20(1), 37-56.
[http://dx.doi.org/10.2174/1568026620666191224141617] [PMID: 31884929]
[33]
Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: a critical review. Bioorg. Chem., 2018, 77, 548-567.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[34]
Rizos, C.V.; Kei, A.; Elisaf, M.S. The current role of thiazolidinediones in diabetes management. Arch. Toxicol., 2016, 90(8), 1861-1881.
[http://dx.doi.org/10.1007/s00204-016-1737-4] [PMID: 27165418]
[35]
Scheen, A.J. Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs, 2003, 63(10), 933-951.
[http://dx.doi.org/10.2165/00003495-200363100-00002] [PMID: 12699398]
[36]
Rizzo, M.R.; Barbieri, M.; Fava, I.; Desiderio, M.; Coppola, C.; Marfella, R.; Paolisso, G. Sarcopenia in elderly diabetic patients: role of dipeptidyl peptidase 4 inhibitors. J. Am. Med. Dir. Assoc., 2016, 17(10), 896-901.
[http://dx.doi.org/10.1016/j.jamda.2016.04.016] [PMID: 27262494]
[37]
Fralick, M.; Schneeweiss, S.; Patorno, E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N. Engl. J. Med., 2017, 376(23), 2300-2302.
[http://dx.doi.org/10.1056/NEJMc1701990] [PMID: 28591538]
[38]
Zinman, B.; Lachin, J.M.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2016, 374(11), 1094.
[PMID: 26981940]
[39]
Metkar, S.K.; Girigoswami, K. Diagnostic biosensors in medicine-a review. Biocatal. Agric. Biotechnol., 2019, 17, 271-283.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[40]
Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: recent developments. Sensors (Basel), 2017, 17(8), 1866.
[http://dx.doi.org/10.3390/s17081866] [PMID: 28805693]
[41]
Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; Kim, J. Wearable sensors: modali-ties, challenges, and prospects. Lab Chip, 2018, 18(2), 217-248.
[http://dx.doi.org/10.1039/C7LC00914C] [PMID: 29182185]
[42]
Bunyarataphan, S.; Dharakul, T.; Fucharoen, S.; Paiboonsukwong, K.; Japrung, D. Glycated albumin measurement using an electrochemi-cal aptasensor for screening and monitoring of diabetes mellitus. Electroanalysis, 2019, 31(11), 2254-2261.
[http://dx.doi.org/10.1002/elan.201900264]
[43]
Eissa, S.; Zourob, M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in hu-man whole blood. Sci. Rep., 2017, 7(1), 1016.
[http://dx.doi.org/10.1038/s41598-017-01226-0] [PMID: 28432344]
[44]
Li, J.; Chang, K.W.; Wang, C.H.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens. Bioelectron., 2016, 79, 887-893.
[http://dx.doi.org/10.1016/j.bios.2016.01.029] [PMID: 26797251]
[45]
Zhang, H.; Li, D.; Yang, Y.; Chang, H.; Simone, G. On-resonance islands of Ag-nanowires sense the level of glycated hemoglobin for diabetes diagnosis. Sens. Actuators B Chem., 2020, 128451.
[http://dx.doi.org/10.1016/j.snb.2020.128451]
[46]
Lemmerman, L.R.; Das, D.; Higuita-Castro, N.; Mirmira, R.G.; Gallego-Perez, D. Nanomedicine-based strategies for diabetes: diagnostics, monitoring, and treatment. Trends Endocrinol. Metab., 2020, 31(6), 448-458.
[47]
Meetoo, D.; Wong, L.; Ochieng, B. Smart tattoo: technology for monitoring blood glucose in the future. Br. J. Nurs., 2019, 28(2), 110-115.
[http://dx.doi.org/10.12968/bjon.2019.28.2.110] [PMID: 30673318]
[48]
Kim, J.W.; Luo, J.Z.; Luo, L. Bone Marrow Mesenchymal Stem Cells as a New Therapeutic Approach for Diabetes Mellitus. A Roadmap to Non-Hematopoietic Stem Cell-based Therapeutics; Elsevier: Amsterdam, 2019, pp. 251-273.
[http://dx.doi.org/10.1016/B978-0-12-811920-4.00010-0]
[49]
Hu, J.; Ye, M.; Zhou, Z. Aptamers: novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J. Mol. Med. (Berl.), 2017, 95(3), 249-256.
[http://dx.doi.org/10.1007/s00109-016-1485-1] [PMID: 27847965]
[50]
Jiang, W.J.; Peng, Y.C.; Yang, K.M. Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treat-ment of diabetes. Exp. Ther. Med., 2018, 16(4), 3275-3285.
[http://dx.doi.org/10.3892/etm.2018.6603] [PMID: 30233674]
[51]
DiSanto, R.M.; Subramanian, V.; Gu, Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 548-564.
[http://dx.doi.org/10.1002/wnan.1329] [PMID: 25641955]
[52]
Chen, G.; Yu, J.; Gu, Z. Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sci. Technol., 2019, 13(1), 41-48.
[http://dx.doi.org/10.1177/1932296818778607] [PMID: 29848105]
[53]
Sinha, A.; Chakraborty, A.; Jana, N.R. Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(24), 22183-22191.
[http://dx.doi.org/10.1021/am505848p] [PMID: 25458145]
[54]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[55]
Crucho, C.I. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 2015, 10(1), 24-38.
[http://dx.doi.org/10.1002/cmdc.201402290] [PMID: 25319803]
[56]
Patel, T.; Zhou, J.; Piepmeier, J.M.; Saltzman, W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 701-705.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[57]
Mallakpour, S.; Behranvand, V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett., 2016, 10(11), 895-913.
[http://dx.doi.org/10.3144/expresspolymlett.2016.84]
[58]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[59]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5(4), 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1] [PMID: 11470609]
[60]
Priscilla, N. Silk-cellulose nanofiber membranes for application in water treatment., 2019.
[61]
Nazila, K.; Yameen, B.; Wu, J.; Farokhzad, O. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of con-trolling drug release. Chem. Rev., 2016, 116, 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346]
[62]
Sohn, S.; Kim, H-M. Transparent Conductive Oxide (TCO) films for Organic Light Emissive Devices (OLEDS). In: Organic Light Emitting Diode-Material, Process and Devices; IntechOpen: London, 2011; pp. 233-273.
[http://dx.doi.org/10.5772/18545]
[63]
Hu, L.; Sun, Y.; Wu, Y. Advances in chitosan-based drug delivery vehicles. Nanoscale, 2013, 5(8), 3103-3111.
[http://dx.doi.org/10.1039/c3nr00338h] [PMID: 23515527]
[64]
Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 2014, 64, 353-367.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
[65]
Chen, Z.; Zhang, L.; Song, Y.; He, J.; Wu, L.; Zhao, C.; Xiao, Y.; Li, W.; Cai, B.; Cheng, H.; Li, W. Hierarchical targeted hepatocyte mito-chondrial multifunctional chitosan nanoparticles for anticancer drug delivery. Biomaterials, 2015, 52, 240-250.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.001] [PMID: 25818430]
[66]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2005, 12(1), 41-57.
[http://dx.doi.org/10.1080/10717540590889781] [PMID: 15801720]
[67]
Baig, M.M.F.A.; Naveed, M.; Abbas, M.; Kassim, S.A.; Khan, G.J.; Ullah, S. Chitosan-coated rectangular DNA nanospheres for better outcomes of anti-diabetic drug. J. Nanopart. Res., 2019, 21(5), 98.
[http://dx.doi.org/10.1007/s11051-019-4534-1]
[68]
Shin, M; Kim, H. Biosens 1996.
[69]
Paques, J.P.; van der Linden, E.; van Rijn, C.J.; Sagis, L.M. Preparation methods of alginate nanoparticles. Adv. Colloid Interface Sci., 2014, 209, 163-171.
[http://dx.doi.org/10.1016/j.cis.2014.03.009] [PMID: 24745976]
[70]
Venkatesan, J.; Anil, S.; Singh, S.K.; Kim, S-K. Preparations and applications of alginate nanoparticles. Seaweed Polysaccharides; Elsevier: Amsterdam, 2017, pp. 251-268.
[71]
Spadari, C.C.; de Bastiani, F.W.M.D.S.; Lopes, L.B.; Ishida, K. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of Candidiasis and Cryptococcosis. Int. J. Nanomedicine, 2019, 14, 5187-5199.
[http://dx.doi.org/10.2147/IJN.S205350] [PMID: 31371955]
[72]
Bibi, A.; Rehman, S-U.; Yaseen, A. Alginate-nanoparticles composites: kinds, reactions and applications. Mater. Res. Express, 2019, 6(9), 092001.
[http://dx.doi.org/10.1088/2053-1591/ab2016]
[73]
Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 2007, 24(12), 2198-2206.
[http://dx.doi.org/10.1007/s11095-007-9367-4] [PMID: 17577641]
[74]
Bhattacharyya, A.; Mukherjee, D.; Mishra, R.; Kundu, P. Development of pH sensitive polyurethane-alginate nanoparticles for safe and efficient oral insulin delivery in animal models. RSC Adv, 2016, 6(48), 41835-41846.
[http://dx.doi.org/10.1039/C6RA06749B]
[75]
Banerjee, A.; Bandopadhyay, R. Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applica-tions. Int. J. Biol. Macromol., 2016, 87, 295-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.059] [PMID: 26927936]
[76]
Iakobson, O.D.; Dobrodumov, A.V.; Saprykina, N.N.; Shevchenko, N.N. Dextran nanoparticles cross‐linked in aqueous and aqueous/alcoholic media. Macromol. Chem. Phys., 2017, 218(10), 1600523.
[http://dx.doi.org/10.1002/macp.201600523]
[77]
Wasiak, I.; Kulikowska, A.; Janczewska, M.; Michalak, M.; Cymerman, I.A.; Nagalski, A.; Kallinger, P.; Szymanski, W.W.; Ciach, T. Dex-tran nanoparticle synthesis and properties. PLoS One, 2016, 11(1), e0146237.
[http://dx.doi.org/10.1371/journal.pone.0146237] [PMID: 26752182]
[78]
Lee, K-C.; Chen, W-J.; Chen, Y-C. Using Dextran-encapsulated gold nanoparticles as insulin carriers to prolong insulin activity. Nanomedicine (Lond.), 2017, 12(15), 1823-1834.
[http://dx.doi.org/10.2217/nnm-2017-0019] [PMID: 28703075]
[79]
Volpatti, L.R.; Matranga, M.A.; Cortinas, A.B.; Delcassian, D.; Daniel, K.B.; Langer, R.; Anderson, D.G. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano, 2020, 14(1), 488-497.
[http://dx.doi.org/10.1021/acsnano.9b06395] [PMID: 31765558]
[80]
Li, B.; Yu, A.; Lai, G. Self-assembly of phenoxyl-dextran on electrochemically reduced graphene oxide for nonenzymatic biosensing of glucose. Carbon, 2018, 127, 202-208.
[http://dx.doi.org/10.1016/j.carbon.2017.10.096]
[81]
Fox, P.; Brodkorb, A. The casein micelle: historical aspects, current concepts and significance. Int. Dairy J., 2008, 18(7), 677-684.
[http://dx.doi.org/10.1016/j.idairyj.2008.03.002]
[82]
Głąb, T.K.; Boratyński, J. Potential of casein as a carrier for biologically active. Top. Curr. Chem. (Cham), 2017, 375(4), 71.
[http://dx.doi.org/10.1007/s41061-017-0158-z] [PMID: 28712055]
[83]
Semo, E.; Kesselman, E.; Danino, D.; Livney, Y.D. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll., 2007, 21(5-6), 936-942.
[http://dx.doi.org/10.1016/j.foodhyd.2006.09.006]
[84]
Gandhi, S.; Roy, I. Doxorubicin-loaded casein nanoparticles for drug delivery: preparation, characterization and in vitro evaluation. Int. J. Biol. Macromol., 2019, 121, 6-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.005] [PMID: 30290258]
[85]
Livney, Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci., 2010, 15(1-2), 73-83.
[http://dx.doi.org/10.1016/j.cocis.2009.11.002]
[86]
Xv, L.; Qian, X.; Wang, Y.; Yu, C.; Qin, D.; Zhang, Y.; Jin, P.; Du, Q. Structural modification of nanomicelles through phosphatidylcholi-ne: the enhanced drug-loading capacity and anticancer activity of celecoxib-casein nanoparticles for the intravenous delivery of celecoxib. Nanomaterials (Basel), 2020, 10(3), 451.
[http://dx.doi.org/10.3390/nano10030451] [PMID: 32131561]
[87]
Morçöl, T.; Nagappan, P.; Nerenbaum, L.; Mitchell, A.; Bell, S.J. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. Int. J. Pharm., 2004, 277(1-2), 91-97.
[http://dx.doi.org/10.1016/j.ijpharm.2003.07.015] [PMID: 15158972]
[88]
Raj, J.; Uppuluri, K.B. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed. Pharmacol. J., 2015, 8(1), 83-89.
[http://dx.doi.org/10.13005/bpj/585]
[89]
Patil, G.V. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res., 2003, 58(3), 219-247.
[http://dx.doi.org/10.1002/ddr.10157]
[90]
Hosseinifar, N.; Sharif, A.A.M.; Goodarzi, N.; Amini, M.; Dinarvand, R. Preparation of human serum albumin nanoparticles using a che-mometric technique. J. Nanostructure Chem., 2017, 7(4), 327-335.
[http://dx.doi.org/10.1007/s40097-017-0242-5]
[91]
Ge, L.; You, X.; Huang, J.; Chen, Y.; Chen, L.; Zhu, Y.; Zhang, Y.; Liu, X.; Wu, J.; Hai, Q. Human albumin fragments nanoparticles as PTX carrier for improved anti-cancer efficacy. Front. Pharmacol., 2018, 9, 582.
[http://dx.doi.org/10.3389/fphar.2018.00582] [PMID: 29946256]
[92]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[93]
Dai, Z.; Yang, A.; Bao, X.; Yang, R. Facile non-enzymatic electrochemical sensing for glucose based on Cu2O-BSA nanoparticles modified GCE. Sensors (Basel), 2019, 19(12), 2824.
[http://dx.doi.org/10.3390/s19122824] [PMID: 31238594]
[94]
Vickers, N.J. Animal communication: when i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[95]
Zhang, J.; Ma, P.X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev., 2013, 65(9), 1215-1233.
[http://dx.doi.org/10.1016/j.addr.2013.05.001] [PMID: 23673149]
[96]
Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: a critical review. Carbohydr. Polym., 2017, 173, 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[97]
Liu, B-w.; Zhou, H.; Zhou, S-t.; Yuan, J-y. Macromolecules based on recognition between cyclodextrin and guest molecules: synthesis, properties and functions. Eur. Polym. J., 2015, 65, 63-81.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.01.017]
[98]
Hirotsu, T.; Higashi, T.; Abu Hashim, I.I.; Misumi, S.; Wada, K.; Motoyama, K.; Arima, H. Self-assembly PEGylation Retaining Activity (SPRA) technology via a host-guest interaction surpassing conventional pegylation methods of proteins. Mol. Pharm., 2017, 14(2), 368-376.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00678] [PMID: 28032772]
[99]
Higashi, T.; Hirayama, F.; Misumi, S.; Motoyama, K.; Arima, H.; Uekama, K. Polypseudorotaxane formation of randomly-pegylated insu-lin with cyclodextrins: slow release and resistance to enzymatic degradation. Chem. Pharm. Bull. (Tokyo), 2009, 57(5), 541-544.
[http://dx.doi.org/10.1248/cpb.57.541] [PMID: 19420793]
[100]
Higashi, T.; Hirayama, F.; Misumi, S.; Arima, H.; Uekama, K. Design and evaluation of polypseudorotaxanes of pegylated insulin with cyclodextrins as sustained release system. Biomaterials, 2008, 29(28), 3866-3871.
[http://dx.doi.org/10.1016/j.biomaterials.2008.06.019] [PMID: 18620750]
[101]
Hirotsu, T.; Higashi, T.; Motoyama, K.; Arima, H. Cyclodextrin-based sustained and controllable release system of insulin utilizing the combination system of self-assembly PEGylation and polypseudorotaxane formation. Carbohydr. Polym., 2017, 164, 42-48.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.074] [PMID: 28325342]
[102]
Burapapadh, K.; Kumpugdee-Vollrath, M.; Chantasart, D.; Sriamornsak, P. Fabrication of pectin-based nanoemulsions loaded with itraco-nazole for pharmaceutical application. Carbohydr. Polym., 2010, 82(2), 384-393.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.071]
[103]
Burapapadh, K.; Takeuchi, H.; Sriamornsak, P. Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian J. Pharm., 2016, 11(3), 365-375.
[104]
Piriyaprasarth, S.; Sriamornsak, P. Flocculating and suspending properties of commercial citrus pectin and pectin extracted from pomelo (Citrus maxima) peel. Carbohydr. Polym., 2011, 83(2), 561-568.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.018]
[105]
Chinnaiyan, S.K.; Karthikeyan, D.; Gadela, V.R. Development and characterization of metformin loaded pectin nanoparticles for T2 diabe-tes mellitus. Pharm. Nanotechnol., 2018, 6(4), 253-263.
[http://dx.doi.org/10.2174/2211738507666181221142406] [PMID: 30574859]
[106]
Chinnaiyan, S.K.; Deivasigamani, K.; Gadela, V.R. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nano-particle for NIDDM. Int. J. Biol. Macromol., 2019, 125, 278-289.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.009] [PMID: 30521906]
[107]
Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics, 2019, 11(8), 407.
[http://dx.doi.org/10.3390/pharmaceutics11080407] [PMID: 31408954]
[108]
Jin, Y-J.; Ubonvan, T.; Kim, D-D. Hyaluronic acid in drug delivery systems. J. Pharm. Investig., 2010, 40(spc), 33-43.
[http://dx.doi.org/10.4333/KPS.2010.40.S.033]
[109]
Huang, G.; Huang, H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J. Control. Release, 2018, 278, 122-126.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.015] [PMID: 29649528]
[110]
Huang, G.; Huang, H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv., 2018, 25(1), 766-772.
[http://dx.doi.org/10.1080/10717544.2018.1450910] [PMID: 29536778]
[111]
Kim, S-K.; Jeon, C.; Lee, G-H.; Koo, J.; Cho, S.H.; Han, S.; Shin, M.H.; Sim, J.Y.; Hahn, S.K. Hyaluronate-gold nanoparticle/glucose oxi-dase complex for highly sensitive wireless noninvasive glucose sensors. ACS Appl. Mater. Interfaces, 2019, 11(40), 37347-37356.
[http://dx.doi.org/10.1021/acsami.9b13874] [PMID: 31502433]
[112]
Lee, H.; Song, C.; Hong, Y.S.; Kim, M.S.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv., 2017, 3(3), e1601314.
[http://dx.doi.org/10.1126/sciadv.1601314] [PMID: 28345030]
[113]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery ap-plications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[114]
Wang, H.; Rempel, G.L. Introduction of polymer nanoparticles for drug delivery applications. J. Nanotechnol. Nanomed. Nanobiotechnol., 2015, 2(008), 1-6.
[115]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[116]
Ahmed, J.; Varshney, S.K. Polylactides-chemistry, properties and green packaging technology: a review. Int. J. Food Prop., 2011, 14(1), 37-58.
[http://dx.doi.org/10.1080/10942910903125284]
[117]
Mochizuki, M. Synthesis, properties and structure of polylactic acid fibres. In: Handbook of Textile Fibre Structure; Elsevier: Amsterdam, 2009; pp. 257-275.
[http://dx.doi.org/10.1533/9781845696504.2.257]
[118]
Tomar, L.; Tyagi, C.; Kumar, M.; Kumar, P.; Singh, H.; Choonara, Y.E.; Pillay, V. In vivo evaluation of a conjugated poly(lactide-ethylene glycol) nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model. Int. J. Nanomedicine, 2013, 8, 505-520.
[PMID: 23429428]
[119]
Mokale, V.J.; Naik, J.B.; Verma, U.; Patil, J.S.; Yadava, S.K. Preparation and characterization of biodegradable glimepiride loaded pla na-noparticles by o/w solvent evaporation method using high pressure homogenizer: a factorial design approach. SAJ Pharm. Pharmacol., 2014, 1(1), 1.
[120]
Pandey, G.; Chaudhari, R.; Joshi, B.; Choudhary, S.; Kaur, J.; Joshi, A. Fluorescent biocompatible platinum-porphyrin-doped polymeric hybrid particles for oxygen and glucose biosensing. Sci. Rep., 2019, 9(1), 5029.
[http://dx.doi.org/10.1038/s41598-019-41326-7] [PMID: 30903010]
[121]
Sadat Tabatabaei Mirakabad, F.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimza-deh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[122]
Locatelli, E.; Comes Franchini, M. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applica-tions as drug delivery system. J. Nanopart. Res., 2012, 14(12), 1316.
[http://dx.doi.org/10.1007/s11051-012-1316-4]
[123]
Astete, C.E.; Sabliov, C.M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed., 2006, 17(3), 247-289.
[http://dx.doi.org/10.1163/156856206775997322] [PMID: 16689015]
[124]
Samadi, N.; Abbadessa, A.; Di Stefano, A.; van Nostrum, C.F.; Vermonden, T.; Rahimian, S.; Teunissen, E.A.; van Steenbergen, M.J.; Amidi, M.; Hennink, W.E. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) parti-cles. J. Control. Release, 2013, 172(2), 436-443.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.034] [PMID: 23751568]
[125]
Fang, L.; Liang, B.; Yang, G.; Hu, Y.; Zhu, Q.; Ye, X. Study of glucose biosensor lifetime improvement in 37°C serum based on PANI enzyme immobilization and PLGA biodegradable membrane. Biosens. Bioelectron., 2014, 56, 91-96.
[http://dx.doi.org/10.1016/j.bios.2014.01.017] [PMID: 24480128]
[126]
Panda, B.P.; Krishnamoorthy, R.; Bhattamisra, S.K.; Shivashekaregowda, N.K.H.; Seng, L.B.; Patnaik, S. Fabrication of second generation smarter PLGA based nanocrystal carriers for improvement of drug delivery and therapeutic efficacy of gliclazide in type-2 diabetes rat model. Sci. Rep., 2019, 9(1), 17331.
[http://dx.doi.org/10.1038/s41598-019-53996-4] [PMID: 31758056]
[127]
Ristić, I.; Miletic, A.; Cakić, S.; Govedarica, O.; Janković, M.; Sinadinović-Fišer, S. The synthesis of polyacrylic acid with controlled mole-cular weights. In: Conference: Physical Chemistry 2016 Organized by The Society of Physical Chemists of Serbia At:;; Belgrade, 2016; 2, pp. 685-688.
[128]
Zahran, M.A.; Abd El-Mawgood, W.A.; Basuni, M.M. Poly Acrylic Acid: Synthesis, aqueous Properties and their Applications as scale Inhibitor. KGK-KAUT GUMMI KUNST, 2016, 69(7-8), 53-58.
[129]
Damgé, C.; Maincent, P.; Ubrich, N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 2007, 117(2), 163-170.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.023] [PMID: 17141909]
[130]
Master, A.M.; Rodriguez, M.E.; Kenney, M.E.; Oleinick, N.L.; Gupta, A.S. Delivery of the photosensitizer Pc 4 in PEG-PCL micelles for in vitro PDT studies. J. Pharm. Sci., 2010, 99(5), 2386-2398.
[http://dx.doi.org/10.1002/jps.22007] [PMID: 19967780]
[131]
Kuwahara, T.; Ogawa, K.; Sumita, D.; Kondo, M.; Shimomura, M. Amperometric glucose sensing with polyaniline/poly(acrylic acid) com-posite film bearing glucose oxidase and catalase based on competitive oxygen consumption reactions. J. Electroanal. Chem. (Lausanne), 2018, 811, 62-67.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.042]
[132]
Safrygin, A.V.; Sosnovskikh, V.Y. Synthesis and chemical properties of 2-acylchromones. Russ. Chem. Rev., 2017, 86(4), 318-338.
[http://dx.doi.org/10.1070/RCR4664]
[133]
Ladmiral, V.; Charlot, A.; Semsarilar, M.; Armes, S.P. Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nano-objects. Polym. Chem., 2015, 6(10), 1805-1816.
[http://dx.doi.org/10.1039/C4PY01556H]
[134]
Khuphe, M.; Thornton, P.D. Poly(amino acids). In: Engineering of Biomaterials for Drug Delivery Systems; Elsevier: Amsterdam, 2018; pp. 199-228.
[http://dx.doi.org/10.1016/B978-0-08-101750-0.00007-6]
[135]
Zashikhina, N.; Sharoyko, V.; Antipchik, M.; Tarasenko, I.; Anufrikov, Y.; Lavrentieva, A.; Tennikova, T.; Korzhikova-Vlakh, E. Novel formulations of C-peptide with long-acting therapeutic potential for treatment of diabetic complications. Pharmaceutics, 2019, 11(1), 27.
[http://dx.doi.org/10.3390/pharmaceutics11010027] [PMID: 30641932]
[136]
Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L. Polycaprolactone: Synthesis, Properties, and Applications. In: Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, 2017; pp. 1-36.
[137]
Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev., 2009, 38(12), 3484-3504.
[http://dx.doi.org/10.1039/b820162p] [PMID: 20449064]
[138]
Hajiali, F.; Tajbakhsh, S.; Shojaei, A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a Review. Polym. Rev. (Phila. Pa.), 2017, 58(1), 164-207.
[http://dx.doi.org/10.1080/15583724.2017.1332640]
[139]
Bajpai, S.K.; Chand, N.; Soni, S. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels. J. Biomater. Sci. Polym. Ed., 2015, 26(14), 947-962.
[http://dx.doi.org/10.1080/09205063.2015.1068547] [PMID: 26135033]
[140]
Xu, T.; Jin, W.; Wang, Z.; Cheng, H.; Huang, X.; Guo, X.; Ying, Y.; Wu, Y.; Wang, F.; Wen, Y.; Yang, H. Electrospun CuO-nanoparticles-modified polycaprolactone @polypyrrole fibers: an application to sensing glucose in saliva. Nanomaterials (Basel), 2018, 8(3), 133.
[http://dx.doi.org/10.3390/nano8030133] [PMID: 29495508]
[141]
Zhao, Y.; Cao, L.; Li, L.; Cheng, W.; Xu, L.; Ping, X.; Pan, L.; Shi, Y. Conducting polymers and their applications in diabetes management. Sensors (Basel), 2016, 16(11), 1787.
[http://dx.doi.org/10.3390/s16111787] [PMID: 27792179]
[142]
Borole, D.D.; Kapadi, U.R.; Mahulikar, P.P.; Hundiwale, D.G. Glucose oxidase electrodes of a terpolymer poly (aniline-co-o-anisidine-co-o-toluidine) as biosensors. Eur. Polym. J., 2005, 41(9), 2183.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.03.013]
[143]
Gan, Z.; Song, N.; Zhang, H.; Ma, Z.; Wang, Y.; Chen, C. One-step electrofabrication of reduced graphene oxide/poly (N-methylthionine) composite film for high performance supercapacitors. J. Electrochem. Soc., 2020, 167(8), 085501.
[http://dx.doi.org/10.1149/1945-7111/ab8c82]
[144]
Liu, Y.; Song, N.; Ma, Z.; Zhou, K.; Gan, Z.; Gao, Y.; Tang, S.; Chen, C. Synthesis of a poly (N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone. Mater. Chem. Phys., 2019, 223, 548.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.045]
[145]
Chin, R.L.; Martinez, R.; Garmel, G. Gas gangrene from subcutaneous insulin administration. Am. J. Emerg. Med., 1993, 11(6), 622-625.
[http://dx.doi.org/10.1016/0735-6757(93)90018-7] [PMID: 8240568]
[146]
Goldberg, M.; Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov., 2003, 2(4), 289-295.
[http://dx.doi.org/10.1038/nrd1067] [PMID: 12669028]
[147]
Sood, A.; Panchagnula, R. Peroral route: an opportunity for protein and peptide drug delivery. Chem. Rev., 2001, 101(11), 3275-3303.
[http://dx.doi.org/10.1021/cr000700m] [PMID: 11840987]
[148]
Brogden, R.N.; Heel, R.C. Human insulin. A review of its biological activity, pharmacokinetics and therapeutic use. Drugs, 1987, 34(3), 350-371.
[http://dx.doi.org/10.2165/00003495-198734030-00003] [PMID: 3315622]
[149]
Galloway, J.A.; Chance, R.E. Improving insulin therapy: achievements and challenges. Horm. Metab. Res., 1994, 26(12), 591-598.
[http://dx.doi.org/10.1055/s-2007-1001766] [PMID: 7705765]
[150]
Pillai, O.; Panchagnula, R. Insulin therapies - past, present and future. Drug Discov. Today, 2001, 6(20), 1056-1061.
[http://dx.doi.org/10.1016/S1359-6446(01)01962-6] [PMID: 11590034]
[151]
Lai, S.K.; O’Hanlon, D.E.; Harrold, S.; Man, S.T.; Wang, Y-Y.; Cone, R.; Hanes, J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA, 2007, 104(5), 1482-1487.
[http://dx.doi.org/10.1073/pnas.0608611104] [PMID: 17244708]
[152]
Yu, M.; Yang, Y.; Zhu, C.; Guo, S.; Gan, Y. Advances in the transepithelial transport of nanoparticles. Drug Discov. Today, 2016, 21(7), 1155-1161.
[http://dx.doi.org/10.1016/j.drudis.2016.05.007] [PMID: 27196527]
[153]
Ma, T.Y. Digestion and Absorption: Tight junction and the intestinal barrier. Physiol. Gastrointest. Tract., 2006, 1559-1594.
[154]
Salama, N.N.; Eddington, N.D.; Fasano, A. Tight junction modulation and its relationship to drug delivery. Tight junctions; Springer: New York, 2006, pp. 206-219.
[155]
Chen, M-C.; Sonaje, K.; Chen, K-J.; Sung, H-W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011, 32(36), 9826-9838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087] [PMID: 21925726]
[156]
Acosta, E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci., 2009, 14(1), 3-15.
[http://dx.doi.org/10.1016/j.cocis.2008.01.002]
[157]
Nellans, H.N. (B) Mechanisms of peptide and protein absorption:(1) Paracellular intestinal transport: modulation of absorption. Adv. Drug Deliv. Rev., 1991, 7(3), 339-364.
[http://dx.doi.org/10.1016/0169-409X(91)90013-3]
[158]
Salamat-Miller, N.; Johnston, T.P. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the in-testinal epithelium. Int. J. Pharm., 2005, 294(1-2), 201-216.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.022] [PMID: 15814245]
[159]
Plapied, L.; Duhem, N.; des Rieux, A.; Préat, V. Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 228-237.
[http://dx.doi.org/10.1016/j.cocis.2010.12.005]
[160]
Shakweh, M.; Ponchel, G.; Fattal, E. Particle uptake by Peyer’s patches: A pathway for drug and vaccine delivery. Expert Opin. Drug Deliv., 2004, 1(1), 141-163.
[http://dx.doi.org/10.1517/17425247.1.1.141] [PMID: 16296726]
[161]
Hsu, L-W.; Lee, P-L.; Chen, C-T.; Mi, F-L.; Juang, J-H.; Hwang, S-M.; Ho, Y.C.; Sung, H.W. Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials, 2012, 33(26), 6254-6263.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.013] [PMID: 22681978]
[162]
Ramesan, R.M.; Sharma, C.P. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev. Med. Devices, 2009, 6(6), 665-676.
[http://dx.doi.org/10.1586/erd.09.43] [PMID: 19911877]
[163]
Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci., 2009, 66(17), 2873-2896.
[http://dx.doi.org/10.1007/s00018-009-0053-z] [PMID: 19499185]
[164]
Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res., 1996, 13(12), 1838-1845.
[http://dx.doi.org/10.1023/A:1016085108889] [PMID: 8987081]
[165]
Jung, T.; Kamm, W.; Breitenbach, A.; Hungerer, K-D.; Hundt, E.; Kissel, T. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res., 2001, 18(3), 352-360.
[http://dx.doi.org/10.1023/A:1011063232257] [PMID: 11442276]
[166]
des Rieux, A.; Fievez, V.; Théate, I.; Mast, J.; Préat, V.; Schneider, Y-J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci., 2007, 30(5), 380-391.
[http://dx.doi.org/10.1016/j.ejps.2006.12.006] [PMID: 17291730]
[167]
Jani, P.; Halbert, G.W.; Langridge, J.; Florence, A.T. The uptake and translocation of latex nanospheres and microspheres after oral admi-nistration to rats. J. Pharm. Pharmacol., 1989, 41(12), 809-812.
[http://dx.doi.org/10.1111/j.2042-7158.1989.tb06377.x] [PMID: 2576440]
[168]
Bannunah, A.M.; Vllasaliu, D.; Lord, J.; Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol. Pharm., 2014, 11(12), 4363-4373.
[http://dx.doi.org/10.1021/mp500439c] [PMID: 25327847]
[169]
Shakweh, M.; Besnard, M.; Nicolas, V.; Fattal, E. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer’s patches in mice. Eur. J. Pharm. Biopharm., 2005, 61(1-2), 1-13.
[http://dx.doi.org/10.1016/j.ejpb.2005.04.006] [PMID: 16005619]
[170]
Wang, Y.Y.; Lai, S.K.; Suk, J.S.; Pace, A.; Cone, R.; Hanes, J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem. Int. Ed. Engl., 2008, 47(50), 9726-9729.
[http://dx.doi.org/10.1002/anie.200803526] [PMID: 18979480]
[171]
Tang, B.C.; Dawson, M.; Lai, S.K.; Wang, Y-Y.; Suk, J.S.; Yang, M.; Zeitlin, P.; Boyle, M.P.; Fu, J.; Hanes, J. Biodegradable polymer na-noparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. USA, 2009, 106(46), 19268-19273.
[http://dx.doi.org/10.1073/pnas.0905998106] [PMID: 19901335]
[172]
Dünnhaupt, S.; Barthelmes, J.; Hombach, J.; Sakloetsakun, D.; Arkhipova, V.; Bernkop-Schnürch, A. Distribution of thiolated mucoadhe-sive nanoparticles on intestinal mucosa. Int. J. Pharm., 2011, 408(1-2), 191-199.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.060] [PMID: 21295123]
[173]
Makhlof, A.; Werle, M.; Tozuka, Y.; Takeuchi, H. A mucoadhesive nanoparticulate system for the simultaneous delivery of macromole-cules and permeation enhancers to the intestinal mucosa. J. Control. Release, 2011, 149(1), 81-88.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.001] [PMID: 20138935]
[174]
Fan, W.; Xia, D.; Zhu, Q.; Hu, L.; Gan, Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov. Today, 2016, 21(5), 856-863.
[http://dx.doi.org/10.1016/j.drudis.2016.04.007] [PMID: 27094490]
[175]
Chalasani, K.B.; Russell-Jones, G.J.; Yandrapu, S.K.; Diwan, P.V.; Jain, S.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release, 2007, 117(3), 421-429.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.003] [PMID: 17239471]
[176]
Chalasani, K.B.; Russell-Jones, G.J.; Jain, A.K.; Diwan, P.V.; Jain, S.K. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J. Control. Release, 2007, 122(2), 141-150.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.019] [PMID: 17707540]
[177]
Pridgen, E.M.; Alexis, F.; Kuo, T.T.; Levy-Nissenbaum, E.; Karnik, R.; Blumberg, R.S. Transepithelial transport of Fc-targeted nanoparti-cles by the neonatal fc receptor for oral delivery. Sci. Transl. Med., 2013, 5(213), 213ra167-213ra167.
[http://dx.doi.org/10.1126/scitranslmed.3007049]
[178]
Liu, C.; Shan, W.; Liu, M.; Zhu, X.; Xu, J.; Xu, Y.; Huang, Y. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv., 2016, 23(6), 2015-2025.
[http://dx.doi.org/10.3109/10717544.2015.1058433] [PMID: 26203690]
[179]
Alai, M.S.; Lin, W.J.; Pingale, S.S. Application of polymeric nanoparticles and micelles in insulin oral delivery. J. Food Drug Anal., 2015, 23(3), 351-358.
[http://dx.doi.org/10.1016/j.jfda.2015.01.007] [PMID: 28911691]
[180]
Pridgen, E.M.; Alexis, F.; Farokhzad, O.C. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin. Drug Deliv., 2015, 12(9), 1459-1473.
[181]
Cui, F.D.; Tao, A.J.; Cun, D.M.; Zhang, L.Q.; Shi, K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J. Pharm. Sci., 2007, 96(2), 421-427.
[http://dx.doi.org/10.1002/jps.20750] [PMID: 17051590]
[182]
Xiong, X.Y.; Li, Y.P.; Li, Z.L.; Zhou, C.L.; Tam, K.C.; Liu, Z.Y.; Xie, G.X. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release, 2007, 120(1-2), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.004] [PMID: 17509718]
[183]
Thompson, C.J.; Tetley, L.; Cheng, W.P. The influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin--towards oral insulin delivery. Int. J. Pharm., 2010, 383(1-2), 216-227.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.018] [PMID: 19766178]
[184]
Deutel, B.; Greindl, M.; Thaurer, M.; Bernkop-Schnürch, A. Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug deli-very system. Biomacromolecules, 2008, 9(1), 278-285.
[http://dx.doi.org/10.1021/bm700916h] [PMID: 18159930]
[185]
Lin, Y-H.; Mi, F-L.; Chen, C-T.; Chang, W-C.; Peng, S-F.; Liang, H-F.; Sung, H.W. Preparation and characterization of nanoparticles she-lled with chitosan for oral insulin delivery. Biomacromolecules, 2007, 8(1), 146-152.
[http://dx.doi.org/10.1021/bm0607776] [PMID: 17206800]
[186]
Jose, S.; Fangueiro, J.F.; Smitha, J.; Cinu, T.A.; Chacko, A.J.; Premaletha, K.; Souto, E.B. Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. Colloids Surf. B Biointerfaces, 2012, 92, 175-179.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.040] [PMID: 22221459]
[187]
Rathore, P.; Mahor, A.; Jain, S.; Haque, A.; Kesharwani, P. Formulation development, in vitro and in vivo evaluation of chitosan enginee-red nanoparticles for ocular delivery of insulin. RSC Adv, 2020, 10(71), 43629-43639.
[http://dx.doi.org/10.1039/D0RA07640F]
[188]
Zhang, N.; Li, J.; Jiang, W.; Ren, C.; Li, J.; Xin, J.; Li, K. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm., 2010, 393(1-2), 212-218.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.006] [PMID: 20394813]
[189]
Chai, Z.; Dong, H.; Sun, X.; Fan, Y.; Wang, Y.; Huang, F. Development of glucose oxidase-immobilized alginate nanoparticles for enhan-ced glucose-triggered insulin delivery in diabetic mice. Int. J. Biol. Macromol., 2020, 159, 640-647.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.097] [PMID: 32428589]
[190]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release, 2017, 264, 247-275.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.003] [PMID: 28887133]
[191]
Elshaarani, T.; Yu, H.; Wang, L.; Lin, L.; Wang, N.; Zhang, L.; Han, Y.; Fahad, S.; Ni, Z. Dextran-crosslinked glucose responsive nanogels with a self-regulated insulin release at physiological conditions. Eur. Polym. J., 2020, 125, 109505.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109505]
[192]
Sun, S.; Cui, F.; Kawashima, Y.; Liang, N.; Zhang, L.; Shi, K.; Yu, Y. A novel insulin-sodium oleate complex for oral administration: preparation, characterization and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2008, 18(4), 239-243.
[http://dx.doi.org/10.1016/S1773-2247(08)50047-5]
[193]
Sun, S.; Liang, N.; Piao, H.; Yamamoto, H.; Kawashima, Y.; Cui, F. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J. Microencapsul., 2010, 27(6), 471-478.
[http://dx.doi.org/10.3109/02652040903515490] [PMID: 20113168]
[194]
Thompson, C.; Cheng, W.P.; Gadad, P.; Skene, K.; Smith, M.; Smith, G.; McKinnon, A.; Knott, R. Uptake and transport of novel amphip-hilic polyelectrolyte-insulin nanocomplexes by Caco-2 cells--towards oral insulin. Pharm. Res., 2011, 28(4), 886-896.
[http://dx.doi.org/10.1007/s11095-010-0345-x] [PMID: 21213024]
[195]
Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 2007, 24(8), 1415-1426.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[196]
Zhao, X.; Shan, C.; Zu, Y.; Zhang, Y.; Wang, W.; Wang, K.; Sui, X.; Li, R. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int. J. Pharm., 2013, 454(1), 278-284.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.051] [PMID: 23830939]
[197]
He, H.; Ye, J.; Sheng, J.; Wang, J.; Huang, Y.; Chen, G.; Wang, J.; Yang, V.C. Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites. Front. Chem. Sci. Eng., 2013, 7(1), 9-19.
[http://dx.doi.org/10.1007/s11705-013-1306-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy