Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

Systematic Review of the Serotonergic System in the Pathophysiology of Severe Dengue: The Theory of Thrombocytopenia and Vascular Extravasation

Author(s): Josselin Corzo-Gómez, Ofir Picazo, Manuela Castellanos-Pérez and Alfredo Briones-Aranda*

Volume 23, Issue 2, 2023

Published on: 27 August, 2022

Page: [230 - 243] Pages: 14

DOI: 10.2174/1389557522666220619231643

Price: $65

Abstract

Background: Severe dengue is characterized by thrombocytopenia, hemorrhaging, and/or capillary extravasation and may be linked to a reduced plasma concentration of serotonin (5-hydroxytriptamine, or 5-HT).

Objective: The aim of the current contribution was to conduct a systematic bibliographic review of reports on the role of the peripheral serotonergic system in the pathophysiology of severe dengue.

Methods: A bibliographic review was carried out of in vivo/in vitro models, clinical trials, and case series studies from 2010-2019. The selective criteria were the use of treatments with serotonin reuptake inhibitors and/or agonists/antagonists of 5-HT receptors and their impact on inflammation, coagulation, and endothelium. Moreover, cross-sectional and cohort studies on the relationship between intraplatelet and plasma 5-HT levels in patients with dengue were also included. The risk of bias in the selected reports was examined with domain-based assessment utilizing Cochrane-type criteria. The main results are summarized in Tables and Figures.

Results: Based on descriptions of the effect of serotonergic drugs on 5-HT levels and the findings of clinical trials of dengue treatment, most receptors of the peripheral serotonergic system, and especially 5-HT2A, seem to participate in regulating serum 5-HT during severe dengue. Therefore, the peripheral serotonergic system probably contributes to thrombocytopenia and capillary extravasation.

Conclusion: Regarding dengue, 5-HT may be a key parameter for predicting severity, and an understanding of 5-HT-related mechanisms could possibly facilitate the development of new therapies. These proposals require further research due to the limited number of publications on the role of serotonergic receptors at the peripheral level.

Keywords: 5-Hydroxytriptamine, dengue, serotonergic drugs, serotonin reuptake inhibitors, 5-HT receptors, platelets

« Previous
Graphical Abstract

[2]
WHO. Dengue: Guidelines for diagnosis, treatment, prevention and control, World Health Organization, Geneva, Switzerland 2009. Available from: http://whqlibdoc.who.int/publications/2009/9789241547871 eng.pdf
[3]
Jayashree, K.; Manasa, G.C.; Pallavi, P.; Manjunath, G.V. Evaluation of platelets as predictive parameters in dengue Fever. Indian J. Hematol. Blood Transfus., 2011, 27(3), 127-130.
[http://dx.doi.org/10.1007/s12288-011-0075-1] [PMID: 22942561]
[4]
Michels, M.; Alisjahbana, B.; De Groot, P.G.; Indrati, A.R.; Fijnheer, R.; Puspita, M.; Dewi, I.M.; van de Wijer, L.; de Boer, E.M.; Roest, M.; van der Ven, A.J.; de Mast, Q. Platelet function alterations in dengue are associated with plasma leakage. Thromb. Haemost., 2014, 112(2), 352-362.
[PMID: 24695691]
[5]
Hornung, J.P. The neuronatomy of the serotonergic system. Handbook of Behavioral Neuroscience Elsevier Science B.V.: Amsterdam, 2010; 21, pp. 51-64.
[http://dx.doi.org/10.1016/S1569-7339(10)70071-0]
[6]
Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F.; Keating, D.J. Cellular regulation of peripheral serotonin.Serotonin the Mediator that Spans Evolution; Paul, P., Ed.; Academic Press: Cambridge, Massachusetts, 2019, pp. 137-153.
[7]
Lowery, C.L., III; Woulfe, D.; Kilic, F. Responses of plasma catecholamine, serotonin, and the platelet serotonin transporter to cigarette smoking. Front. Neurosci., 2019, 13, 32.
[http://dx.doi.org/10.3389/fnins.2019.00032] [PMID: 30886568]
[8]
Lesurtel, M.; Graf, R.; Aleil, B.; Walther, D.J.; Tian, Y.; Jochum, W.; Gachet, C.; Bader, M.; Clavien, P.A. Platelet-derived serotonin media-tes liver regeneration. Science, 2006, 312(5770), 104-107.
[http://dx.doi.org/10.1126/science.1123842] [PMID: 16601191]
[9]
Linder, A.E.; Ni, W.; Szasz, T.; Burnett, R.; Diaz, J.; Geddes, T.J.; Kuhn, D.M.; Watts, S.W. A serotonergic system in veins: serotonin transporter-independent uptake. J. Pharmacol. Exp. Ther., 2008, 325(3), 714-722.
[http://dx.doi.org/10.1124/jpet.107.135699] [PMID: 18322152]
[10]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[11]
Nichols, D.E.; Nichols, C.D. Serotonin receptors. Chem. Rev., 2008, 108(5), 1614-1641.
[http://dx.doi.org/10.1021/cr078224o] [PMID: 18476671]
[12]
Roth, B.L. Irving Page Lecture: 5-HT(2A) serotonin receptor biology: interacting proteins, kinases and paradoxical regulation. Neuropharmacology, 2011, 61(3), 348-354.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.012] [PMID: 21288474]
[13]
Stratz, C.; Trenk, D.; Bhatia, H.S.; Valina, C.; Neumann, F.J.; Fiebich, B.L. Identification of 5-HT3 receptors on human platelets: increased surface immunoreactivity after activation with adenosine diphosphate (ADP) and thrombin receptor-activating peptide (TRAP). Thromb. Haemost., 2008, 99(4), 784-786.
[http://dx.doi.org/10.1160/TH07-10-0630] [PMID: 18392340]
[14]
Reeves, D.C.; Lummis, S.C. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol. Membr. Biol., 2002, 19(1), 11-26.
[http://dx.doi.org/10.1080/09687680110110048] [PMID: 11989819]
[15]
Zhuang, X.; Xu, H.; Fang, Z.; Xu, C.; Xue, C.; Hong, X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur. J. Pharmacol., 2018, 834, 213-220.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.033] [PMID: 30031795]
[16]
Spohn, S.N.; Mawe, G.M. Non-conventional features of peripheral serotonin signalling - the gut and beyond. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 412-420.
[http://dx.doi.org/10.1038/nrgastro.2017.51] [PMID: 28487547]
[17]
Laporta, J.; Peters, T.L.; Merriman, K.E.; Vezina, C.M.; Hernandez, L.L. Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation. PLoS One, 2013, 8(2), e57847.
[http://dx.doi.org/10.1371/journal.pone.0057847] [PMID: 23469086]
[18]
Crane, J.D.; Palanivel, R.; Mottillo, E.P.; Bujak, A.L.; Wang, H.; Ford, R.J.; Collins, A.; Blümer, R.M.; Fullerton, M.D.; Yabut, J.M.; Kim, J.J.; Ghia, J.E.; Hamza, S.M.; Morrison, K.M.; Schertzer, J.D.; Dyck, J.R.; Khan, W.I.; Steinberg, G.R. Inhibiting peripheral serotonin synt-hesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med., 2015, 21(2), 166-172.
[http://dx.doi.org/10.1038/nm.3766] [PMID: 25485911]
[19]
Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med., 2009, 60, 355-366.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[20]
Braun, T.; Voland, P.; Kunz, L.; Prinz, C.; Gratzl, M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology, 2007, 132(5), 1890-1901.
[http://dx.doi.org/10.1053/j.gastro.2007.02.036] [PMID: 17484882]
[21]
Nozawa, K.; Kawabata-Shoda, E.; Doihara, H.; Kojima, R.; Okada, H.; Mochizuki, S.; Sano, Y.; Inamura, K.; Matsushime, H.; Koizumi, T.; Yokoyama, T.; Ito, H. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3408-3413.
[http://dx.doi.org/10.1073/pnas.0805323106] [PMID: 19211797]
[22]
Swami, T.; Weber, H.C. Updates on the biology of serotonin and tryptophan hydroxylase. Curr. Opin. Endocrinol. Diabetes Obes., 2018, 25(1), 12-21.
[http://dx.doi.org/10.1097/MED.0000000000000383] [PMID: 29194046]
[23]
Zhang, X.; Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2. Cell. Mol. Life Sci., 2006, 63(1), 6-11.
[http://dx.doi.org/10.1007/s00018-005-5417-4] [PMID: 16378243]
[24]
Zarpellon, A.; Donella-Deana, A.; Folda, A.; Turetta, L.; Pavanetto, M.; Deana, R. Serotonin (5-HT) transport in human platelets is modu-lated by Src-catalysed Tyr-phosphorylation of the plasma membrane transporter SERT. Cell. Physiol. Biochem., 2008, 21(1-3), 87-94.
[http://dx.doi.org/10.1159/000113750] [PMID: 18209475]
[25]
Londono-Renteria, B.; Marinez-Angarita, J.C.; Troupin, A.; Colpitts, T.M. Role of Mast Cells in Dengue Virus Pathogenesis. DNA Cell Biol., 2017, 36(6), 423-427.
[http://dx.doi.org/10.1089/dna.2017.3765] [PMID: 28486041]
[26]
Thompson, A.J.; Lummis, S.C. 5-HT3 receptors. Curr. Pharm. Des., 2006, 12(28), 3615-3630.
[http://dx.doi.org/10.2174/138161206778522029] [PMID: 17073663]
[27]
Lin, L.; Hu, K. Serotonin is a multifaceted player in the immune response. Front. Biosci., 2021, 26(8), 253-254.
[http://dx.doi.org/10.52586/4939] [PMID: 34455755]
[28]
Jiménez-Trejo, F.; Tapia-Rodríguez, M.; Cerbón, M.; Kuhn, D.M.; Manjarrez-Gutiérrez, G.; Mendoza-Rodríguez, C.A.; Picazo, O. Eviden-ce of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility. Reproduction, 2012, 144(6), 677-685.
[http://dx.doi.org/10.1530/REP-12-0145] [PMID: 23028123]
[29]
Laberge, S.; Cruikshank, W.W.; Beer, D.J.; Center, D.M. Secretion of IL-16 (lymphocyte chemoattractant factor) from serotonin-stimulated CD8+ T cells in vitro. J. Immunol., 1996, 156(1), 310-315.
[PMID: 8598478]
[30]
Nagatomo, T.; Rashid, M.; Abul Muntasir, H.; Komiyama, T. Functions of 5-HT2A receptor and its antagonists in the cardiovascular sys-tem. Pharmacol. Ther., 2004, 104(1), 59-81.
[http://dx.doi.org/10.1016/j.pharmthera.2004.08.005] [PMID: 15500909]
[31]
Machida, T.; Iizuka, K.; Hirafuji, M. 5-hydroxytryptamine and its receptors in systemic vascular walls. Biol. Pharm. Bull., 2013, 36(9), 1416-1419.
[http://dx.doi.org/10.1248/bpb.b13-00344] [PMID: 23995652]
[32]
Serebruany, V.L.; El Mouelhi, M.; Pfannkuche, H.J.; Rose, K.; Marro, M.; Angiolillo, D.J. Investigations on 5-HT4 receptor expression and effects of tegaserod on human platelet aggregation in vitro. Am. J. Ther., 2010, 17(6), 543-552.
[http://dx.doi.org/10.1097/MJT.0b013e3181b63f21] [PMID: 19797939]
[33]
Lanthier, C.; Dallemagne, P.; Lecoutey, C.; Claeysen, S.; Rochais, C. Therapeutic modulators of the serotonin 5-HT4 receptor: A patent review (2014-present). Expert Opin. Ther. Pat., 2020, 30(7), 495-508.
[http://dx.doi.org/10.1080/13543776.2020.1767587] [PMID: 32400221]
[34]
Quintero-Villegas, A.; Valdés-Ferrer, S.I. Role of 5-HT7 receptors in the immune system in health and disease. Mol. Med., 2019, 26(1), 2.
[http://dx.doi.org/10.1186/s10020-019-0126-x] [PMID: 31892309]
[35]
Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res., 2019, 140, 100-114.
[http://dx.doi.org/10.1016/j.phrs.2018.06.015] [PMID: 29953943]
[36]
Kim, J.J.; Bridle, B.W.; Ghia, J.E.; Wang, H.; Syed, S.N.; Manocha, M.M.; Rengasamy, P.; Shajib, M.S.; Wan, Y.; Hedlund, P.B.; Khan, W.I. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation. J. Immunol., 2013, 190(9), 4795-4804.
[http://dx.doi.org/10.4049/jimmunol.1201887] [PMID: 23554310]
[37]
Mammadova-Bach, E.; Mauler, M.; Braun, A.; Duerschmied, D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets, 2018, 29(6), 541-548.
[http://dx.doi.org/10.1080/09537104.2018.1478072] [PMID: 29863942]
[38]
Holinstat, M. Normal platelet function. Cancer Metastasis Rev., 2017, 36(2), 195-198.
[http://dx.doi.org/10.1007/s10555-017-9677-x] [PMID: 28667366]
[39]
Gupta, S.; Konradt, C.; Corken, A.; Ware, J.; Nieswandt, B.; Di Paola, J.; Yu, M.; Wang, D.; Nieman, M.T.; Whiteheart, S.W.; Brass, L.F. Hemostasis vs. homeostasis: Platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc. Natl. Acad. Sci. USA, 2020, 117(39), 24316-24325.
[http://dx.doi.org/10.1073/pnas.2007642117] [PMID: 32929010]
[40]
Ho-Tin-Noé, B.; Demers, M.; Wagner, D.D. How platelets safeguard vascular integrity. J. Thromb. Haemost., 2011, 9(Suppl. 1), 56-65.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04317.x] [PMID: 21781242]
[41]
Kunder, C.A.; St John, A.L.; Abraham, S.N. Mast cell modulation of the vascular and lymphatic endothelium. Blood, 2011, 118(20), 5383-5393.
[http://dx.doi.org/10.1182/blood-2011-07-358432] [PMID: 21908429]
[42]
Ringvall, M.; Rönnberg, E.; Wernersson, S.; Duelli, A.; Henningsson, F.; Abrink, M.; García-Faroldi, G.; Fajardo, I.; Pejler, G. Serotonin and histamine storage in mast cell secretory granules is dependent on serglycin proteoglycan. J. Allergy Clin. Immunol., 2008, 121(4), 1020-1026.
[http://dx.doi.org/10.1016/j.jaci.2007.11.031] [PMID: 18234316]
[43]
Gaweska, H.; Fitzpatrick, P.F. Structures and Mechanism of the Monoamine Oxidase Family. Biomol. Concepts, 2011, 2(5), 365-377.
[http://dx.doi.org/10.1515/BMC.2011.030] [PMID: 22022344]
[44]
Higgins, J.P.T.; Altman, D.G.; Sterne, J.A.C. Assessing risk of bias in included studies.Cochrane Hand-book for Systematic Reviews of Interventions Version 5.1.0; Higgin, J.P.T.; Green, S., Eds.; Available from, 2011. [https://handbook-5-1.cochrane.org/]
[45]
Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol., 2014, 14, 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[46]
Nunes, E.A.; Rezende, T.M.; Morais, S.L.; Crippa, J.A.; Dursun, S.M.; Baker, G.B.; Hallak, J.E. Clozapine treatment of patients with re-fractory schizophrenia, concurrent dengue infection and hematological abnormalities: three case reports. Ther. Adv. Psychopharmacol., 2013, 3(2), 83-88.
[http://dx.doi.org/10.1177/2045125312464995] [PMID: 24167679]
[47]
De Meyer, S.F.; Vanhoorelbeke, K.; Broos, K.; Salles, I.I.; Deckmyn, H. Antiplatelet drugs. Br. J. Haematol., 2008, 142(4), 515-528.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07233.x] [PMID: 18513285]
[48]
Egan, C.T.; Herrick-Davis, K.; Miller, K.; Glennon, R.A.; Teitler, M. Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors. Psychopharmacology (Berl.), 1998, 136(4), 409-414.
[http://dx.doi.org/10.1007/s002130050585] [PMID: 9600588]
[49]
Walther, D.J.; Peter, J.U.; Winter, S.; Höltje, M.; Paulmann, N.; Grohmann, M.; Vowinckel, J.; Alamo-Bethencourt, V.; Wilhelm, C.S. Ah-nert-Hilger, G.; Bader, M. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell, 2003, 115(7), 851-862.
[http://dx.doi.org/10.1016/S0092-8674(03)01014-6] [PMID: 14697203]
[50]
Gocht, A.; Distler, J.H.W.; Spriewald, B.; Ramsperger-Gleixner, M.; Weyand, M.; Ensminger, S.M.; Heim, C. Effects of different serotonin receptor subtype antagonists on the development of cardiac allograft vasculopathy in murine aortic allografts. Transpl. Immunol., 2018, 49, 43-53.
[http://dx.doi.org/10.1016/j.trim.2018.04.002] [PMID: 29649585]
[51]
Blaazer, A.R.; Smid, P.; Kruse, C.G. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. ChemMedChem, 2008, 3(9), 1299-1309.
[http://dx.doi.org/10.1002/cmdc.200800133] [PMID: 18666267]
[52]
Kubacka, M.; Kazek, G.; Kotańska, M.; Filipek, B.; Waszkielewicz, A.M.; Mogilski, S. Anti-aggregation effect of aroxyalkyl derivatives of 2-methoxyphenylpiperazine is due to their 5-HT2A and α2-adrenoceptor antagonistic properties. A comparison with ketanserin, sarpogrela-te, prazosin, yohimbine and ARC239. Eur. J. Pharmacol., 2018, 818, 263-270.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.053] [PMID: 29111111]
[53]
Nishiyama, T. Acute effects of sarpogrelate, a 5-HT2A receptor antagonist on cytokine production in endotoxin shock model of rats. Eur. J. Pharmacol., 2009, 614(1-3), 122-127.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.041] [PMID: 19318092]
[54]
Kataoka, H.; Ariyama, Y.; Deushi, M.; Osaka, M.; Nitta, K.; Yoshida, M. Inhibitory effect of serotonin antagonist on leukocyte-endothelial interactions in vivo and in vitro. PLoS One, 2016, 11(1), e0147929.
[http://dx.doi.org/10.1371/journal.pone.0147929] [PMID: 26824242]
[55]
Liu, F.C.; Liou, J.T.; Liao, H.R.; Mao, C.C.; Yang, P.; Day, Y.J. The anti-aggregation effects of ondansetron on platelets involve IP3 sig-naling and MAP kinase pathway, but not 5-HT3-dependent pathway. Thromb. Res., 2012, 130(3), e84-e94.
[http://dx.doi.org/10.1016/j.thromres.2012.06.003] [PMID: 22818390]
[56]
Fiebich, B.L.; Akundi, R.S.; Seidel, M.; Geyer, V.; Haus, U.; Müller, W.; Stratz, T.; Candelario-Jalil, E. Expression of 5-HT3A receptors in cells of the immune system. Scand. J. Rheumatol. Suppl., 2004, 119, 9-11.
[http://dx.doi.org/10.1080/03009740410006952] [PMID: 15515405]
[57]
Vega, Lde. L.; Muñoz, E.; Calzado, M.A.; Lieb, K.; Candelario-Jalil, E.; Gschaidmeir, H.; Färber, L.; Mueller, W.; Stratz, T.; Fiebich, B.L. The 5-HT3 receptor antagonist tropisetron inhibits T cell activation by targeting the calcineurin pathway. Biochem. Pharmacol., 2005, 70(3), 369-380.
[http://dx.doi.org/10.1016/j.bcp.2005.04.031] [PMID: 15922994]
[58]
Camilleri, M. Serotonin in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes., 2009, 16(1), 53-59.
[http://dx.doi.org/10.1097/MED.0b013e32831e9c8e] [PMID: 19115522]
[59]
Sanger, G.J. 5-hydroxytryptamine and the gastrointestinal tract: where next? Trends Pharmacol. Sci., 2008, 29(9), 465-471.
[http://dx.doi.org/10.1016/j.tips.2008.06.008] [PMID: 19086255]
[60]
Gershon, M.D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes., 2013, 20(1), 14-21.
[http://dx.doi.org/10.1097/MED.0b013e32835bc703] [PMID: 23222853]
[61]
Conlon, K.; De Maeyer, J.H.; Bruce, C.; Schuurkes, J.A.J.; Christie, L.; McRedmond, J.; Derakhchan, K.; Wade, P.R. nonclinical Cardio-vascular Studies of Prucalopride, a Highly Selective 5-Hydroxytryptamine 4 Receptor Agonist. J. Pharmacol. Exp. Ther., 2018, 364(2), 156-169.
[http://dx.doi.org/10.1124/jpet.117.244079] [PMID: 29180358]
[62]
Darblade, B.; Behr-Roussel, D.; Gorny, D.; Lebret, T.; Benoit, G.; Hieble, J.P.; Brooks, D.; Alexandre, L.; Giuliano, F. Piboserod (SB 207266), a selective 5-HT4 receptor antagonist, reduces serotonin potentiation of neurally-mediated contractile responses of human de-trusor muscle. World J. Urol., 2005, 23(2), 147-151.
[http://dx.doi.org/10.1007/s00345-005-0499-z] [PMID: 15902472]
[63]
Hedlund, P.B.; Sutcliffe, J.G. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol. Sci., 2004, 25(9), 481-486.
[http://dx.doi.org/10.1016/j.tips.2004.07.002] [PMID: 15559250]
[64]
León-Ponte, M.; Ahern, G.P.; O’Connell, P.J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood, 2007, 109(8), 3139-3146.
[http://dx.doi.org/10.1182/blood-2006-10-052787] [PMID: 17158224]
[65]
Albayrak, A.; Halici, Z.; Cadirci, E.; Polat, B.; Karakus, E.; Bayir, Y.; Unal, D.; Atasoy, M.; Dogrul, A. Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats. Eur. J. Pharmacol., 2013, 715(1-3), 270-279.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.010] [PMID: 23742863]
[66]
Guseva, D.; Holst, K.; Kaune, B.; Meier, M.; Keubler, L.; Glage, S.; Buettner, M.; Bleich, A.; Pabst, O.; Bachmann, O.; Ponimaskin, E.G. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm. Bowel Dis., 2014, 20(9), 1516-1529.
[http://dx.doi.org/10.1097/MIB.0000000000000150] [PMID: 25072499]
[67]
Ishine, T.; Bouchelet, I.; Hamel, E.; Lee, T.J. Serotonin 5-HT(7) receptors mediate relaxation of porcine pial veins. Am. J. Physiol. Heart Circ. Physiol., 2000, 278(3), H907-H912.
[http://dx.doi.org/10.1152/ajpheart.2000.278.3.H907] [PMID: 10710360]
[68]
Chang, Chien C.C.; Hsin, L.W.; Su, M.J. Activation of serotonin 5-HT7 receptor induces coronary flow increase in isolated rat heart. Eur. J. Pharmacol., 2015, 748, 68-75.
[http://dx.doi.org/10.1016/j.ejphar.2014.08.027] [PMID: 25196212]
[69]
de Abajo, F.J.; Montero, D.; Rodríguez, L.A.; Madurga, M. Antidepressants and risk of upper gastrointestinal bleeding. Basic Clin. Pharmacol. Toxicol., 2006, 98(3), 304-310.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_303.x] [PMID: 16611206]
[70]
Bismuth-Evenzal, Y.; Gonopolsky, Y.; Gurwitz, D.; Iancu, I.; Weizman, A.; Rehavi, M. Decreased serotonin content and reduced agonist-induced aggregation in platelets of patients chronically medicated with SSRI drugs. J. Affect. Disord., 2012, 136(1-2), 99-103.
[http://dx.doi.org/10.1016/j.jad.2011.08.013] [PMID: 21893349]
[71]
Sauer, W.H.; Berlin, J.A.; Kimmel, S.E. Effect of antidepressants and their relative affinity for the serotonin transporter on the risk of myocardial infarction. Circulation, 2003, 108(1), 32-36.
[http://dx.doi.org/10.1161/01.CIR.0000079172.43229.CD] [PMID: 12821544]
[72]
Gómez-Gil, E.; Gastó, C.; Carretero, M.; Díaz-Ricart, M.; Salamero, M.; Navinés, R.; Escolar, G. Decrease of the platelet 5-HT2A receptor function by long-term imipramine treatment in endogenous depression. Hum. Psychopharmacol., 2004, 19(4), 251-258.
[http://dx.doi.org/10.1002/hup.583] [PMID: 15181653]
[73]
Herr, N.; Mauler, M.; Witsch, T.; Stallmann, D.; Schmitt, S.; Mezger, J.; Bode, C.; Duerschmied, D. Acute fluoxetine treatment induces slow rolling of leukocytes on endothelium in mice. PLoS One, 2014, 9(2), e88316.
[http://dx.doi.org/10.1371/journal.pone.0088316] [PMID: 24520366]
[74]
Holck, A.; Wolkowitz, O.M.; Mellon, S.H.; Reus, V.I.; Nelson, J.C.; Westrin, Å.; Lindqvist, D. Plasma serotonin levels are associated with antidepressant response to SSRIs. J. Affect. Disord., 2019, 250, 65-70.
[http://dx.doi.org/10.1016/j.jad.2019.02.063] [PMID: 30831543]
[75]
Bochouari, K.; Attou, R.; Mols, P.; Motosan, C.; Kadou, J. Bleeding induced by Selective Serotonine Reuptake inhibitors (SSRI). Case report and review of literature. Rev. Med. Brux., 2018, 39(3), 181-184.
[http://dx.doi.org/10.30637/2018.16-029] [PMID: 29964392]
[76]
Middleton, E.A.; Weyrich, A.S.; Zimmerman, G.A. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol. Rev., 2016, 96(4), 1211-1259.
[http://dx.doi.org/10.1152/physrev.00038.2015] [PMID: 27489307]
[77]
D’ Atri, L.P.; Schattner, M. Platelet toll-like receptors in thromboinflammation. Front. Biosci., 2017, 22(11), 1867-1883.
[http://dx.doi.org/10.2741/4576] [PMID: 28410150]
[78]
Brass, A.L.; Huang, I.C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig, E.; Adams, D.J.; Xavier, R.J.; Farzan, M.; Elledge, S.J. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009, 139(7), 1243-1254.
[http://dx.doi.org/10.1016/j.cell.2009.12.017] [PMID: 20064371]
[79]
Oshiumi, H.; Kouwaki, T.; Seya, T. Accessory Factors of CYTOPLASMIC viral RNA Sensors Required for Antiviral Innate Immune Res-ponse. Front. Immunol., 2016, 7, 200.
[http://dx.doi.org/10.3389/fimmu.2016.00200] [PMID: 27252702]
[80]
Cíz, M.; Komrsková, D.; Pracharová, L.; Okénková, K.; Cízová, H.; Moravcová, A.; Jancinová, V.; Petríková, M.; Lojek, A.; Nosál, R. Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets, 2007, 18(8), 583-590.
[http://dx.doi.org/10.1080/09537100701471865] [PMID: 18041649]
[81]
Doukas, J.; Shepro, D.; Hechtman, H.B. Vasoactive amines directly modify endothelial cells to affect polymorphonuclear leukocyte diape-desis in vitro. Blood, 1987, 69(6), 1563-1569.
[http://dx.doi.org/10.1182/blood.V69.6.1563.1563] [PMID: 3580565]
[82]
Gordon, J.; Barnes, N.M. Lymphocytes transport serotonin and dopamine: agony or ecstasy? Trends Immunol., 2003, 24(8), 438-443.
[http://dx.doi.org/10.1016/S1471-4906(03)00176-5] [PMID: 12909457]
[83]
Cui, L.; Pang, J.; Lee, Y.H.; Ooi, E.E.; Ong, C.N.; Leo, Y.S.; Tannenbaum, S.R. Serum metabolome changes in adult patients with severe dengue in the critical and recovery phases of dengue infection. PLoS Negl. Trop. Dis., 2018, 12(1), e0006217.
[http://dx.doi.org/10.1371/journal.pntd.0006217] [PMID: 29364889]
[84]
Cui, L.; Lee, Y.H.; Thein, T.L.; Fang, J.; Pang, J.; Ooi, E.E.; Leo, Y.S.; Ong, C.N.; Tannenbaum, S.R. Serum metabolomics reveals seroto-nin as a predictor of severe dengue in the early phase of dengue fever. PLoS Negl. Trop. Dis., 2016, 10(4), e0004607.
[http://dx.doi.org/10.1371/journal.pntd.0004607] [PMID: 27055163]
[85]
Masri, M.F.B.; Mantri, C.K.; Rathore, A.P.S.; John, A.L.S. Peripheral serotonin causes dengue virus-induced thrombocytopenia through 5HT2 receptors. Blood, 2019, 133(21), 2325-2337.
[http://dx.doi.org/10.1182/blood-2018-08-869156] [PMID: 30755421]
[86]
Wan, S.W.; Wu-Hsieh, B.A.; Lin, Y.S.; Chen, W.Y.; Huang, Y.; Anderson, R. The monocyte-macrophage-mast cell axis in dengue patho-genesis. J. Biomed. Sci., 2018, 25(1), 77.
[http://dx.doi.org/10.1186/s12929-018-0482-9] [PMID: 30409217]
[87]
Ponomaryov, T.; Payne, H.; Fabritz, L.; Wagner, D.D.; Brill, A. Mast Cells Granular Contents are Crucial for Deep Vein Thrombosis in Mice. Circ. Res., 2017, 121(8), 941-950.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311185] [PMID: 28739590]
[88]
Regmi, S.C.; Park, S.Y.; Ku, S.K.; Kim, J.A. Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species. Free Radic. Biol. Med., 2014, 69, 377-389.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.02.003] [PMID: 24524998]
[89]
Herr, N.; Bode, C.; Duerschmied, D. The Effects of Serotonin in Immune cells. Front. Cardiovasc. Med., 2017, 4, 48.
[http://dx.doi.org/10.3389/fcvm.2017.00048] [PMID: 28775986]
[90]
Seidel, M.F.; Fiebich, B.L.; Ulrich-Merzenich, G.; Candelario-Jalil, E.; Koch, F.W.; Vetter, H. Serotonin mediates PGE2 overexpression through 5-HT2A and 5-HT3 receptor subtypes in serum-free tissue culture of macrophage-like synovial cells. Rheumatol. Int., 2008, 28(10), 1017-1022.
[http://dx.doi.org/10.1007/s00296-008-0564-1] [PMID: 18368410]
[91]
Gagnon, S.J.; Ennis, F.A.; Rothman, A.L. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J. Virol., 1999, 73(5), 3623-3629.
[http://dx.doi.org/10.1128/JVI.73.5.3623-3629.1999] [PMID: 10196254]
[92]
El-Merahbi, R.; Löffler, M.; Mayer, A.; Sumara, G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett., 2015, 589(15), 1728-1734.
[http://dx.doi.org/10.1016/j.febslet.2015.05.054] [PMID: 26070423]
[93]
Müller, T.; Dürk, T.; Blumenthal, B.; Grimm, M.; Cicko, S.; Panther, E.; Sorichter, S.; Herouy, Y.; Di Virgilio, F.; Ferrari, D.; Norgauer, J.; Idzko, M. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vi-tro and in vivo. PLoS One, 2009, 4(7), e6453.
[http://dx.doi.org/10.1371/journal.pone.0006453] [PMID: 19649285]
[94]
Malavige, G.N.; Jeewandara, C.; Ogg, G.S. Dysfunctional Innate Immune Responses and Severe Dengue. Front. Cell. Infect. Microbiol., 2020, 10, 590004.
[http://dx.doi.org/10.3389/fcimb.2020.590004] [PMID: 33194836]
[95]
Kurane, I.; Innis, B.L.; Nimmannitya, S.; Nisalak, A.; Meager, A.; Janus, J.; Ennis, F.A. Activation of T lymphocytes in dengue virus in-fections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J. Clin. Invest., 1991, 88(5), 1473-1480.
[http://dx.doi.org/10.1172/JCI115457] [PMID: 1939640]
[96]
Hober, D.; Delannoy, A.S.; Benyoucef, S.; De Groote, D.; Wattré, P. High levels of sTNFR p75 and TNF alpha in dengue-infected patients. Microbiol. Immunol., 1996, 40(8), 569-573.
[http://dx.doi.org/10.1111/j.1348-0421.1996.tb01110.x] [PMID: 8887351]
[97]
Mangione, J.N.; Huy, N.T.; Lan, N.T.; Mbanefo, E.C.; Ha, T.T.; Bao, L.Q.; Nga, C.T.; Tuong, V.V.; Dat, T.V.; Thuy, T.T.; Tuan, H.M.; Huong, V.T.; Hirayama, K. The association of cytokines with severe dengue in children. Trop. Med. Health, 2014, 42(4), 137-144.
[http://dx.doi.org/10.2149/tmh.2014-09] [PMID: 25589878]
[98]
Patro, A.R.K.; Mohanty, S.; Prusty, B.K.; Singh, D.K.; Gaikwad, S.; Saswat, T.; Chattopadhyay, S.; Das, B.K.; Tripathy, R.; Ravindran, B. Cytokine Signature Associated with Disease Severity in Dengue. Viruses, 2019, 11(1), 34.
[http://dx.doi.org/10.3390/v11010034] [PMID: 30626045]
[99]
Malavige, G.N.; Huang, L.C.; Salimi, M.; Gomes, L.; Jayaratne, S.D.; Ogg, G.S. Cellular and cytokine correlates of severe dengue infection. PLoS One, 2012, 7(11), e50387.
[http://dx.doi.org/10.1371/journal.pone.0050387] [PMID: 23209731]
[100]
Chaturvedi, U.C.; Shrivastava, R.; Tripathi, R.K.; Nagar, R. Dengue virus-specific suppressor T cells: current perspectives. FEMS Immunol. Med. Microbiol., 2007, 50(3), 285-299.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00273.x] [PMID: 17573929]
[101]
Malavige, G.N.; Ogg, G.S. T cell responses in dengue viral infections. J. Clin. Virol., 2013, 58(4), 605-611.
[http://dx.doi.org/10.1016/j.jcv.2013.10.023] [PMID: 24220605]
[102]
Kurane, I.; Matsutani, T.; Suzuki, R.; Takasaki, T.; Kalayanarooj, S.; Green, S.; Rothman, A.L.; Ennis, F.A. T-cell responses to dengue virus in humans. Trop. Med. Health, 2011, 39(4)(Suppl.), 45-51.
[http://dx.doi.org/10.2149/tmh.2011-S09] [PMID: 22500136]
[103]
Tian, Y.; Grifoni, A.; Sette, A.; Weiskopf, D.; Human, T.; Human, T. Cell Response to Dengue Virus Infection. Front. Immunol., 2019, 10, 2125.
[http://dx.doi.org/10.3389/fimmu.2019.02125] [PMID: 31552052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy