Abstract
p-Tosylmethyl isocyanide (TosMIC) and its derivatives represent an important class of polyfunctional reagents, making them privileged “building blocks” in the targeted organic synthesis to design a plethora of heterocycles as well as natural products. This review summarizes and highlights the synthetic potential of p-tosylmethyl isocyanide and its derivatives in the reaction with various aldehydes to afford valuable heterocycles. The catalytic and technological innovations discussed in the review reveal the ease of reaction. Moreover, their mechanistic schemes are also displayed.
Keywords: Aldehydes, p-tosylmethyl isocyanide, heterocycles, cycloaddition, catalysis, natural products.
Graphical Abstract
(b) Tandon, V.K.; Rai, S. p-toluenesulfonylmethyl isocyanide: A versatile synthon in organic chemistry. Sulfur Rep., 2003, 24(3), 307-385.;
(c) Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G.C.; Zhu, J. To each his own: Isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. J. Chem. Soc. Rev., 2017, 46(5), 1295-1357.
[http://dx.doi.org/10.1039/C6CS00444J] [PMID: 27983738];
(d) Mathiyazhagan, A.D.; Anilkumar, G. Recent advances and applications of p-toluenesulfonylmethyl isocyanide (TosMIC). Org. Biomol. Chem., 2019, 17(28), 6735-6747.
[http://dx.doi.org/10.1039/C9OB00847K] [PMID: 31250862];
(e) Kaur, T.; Wadhwa, P.; Sharma, A. Arylsulfonylmethyl isocyanides: A novel paradigm in organic synthesis. RSC Advances, 2015, 5(65), 52769-52787.
[http://dx.doi.org/10.1039/C5RA07876H];
(f) Kumar, K. TosMIC: A powerful synthon for cyclization and sulfonylation. ChemistrySelect, 2020, 5(33), 10298-10328.
[http://dx.doi.org/10.1002/slct.202001344];
(g) Efimov, I.V.; Kulikova, L.N.; Zhilyaev, D.I.; Voskressensky, L.G. Recent advances in the chemistry of isocyanides with activated methylene group. Eur. J. Org. Chem., 2020, 2020(47), 7284-7303.
[http://dx.doi.org/10.1002/ejoc.202000890]
[http://dx.doi.org/10.1039/D0OB01340D] [PMID: 32766609];
(b) Gutiérrez, S.; Sucunza, D.; Vaquero, J.J. γ-carboline synthesis by heterocyclization of TosMIC derivatives. J. Org. Chem., 2018, 83(12), 6623-6632.
[http://dx.doi.org/10.1021/acs.joc.8b00906] [PMID: 29756452];
(c) Kumar, G.R.; Ramesh, B.; Banik, S.; Reddy, B.V.S. TosMIC and its derivatives as versatile sulfonylating agents for the synthesis of p-toluenesulfonylarenes from aryl halides and arylboronic acids. Tetrahedron, 2020, 76(48), 131674-131680.
[http://dx.doi.org/10.1016/j.tet.2020.131674];
(d) Tripolitsiotis, N.P.; Thomaidi, M.; Neochoritis, C.G. The ugi three-component reaction; a valuable tool in modern organic synthesis. Eur. J. Org. Chem., 2020, 2020(42), 6525-6554.
[http://dx.doi.org/10.1002/ejoc.202001157];
(e) Wang, Y.; Kumar, R.K.; Bi, X. Silver-catalyzed organic reactions of isocyanides. Tetrahedron Lett., 2016, 57(51), 5730-5741.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.005];
(f) Phanindrudu, M.; Jaya, P.; Likhar, P.R.; Tiwari, D.K. Nano copper catalyzed synthesis of symmetrical/unsymmetrical sulfones from Aryl/Alkyl Halides and p-Toluenesulfonylmethylisocyanide: TosMIC as a Tosyl Source. Tetrahedron, 2020, 76(25), 131263-131280.
[http://dx.doi.org/10.1016/j.tet.2020.131263];
(g) Fan, C-L.; Zhang, L-B.; Liu, J.; Hao, X-Q.; Niu, J-L.; Song, M-P. Copper-mediated direct sulfonylation of C(sp2)–H bonds employing TosMIC as a sulfonyl source. Org. Chem. Front., 2019, 6(13), 2215-2219.
[http://dx.doi.org/10.1039/C9QO00391F]
[http://dx.doi.org/10.3762/bjoc.16.76] [PMID: 32395186];
(b) Chen, H.; Liu, L.; Huang, T.; Chen, J.; Chen, T. Direct dehydrogenation for the synthesis of α,β-unsaturated carbonyl compounds. Adv. Synth. Catal., 2020, 362(16), 3332-3346.
[http://dx.doi.org/10.1002/adsc.202000454];
(c) Kumar, P.; Dutta, S.; Kumar, S.; Bahadur, V.; Van der Eycken, E.V.; Vimaleswaran, K.S.; Parmar, V.S.; Singh, B.K. Aldehydes: Magnificent acyl equivalents for direct acylation. Org. Biomol. Chem., 2020, 18(40), 7987-8033.
[http://dx.doi.org/10.1039/D0OB01458C] [PMID: 33000845];
(d) Keiko, N.A.; Vchislo, N.V. Synthesis of diheteroatomic five-membered heterocyclic compounds from α,β-unsaturated aldehydes. Asian J. Org. Chem., 2016, 5(10), 1169-1197.
[http://dx.doi.org/10.1002/ajoc.201600227];
(e) Keiko, N.A.; Vchislo, N.V. α,β-unsaturated aldehydes in the synthesis of five-membered heterocyclic compounds with one heteroatom: recent advances from developments in metal- and organocatalysis. Asian J. Org. Chem., 2016, 5(4), 439-461.
[http://dx.doi.org/10.1002/ajoc.201600010];
(f) Vchislo, N.V.; Verochkina, E.A. Recent advances in total synthesis of alkaloids from α,β-unsaturated aldehydes. ChemistrySelect, 2020, 5(31), 9579-9589.
[http://dx.doi.org/10.1002/slct.202002872];
(g) Yuan, Z.; Liao, J.; Jiang, H.; Cao, P.; Li, Y. Aldehyde catalysis – from simple aldehydes to artificial enzymes. RSC Advances, 2020, 10(58), 35433-35448.
[http://dx.doi.org/10.1039/D0RA06651F]
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945];
(b) Zhang, D.; Guo, J.; Zhang, M.; Liu, X.; Ba, M.; Tao, X.; Yu, L.; Guo, Y.; Dai, J. Oxazole-containing diterpenoids from cell cultures of salvia miltiorrhiza and their anti-hiv-1 activities. J. Nat. Prod., 2017, 80(12), 3241-3246.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00659] [PMID: 29185738];
(c) Zhou, H.; Cheng, J-Q.; Wang, Z-S.; Chen, F-H.; Liu, X-H. Oxazole: A promising building block for the development of potent antitumor agents. Curr. Top. Med. Chem., 2016, 16(30), 3582-3589.
[http://dx.doi.org/10.2174/1568026616666160414122521] [PMID: 27086791];
(d) Swellmeen, L. 1,3-Oxazole derivatives: A review of biological activities as antipathogenic. Pharma Chem., 2016, 8(13), 269-286.;
(e) Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem., 2019, 13(1), 16.
[http://dx.doi.org/10.1186/s13065-019-0531-9] [PMID: 31384765]
[http://dx.doi.org/10.1021/ma000789y];
(b) Tarasenko, E.A.; Beletskaya, I.P. Poly(ethylene glycol)-supported chiral pyridine-2,6-bis(oxazoline): Synthesis and application as a recyclable ligand in Cui-catalyzed enantioselective direct addition of terminal alkynes to imines. Mend. Mendeleev Commun., 2016, 26(6), 477-479.
[http://dx.doi.org/10.1016/j.mencom.2016.11.005];
(c) Wang, Y.; Yang, G.; Xie, F.; Zhang, W. A ferrocene-based NH-free phosphine-oxazoline ligand for iridium-catalyzed asymmetric hydrogenation of ketones. Org. Lett., 2018, 20(19), 6135-6139.
[http://dx.doi.org/10.1021/acs.orglett.8b02591] [PMID: 30226059];
(d) Hargaden, G.C.; Guiry, P.J. Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev., 2009, 109(6), 2505-2550.
[http://dx.doi.org/10.1021/cr800400z] [PMID: 19378971];
(e) Mazuela, J.; Tolstoy, P.; Pàmies, O.; Andersson, P.G.; Diéguez, M. Phosphite-oxazole/imidazole ligands in asymmetric intermolecular Heck reaction. Org. Biomol. Chem., 2011, 9(3), 941-946.
[http://dx.doi.org/10.1039/C0OB00656D] [PMID: 21152643];
(f) Dhawan, S.; Kumar, V.; Girase, P.S.; Mokoena, S.; Karpoormath, R. Recent progress in iodine-catalysed C-O/C-N bond formation of 1,3-oxazoles: A comprehensive review. ChemistrySelect, 2021, 6(4), 754-787.
[http://dx.doi.org/10.1002/slct.202003969]
[http://dx.doi.org/10.1016/S0040-4039(01)85305-3];
(b) Zheng, X.; Liu, W.; Zhang, D. Recent advances in the synthesis of oxazole-based molecules via van leusen oxazole synthesis. Molecules, 2020, 25(7), 1594.
[http://dx.doi.org/10.3390/molecules25071594] [PMID: 32244317]
[http://dx.doi.org/10.1134/S1070428019010056]
[http://dx.doi.org/10.1021/acsomega.7b00941] [PMID: 31457237];
(b) Shah, S.R.; Thakore, R.R.; Vyas, T.A.; Sridhar, B. Conformationally flexible C 3-symmetric 1,3-oxazoles as molecular scaffolds. Synlett, 2016, 27(2), 294-300.
[http://dx.doi.org/10.1055/s-0035-1560576]
[http://dx.doi.org/10.1002/ejoc.201501269]
[http://dx.doi.org/10.1016/j.bbagen.2016.11.024] [PMID: 27865994]
[http://dx.doi.org/10.2174/157017812803521126];
(b) Lechel, T.; Kumar, R.; Bera, M.K.; Zimmer, R.; Reissig, H-U. The LANCA three-component reaction to highly substituted β-ketoenamides - versatile intermediates for the synthesis of functionalized pyridine, pyrimidine, oxazole and quinoxaline derivatives. Beilstein J. Org. Chem., 2019, 15, 655-678.
[http://dx.doi.org/10.3762/bjoc.15.61] [PMID: 30931007]
[http://dx.doi.org/10.1021/jo1025942] [PMID: 21388233];
(b) Šagud, I.; Šindler-Kulyk, M. Škorić, I.; Kelava, V.; Marinić, Ž. Synthesis of Naphthoxazoles by Photocyclization of 4-/5-(Phenylethenyl)oxazoles. Eur. J. Org. Chem., 2018, 2018(25), 3326-3335.
[http://dx.doi.org/10.1002/ejoc.201800737];
(c) Šagud, I. Božić, S.; Marinić, Z.; Šindler-Kulyk, M. Photochemical approach to functionalized benzobicyclo[3.2.1]octene structures via fused oxazoline derivatives from 4- and 5-(o-vinylstyryl)oxazoles. Beilstein J. Org. Chem., 2014, 10, 2222-2229.
[http://dx.doi.org/10.3762/bjoc.10.230] [PMID: 25246981]
[http://dx.doi.org/10.1016/j.mencom.2020.05.030]
[http://dx.doi.org/10.1016/j.bmc.2019.115210] [PMID: 31753802]
[http://dx.doi.org/10.1515/znb-2017-0005]
[http://dx.doi.org/10.1016/j.arabjc.2018.03.022]
[http://dx.doi.org/10.1002/ejoc.201800804]
[http://dx.doi.org/10.1016/j.ejmech.2015.01.043] [PMID: 25633493];
(b) Zhang, M-Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y-C.; Yang, G.F.; Clough, J. Synthesis and fungicidal activity of novel pimprinine analogues. Eur. J. Med. Chem., 2012, 53, 283-291.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.012] [PMID: 22560632]
[http://dx.doi.org/10.3389/fchem.2019.00433] [PMID: 31259168]
[http://dx.doi.org/10.3390/molecules24071327] [PMID: 30987302]
[http://dx.doi.org/10.1021/acs.joc.7b00296] [PMID: 28402117]
(b) Cornec, A-S.; Monti, L.; Kovalevich, J.; Makani, V.; James, M.J.; Vijayendran, K.G.; Oukoloff, K.; Yao, Y.; Lee, V.M-Y.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Multitargeted imidazoles: Potential therapeutic leads for alzheimer’s and other neurodegenerative diseases. J. Med. Chem., 2017, 60(12), 5120-5145.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00475] [PMID: 28530811];
(c) Juchum, M.; Günther, M.; Döring, E.; Sievers-Engler, A.; Lämmerhofer, M.; Laufer, S. Trisubstituted imidazoles with a rigidized hinge binding motif act as single digit nm inhibitors of clinically relevant EGFR L858R/T790M and L858R/T790M/C797S Mutants: An example of target hopping. J. Med. Chem., 2017, 60(11), 4636-4656.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00178] [PMID: 28482151];
(d) Marsilje, T.H.; Roses, J.B.; Calderwood, E.F.; Stroud, S.G.; Forsyth, N.E.; Blackburn, C.; Yowe, D.L.; Miao, W.; Drabic, S.V.; Bohane, M.D.; Daniels, J.S.; Li, P.; Wu, L.; Patane, M.A.; Claiborne, C.F. Synthesis and biological evaluation of imidazole-based small molecule antagonists of the melanocortin 4 receptor (MC4-R). Bioorg. Med. Chem. Lett., 2004, 14(14), 3721-3725.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.003] [PMID: 15203150];
(e) Reddy, K.R.; Reddy, A.S.; Shankar, R.; Kant, R.; Das, P. Copper-catalyzed oxidative c−h amination: Synthesis of imidazo[1,2-a]-N-Heterocycles from N-heteroaryl enaminones. Asian J. Org. Chem., 2015, 4(6), 573-583.
[http://dx.doi.org/10.1002/ajoc.201500052];
(f) Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in life and society: An introduction to heterocyclic chemistry, biochemistry and applications; Wiley&Sons: New York, 2011.
[http://dx.doi.org/10.1002/9781119998372]
[http://dx.doi.org/10.1002/adsc.200600316];
(b) Zhang, Z.; Xie, F.; Jia, J.; Zhang, W. Chiral bicycle imidazole nucleophilic catalysts: Rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement. J. Am. Chem. Soc., 2010, 132(45), 15939-15941.
[http://dx.doi.org/10.1021/ja109069k] [PMID: 20977235];
(c) Li, Y.; Giulionatti, M.; Houghten, R.A. Macrolactonization of peptide thioesters catalyzed by imidazole and its application in the synthesis of kahalalide B and analogues. Org. Lett., 2010, 12(10), 2250-2253.
[http://dx.doi.org/10.1021/ol100596p] [PMID: 20426464];
(d) Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102(10), 3667-3692.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898];
(e) Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: Synthesis and coordination chemistry. Angew. Chem. Int. Ed. Engl., 2008, 47(17), 3122-3172.
[http://dx.doi.org/10.1002/anie.200703883] [PMID: 18398856];
(f) Suzuki, Y.; Ota, S.; Fukuta, Y.; Ueda, Y.; Sato, M. N-heterocyclic carbene-catalyzed nucleophilic aroylation of fluorobenzenes. J. Org. Chem., 2008, 73(6), 2420-2423.
[http://dx.doi.org/10.1021/jo7023569] [PMID: 18290659];
(g) Arduengo, A.J., III; Harlow, R.L.; Kline, M.J. A stable crystalline carbine. J. Am. Chem. Soc., 1991, 113(1), 361-363.
[http://dx.doi.org/10.1021/ja00001a054]
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202];
(b) Van Leusen, A.M.; Wildeman, J.; Oldenziel, O.H. Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem., 1977, 42(7), 1153-1159.
[http://dx.doi.org/10.1021/jo00427a012];
(c) Van Leusen, D.; Van Leusen, A.M. Synthetic Uses of Tosylmethyl Isocyanide (TosMIC); Wiley: Hoboken, New Jersey, 2004, pp. 417-666.;
(d) Sisko, J.; Kassick, A.J.; Mellinger, M.; Filan, J.J.; Allen, A.; Olsen, M.A. An investigation of imidazole and oxazole syntheses using aryl-substituted TosMIC reagents. J. Org. Chem., 2000, 65(5), 1516-1524.
[http://dx.doi.org/10.1021/jo991782l] [PMID: 10814116]
[http://dx.doi.org/10.1039/c4ob00647j] [PMID: 24847981]
[http://dx.doi.org/10.1039/C5MD00317B]
[http://dx.doi.org/10.1021/acsmedchemlett.7b00488] [PMID: 29456801]
[http://dx.doi.org/10.1016/j.bioorg.2018.06.012] [PMID: 29940342]
[http://dx.doi.org/10.1039/C8MD00313K] [PMID: 30568756]
[http://dx.doi.org/10.1016/j.ejmech.2019.03.017] [PMID: 30904783]
[http://dx.doi.org/10.1016/j.tet.2018.10.052]
[http://dx.doi.org/10.1039/C6OB01642A] [PMID: 27722650];
(b) Lammi, C.; Sgrignani, J.; Arnoldi, A.; Lesma, G.; Spatti, C.; Silvani, A.; Grazioso, G. Computationally driven structure optimization, synthesis, and biological evaluation of imidazole-based proprotein convertase Subtilisin/Kexin 9 (PCSK9) inhibitors. J. Med. Chem., 2019, 62(13), 6163-6174.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00402] [PMID: 31260298]
[http://dx.doi.org/10.1021/acs.orglett.9b03406] [PMID: 31664846]
[http://dx.doi.org/10.1016/j.ejmech.2020.112111] [PMID: 32058240]
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011];
(b) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhimana, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 2015, 5(20), 15233-15266.
[http://dx.doi.org/10.1039/C4RA15710A];
(c) Trofimov, B.A.; Nedolya, N.A. Pyrroles and their benzo derivatives: Reactivity. Comprehensive Heterocyclic Chemistry III. 3; Elsevier: Amsterdam, 2008, pp. 45-268.
[http://dx.doi.org/10.1016/B978-008044992-0.00302-3];
(d) Bergman, J.; Janosik, T. Five-membered heterocycles: Pyrrole and related systemsModern Heterocyclic Chemistry; Alvarez-Builla, J.; Vaquero, J.J; Barluenga, J., Ed.; Wiley-VCH, 2011, p. 269.;
(e) Wood, J.M.; Furkert, D.P.; Brimble, M.A. 2-Formylpyrrole natural products: Origin, structural diversity, bioactivity and synthesis. Nat. Prod. Rep., 2019, 36(2), 289-306.
[http://dx.doi.org/10.1039/C8NP00051D] [PMID: 30039828];
(f) Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Pepe, G.; Cirilli, R.; Faggi, C.; Di Marco, A.; Battista, M.R.; Summa, V.; Costi, R.; Di Santo, R. Design, synthesis, and biological evaluation of new 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole derivatives as antiprotozoal agents. J. Med. Chem., 2019, 62(3), 1330-1347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01464] [PMID: 30615444];
(g) Wang, Y.; Zhang, C.; Li, S. Progress in cyclizations of 4-acetylenic ketones: Synthesis of furans and pyrroles. ChemistrySelect, 2020, 5(28), 8656-8668.
[http://dx.doi.org/10.1002/slct.202002379]
[http://dx.doi.org/10.1055/s-0040-1706713] [PMID: 34366491];
(b) Leonardi, M.; Estevez, V.; Villacampa, M.; Menendez, J.C. The hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis, 2019, 51(4), 816-828.
[http://dx.doi.org/10.1055/s-0037-1610320];
(c) Trofimov, B.A.; Mikhaleva, A.I.; Ivanov, A.V.; Shcherbakova, V.S.; Ushakov, I.A. Expedient one-pot synthesis of pyrroles from ketones, hydroxylamine, and 1,2-dichloroethane. Tetrahedron, 2015, 71(1), 124-128.
[http://dx.doi.org/10.1016/j.tet.2014.11.031];
(d) Trofimov, B.A.; Mikhaleva, A.I.; Schmidt, E.Yu.; Sobenina, L.N. Chemistry of Pyrroles; CRC Press Taylor&Fransis Group, 2014, p. 398.
[http://dx.doi.org/10.1201/b17510];
(e) Khajuria, R.; Dham, S.; Kapoor, K.K. Active methylenes in the synthesis of a pyrrole motif: An imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Advances, 2016, 6(43), 37039-37066.
[http://dx.doi.org/10.1039/C6RA03411J]
[http://dx.doi.org/10.1021/jo070389+] [PMID: 17432915];
(b) Keiko, N.A.; Vchislo, N.V. α,β-Unsaturated aldehydes in the synthesis of pyrroles (microreview). Chem. Heterocycl. Compd., 2017, 53(5), 498-500.
[http://dx.doi.org/10.1007/s10593-017-2082-0];
(c) Huang, W.; Chen, S.; Chen, Z.; Yue, M.; Li, M.; Gu, Y. Synthesis of multisubstituted pyrroles from enolizable aldehydes and primary amines promoted by iodine. J. Org. Chem., 2019, 84(9), 5655-5666.
[http://dx.doi.org/10.1021/acs.joc.9b00596] [PMID: 30990706];
(d) Kong, H-H.; Pan, H-L.; Ding, M-W. Synthesis of 2-tetrazolyl-substituted 3-Acylpyrroles via a sequential Ugi-Azide/Ag-Catalyzed oxidative cycloisomerization reaction. J. Org. Chem., 2018, 83(20), 12921-12930.
[http://dx.doi.org/10.1021/acs.joc.8b01984] [PMID: 30213184];
e) Gao, X.; Wang, P.; Wang, Q.; Chen, J.; Lei, A. Electrochemical oxidative annulation of amines and aldehydes or ketones to synthesize polysubstituted pyrroles. Green Chem., 2019, 21(18), 4941-4945.
[http://dx.doi.org/10.1039/C9GC02118C]
[http://dx.doi.org/10.3390/molecules23102666]
[http://dx.doi.org/10.1139/v11-150]
[http://dx.doi.org/10.1039/c3ra42569j]
[http://dx.doi.org/10.1007/s10593-018-2335-6]
[http://dx.doi.org/10.1016/j.tetlet.2016.04.056]
[http://dx.doi.org/10.3390/molecules200916354] [PMID: 26378503]
[http://dx.doi.org/10.1248/cpb.c17-00409] [PMID: 28740026]
[http://dx.doi.org/10.1002/slct.201800110]
[http://dx.doi.org/10.1002/slct.201700997]
[http://dx.doi.org/10.1039/D0NJ02315A]
[http://dx.doi.org/10.1039/C3CC48546C] [PMID: 24366181]
(b) Boto, A.; Alvarez, L.; Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in Natural Product Synthesis; Wiley-VCH: Weinheim, 2011, p. 99.;
(c) Gidron, O. Diskin-Posner, Y.; Bendikov, M. α-oligofurans. J. Am. Chem. Soc., 2010, 132(7), 2148-2150.
[http://dx.doi.org/10.1021/ja9093346] [PMID: 20121137];
(d) Liang, X-T.; Sun, B-C.; Liu, C.; Li, Y-H.; Zhang, N.; Xu, Q-Q.; Zhang, Z-C.; Han, Y-X.; Chen, J-H.; Yang, Z. Asymmetric Total Synthesis of (-)-Spirochensilide A, Part 1: Diastereoselective synthesis of the ABCD ring and stereoselective total synthesis of 13(R)-demethyl spirochensilide A. J. Org. Chem., 2021, 86(3), 2135-2157.
[http://dx.doi.org/10.1021/acs.joc.0c02494] [PMID: 33433196]
[http://dx.doi.org/10.1039/C7CS00213K] [PMID: 29297525];
b) Montagnon, T.; Tofi, M.; Vassilikogiannakis, G. Using singlet oxygen to synthesize polyoxygenated natural products from furans. Acc. Chem. Res., 2008, 41(8), 1001-1011.
[http://dx.doi.org/10.1021/ar800023v] [PMID: 18605738];
(c) Teixeira, I.F.; Lo, B.T.W.; Kostetskyy, P.; Ye, L.; Tang, C.C.; Mpourmpakis, G.; Tsang, S.C.E. Direct catalytic conversion of biomass-derived furan and ethanol to ethylbenzene. ACS Catal., 2018, 8(3), 1843-1850.
[http://dx.doi.org/10.1021/acscatal.7b03952]
[http://dx.doi.org/10.1007/s11164-012-0518-9];
(b) Tang, S.; Liu, K.; Long, Y.; Qi, X.; Lan, Y.; Lei, A. Tuning radical reactivity using iodine in oxidative C(sp(3))-H/C(sp)-H cross-coupling: An easy way toward the synthesis of furans and indolizines. Chem. Commun. (Camb.), 2015, 51(42), 8769-8772.
[http://dx.doi.org/10.1039/C5CC01825K] [PMID: 25912055];
(c) Kirsch, S.F. Syntheses of polysubstituted furans: Recent developments. Org. Biomol. Chem., 2006, 4(11), 2076-2080.
[http://dx.doi.org/10.1039/b602596j] [PMID: 16729118]
[http://dx.doi.org/10.1039/C9RA04917G];
(b) Khanam, H. Shamsuzzaman, Bioactive Benzofuran derivatives: A review. Eur. J. Med. Chem., 2015, 97, 483-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.039] [PMID: 25482554];
(c) Asif, M. Mini review on important biological properties of benzofuran derivatives. J. Anal. Pharm. Res., 2016, 3(2), 50.
[http://dx.doi.org/10.15406/japlr.2016.03.00050];
(d) Liang, Z.; Xu, H.; Tian, Y.; Guo, M.; Su, X.; Guo, C. Design, synthesis and antifungal activity of novel benzofuran-triazole hybrids. Molecules, 2016, 21(6), 732.
[http://dx.doi.org/10.3390/molecules21060732] [PMID: 27338311]
[http://dx.doi.org/10.1055/s-0030-1259325]
[http://dx.doi.org/10.3390/molecules21010049] [PMID: 26729085];
(b) Krause, M.; Foks, H.; Gobis, K. Pharmacological potential and synthetic approaches of imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine derivatives. Molecules, 2017, 22(3), 399.
[http://dx.doi.org/10.3390/molecules22030399] [PMID: 28273868];
(c) Damghani, T.; Moosavi, F.; Khoshneviszadeh, M.; Mortazavi, M.; Pirhadi, S.; Kayani, Z.; Saso, L.; Edraki, N.; Firuzi, O. Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci. Rep., 2021, 11(1), 3644.
[http://dx.doi.org/10.1038/s41598-021-83069-4] [PMID: 33574356];
(d) Nair, D.K.; Mobin, S.M.; Namboothiri, I.N.N. Synthesis of imidazopyridines from the Morita-Baylis-Hillman acetates of nitroalkenes and convenient access to Alpidem and Zolpidem. Org. Lett., 2012, 14(17), 4580-4583.
[http://dx.doi.org/10.1021/ol3020418] [PMID: 22920993];
(e) Benson, N.; Suleiman, O.; Odoh, S.O.; Woydziak, Z.R. Pyrazole, imidazole, and isoindolone dipyrrinone analogues: PH-dependent fluorophores that red-shift emission frequencies in a basic solution. J. Org. Chem., 2019, 84(18), 11856-11862.
[http://dx.doi.org/10.1021/acs.joc.9b01708] [PMID: 31438666]
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981];
(b) Keiko, N.A.; Vchislo, N.V. Synthesis of imidazo[1,2-a]pyridines from α,β-unsaturated aldehydes (microreview). Chem. Heterocycl. Compd., 2016, 52(4), 222-224.
[http://dx.doi.org/10.1007/s10593-016-1867-x];
(c) Gernet, A.; Sevrain, N.; Volle, J-N.; Ayad, T.; Pirat, J-L.; Virieux, D. Diversity-oriented synthesis toward aryl- and phosphoryl-functionalized imidazo[1,2-a]pyridines. J. Org. Chem., 2020, 85(22), 14730-14743.
[http://dx.doi.org/10.1021/acs.joc.0c02059] [PMID: 33166470];
(d) Reen, G.K.; Kumar, A.; Sharma, P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage. Beilstein J. Org. Chem., 2019, 15, 1612-1704.
[http://dx.doi.org/10.3762/bjoc.15.165] [PMID: 31435443]
[http://dx.doi.org/10.1055/s-1998-1721];
(b) Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed. Engl., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234:AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433];
(c) Rostamnia, S.; Hassankhani, A. RuCl3-catalyzed solvent-free Ugi-type Groebke–Blackburn synthesis of aminoimidazole heterocycles. RSC Advances, 2013, 3(40), 18626-18629.
[http://dx.doi.org/10.1039/c3ra42752h];
(d) Devi, N.; Singh, D.; Mor, S.; Chaudhary, S.; Rawal, R.K.; Kumar, V.; Chowdhury, A.K.; Singh, V. In(OTf)3 catalysed an expeditious synthesis of β-carboline–imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine conjugates. RSC Advances, 2016, 6(50), 43881-43891.
[http://dx.doi.org/10.1039/C6RA04841B];
(e) Sharma, S.; Paul, A.K.; La Singh, V. (OTf)3-catalysed one-pot synthesis of pyrazole tethered imidazo[1,2-a]azine derivatives and evaluation of their light emitting properties. New J. Chem., 2020, 44(3), 684-694.
[http://dx.doi.org/10.1039/C9NJ05426J]
[http://dx.doi.org/10.1016/j.tetlet.2014.03.098]
[http://dx.doi.org/10.1055/s-0036-1588130]
[http://dx.doi.org/10.4155/fmc-2019-0014] [PMID: 31637926]
[http://dx.doi.org/10.1002/ddr.21883] [PMID: 34569640]
[http://dx.doi.org/10.1002/open.201800163] [PMID: 30524920];
(b) Dey, S.K.; Kobaisi, M.A.; Bhosale, S.V. Cover feature: Functionalized quinoxaline for chromogenic and fluorogenic anion sensing. ChemistryOpen, 2018, 7(12), 931-946.
[http://dx.doi.org/10.1002/open.201800233];
(c) Norwood, V.M., IV; Huigens, R.W., III Harnessing the chemistry of the indole heterocycle to drive discoveries in biology and medicine. ChemBioChem, 2019, 20(18), 2273-2297.
[http://dx.doi.org/10.1002/cbic.201800768] [PMID: 30609199];
(d) Malki, Y.; Maillard, L.T.; Masurier, N. 1,3-diazepine derivatives: Strategies for synthesis. Eur. J. Org. Chem., 2021, ejoc.202100492.
[http://dx.doi.org/10.1002/ejoc.202100492];
(e) Kamble, O.S.; Khatravath, M.; Dandela, R. Applications of ethynylanilines as substrates for construction of indoles and indole-substituted derivatives. ChemistrySelect, 2021, 6(29), 7408-7427.
[http://dx.doi.org/10.1002/slct.202101437]
[http://dx.doi.org/10.1021/ol3003282] [PMID: 22356134]
[http://dx.doi.org/10.1002/adsc.201501048]