Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/ Graphene Nanocomposite

Author(s): Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai and Fekadu Melak*

Volume 8, Issue 2, 2023

Published on: 27 July, 2022

Page: [182 - 193] Pages: 12

DOI: 10.2174/2405461507666220520153752

Price: $65

Abstract

Aims: The aim of this study is to evaluate the photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite.

Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been added to make nanocomposites with cuprous oxides.

Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of Methylene Blue (MB) dye degradation.

Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation.

Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticle (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of phtocatalytic MB degradation.

Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as highperformance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Keywords: Methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite, Cu2O, materials.

Graphical Abstract

[1]
Krishna Moorthy A, Govindarajan Rathi B, Shukla SP, Kumar K, Shree Bharti V. Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environ Toxicol Pharmacol 2021; 82: 103552.
[http://dx.doi.org/10.1016/j.etap.2020.103552] [PMID: 33246139]
[2]
Vutskits L, Briner A, Klauser P, et al. Adverse effects of methylene blue on the central nervous system. Anesthesiology 2008; 108(4): 684-92.
[http://dx.doi.org/10.1097/ALN.0b013e3181684be4] [PMID: 18362601]
[3]
Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 2011; 31(1): 93-117.
[http://dx.doi.org/10.1002/med.20177] [PMID: 19760660]
[4]
Drumond Chequer FM, de Oliveira GAR, Anastacio Ferraz ER, Carvalho J, Boldrin Zanoni MV, de Oliveir DP. Textile Dyes: Dyeing Process and Environmental Impact. Eco-Friendly Textile Dyeing and Finishing 2013.
[http://dx.doi.org/10.5772/53659]
[5]
Beura R, Thangadurai P. Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. J Phys Chem Solids 2017; 102: 168-77.
[http://dx.doi.org/10.1016/j.jpcs.2016.11.024]
[6]
Maximino MD, Constantino CJL, Oliveira ON Jr, Alessio P. Synergy in the interaction of amoxicillin and methylene blue with dipalmitoyl phosphatidyl choline (DPPC) monolayers. Appl Surf Sci 2019; 476: 493-500.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.065]
[7]
Nawar A, Rahman MA, Hossain MM. Fe(III)-aqua complex mediated photodegradation of methylene blue dye. Int J Environ Sci Dev 2021; 12(4): 112-7.
[http://dx.doi.org/10.18178/ijesd.2021.12.4.1327]
[8]
Sisodiya K. Microbial Degradation of Methylene Blue Dye Bye Bacterial Strain. Int J Res Appl Sci Eng Technol 2019; 7(4): 505-11.
[http://dx.doi.org/10.22214/ijraset.2019.4092]
[9]
Naresh Yadav D, Anand Kishore K, Saroj D. A Study on removal of methylene blue dye by photo catalysis integrated with nanofiltration using statistical and experimental approaches. Environ Technol 2021; 42(19): 2968-81.
[http://dx.doi.org/10.1080/09593330.2020.1720303] [PMID: 32045559]
[10]
Bayomie OS, Kandeel H, Shoeib T, Yang H, Youssef N, El-Sayed MMH. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci Rep 2020; 10(1): 7824.
[http://dx.doi.org/10.1038/s41598-020-64727-5] [PMID: 32385345]
[11]
Saritha B, Chockalingam MP. Photodegradation of methylene blue dye in aqueous medium by Fe-AC/TiO2 Composite. Nat Environ Pollut Technol 2018; 17(4): 1259-65.
[12]
Nasir M, Irnameria D, Zulfikar MA. Synthesis and characterization of novel TiO2-ZnO-CoO nanocomposite photocatalyst for photodegradation of methylene blue dye. IOP Conf Ser Earth Environ Sci 2017; 60(1): 012015.
[http://dx.doi.org/10.1088/1755-1315/60/1/012015]
[13]
Leng L, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere 2020; 238: 124680.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124680] [PMID: 31545213]
[14]
Zhang G, Zhang X, Meng Y, Pan G, Ni Z, Xia S. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review. Chem Eng J 2020; 392: 123684.
[http://dx.doi.org/10.1016/j.cej.2019.123684]
[15]
Reza KM, Kurny A, Gulshan F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl Water Sci 2017; 7(4): 1569-78.
[http://dx.doi.org/10.1007/s13201-015-0367-y]
[16]
Rafiq A, Ikram M, Ali S, et al. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 2021; 97: 111-28.
[http://dx.doi.org/10.1016/j.jiec.2021.02.017]
[17]
Anju Chanu L, Joychandra Singh W, Jugeshwar Singh K, Nomita Devi K. Effect of operational parameters on the photocatalytic degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys 2019; 12: 1230-7.
[http://dx.doi.org/10.1016/j.rinp.2018.12.089]
[18]
Muraro PCL, Mortari SR, Vizzotto BS, et al. Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci Rep 2020; 10(1): 3055.
[http://dx.doi.org/10.1038/s41598-020-59987-0] [PMID: 32080290]
[19]
Li S, Lin Q, Liu X, et al. Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu2O-Cu nanocomposites. RSC Advances 2018; 8(36): 20277-86.
[http://dx.doi.org/10.1039/C8RA03117G]
[20]
Sadik WA, El-Demerdash AGM, Nashed AW, Mostafa AA, Hamad HA. Highly efficient photocatalytic performance of Cu2O@TiO2 nanocomposite: Influence of various inorganic oxidants and inorganic anions. J Mater Res Technol 2019; 8(6): 5405-14.
[http://dx.doi.org/10.1016/j.jmrt.2019.09.007]
[21]
Yu L, Xiong L, Yu Y. Cu2O Homojunction solar cells: F-doped N-type thin film and highly improved efficiency. J Phys Chem C 2015; 119(40): 22803-11.
[http://dx.doi.org/10.1021/acs.jpcc.5b06736]
[22]
Fan W, Yu X, Lu HC, Bai H, Zhang C, Shi W. Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl Catal B 2016; 181: 7-15.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.032]
[23]
Hu Z, Liu H. Facile and template-free synthesis of spherical Cu2O as anode materials for lithium-ion batteries. J Mater Sci Mater Electron 2015; 26(7): 5405-8.
[http://dx.doi.org/10.1007/s10854-015-3091-3]
[24]
Huang Y, Yan CF, Guo CQ, Lu ZX, Shi Y, Da Wang Z. Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production. Int J Hydrogen Energy 2017; 42(7): 4007-16.
[http://dx.doi.org/10.1016/j.ijhydene.2016.10.157]
[25]
Muthukrishnaraj A, Al-Zahrani SA, Al Otaibi A, et al. Enhanced photocatalytic activity of Cu2O cabbage/rgo nanocomposites under visible light irradiation. Polymers 2021; 13(11): 1712.
[http://dx.doi.org/10.3390/polym13111712] [PMID: 34073817]
[26]
Wang A, Li X, Zhao Y, Wu W, Chen J, Meng H. Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances. Powder Technol 2014; 261: 42-8.
[http://dx.doi.org/10.1016/j.powtec.2014.04.004]
[27]
Zhang Z, Sun L, Wu Z, Liu Y, Li S. Facile hydrothermal synthesis of CuO-Cu2O/GO nanocomposites for the photocatalytic degradation of organic dye and tetracycline pollutants. New J Chem 2020; 44(16): 6420-7.
[http://dx.doi.org/10.1039/D0NJ00577K]
[28]
Dao MU, Nguyen TTT, Le VT, et al. Non-woven polyester fabric-supported cuprous oxide/reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue. J Mater Sci 2021; 56(17): 10353-66.
[http://dx.doi.org/10.1007/s10853-021-05965-4]
[29]
Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 2019; 1(1): 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[30]
Farjadian F, Abbaspour S, Sadatlu MAA, et al. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications. A Review. Chemistryselect 2020; 5: 10200-19.
[31]
Geioushy RA, Khaled MM, Alhooshani K, Hakeem AS, Rinaldi A. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol. Electrochim Acta 2017; 245: 456-62.
[http://dx.doi.org/10.1016/j.electacta.2017.05.185]
[32]
Zhang D, Hu B, Guan D, Luo Z. Essential roles of defects in pure graphene/Cu2O photocatalyst. Catal Commun 2016; 76: 7-12.
[http://dx.doi.org/10.1016/j.catcom.2015.12.013]
[33]
Cheng K, Han N, Su Y, Zhang J, Zhao J. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations. Sci Rep 2017; 7(1): 41771.
[http://dx.doi.org/10.1038/srep41771] [PMID: 28165485]
[34]
Alam SN, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene (Irvine, Calif) 2017; 6(1): 1-18.
[http://dx.doi.org/10.4236/graphene.2017.61001]
[35]
Foroughi F, Rahsepar M, Hadianfard MJ, Kim H. Facile synthesis and electrochemical performance of graphene-modified Cu2O nanocomposite for use in enzyme-free glucose biosensor. Iran J Chem Chem Eng 2020; 39(2): 1-10.
[http://dx.doi.org/10.30492/IJCCE.2020.33683]
[36]
Golkhatmi SZ, Khalaj M, Izadpanahi A, Sedghi A. One-step electrodeposition synthesis of high performance Graphene/Cu2O nanocomposite films on copper foils as binder-free supercapacitor electrodes. Solid State Sci 2020; 106: 106336.
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106336]
[37]
Kaur M, Kaur H, Kukkar D. Synthesis and characterization of graphene oxide using modified Hummer’s method. In AIP Conference Proceedings 2018; 1953.(1) 030180
[http://dx.doi.org/10.1063/1.5032515]
[38]
Dimiev AM, Tour JM. Mechanism of graphene oxide formation. ACS Nano 2014; 8(3): 3060-8.
[http://dx.doi.org/10.1021/nn500606a] [PMID: 24568241]
[39]
Yadav N, Kallur V, Chakraborty D, Johari P, Lochab B. Control of functionalities in GO: Effect of bronsted acids as supported by Ab initio simulations and experiments. ACS Omega 2019; 4(5): 9407-18.
[http://dx.doi.org/10.1021/acsomega.9b00676] [PMID: 31460031]
[40]
Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR. Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomedicine 2011; 6: 3443-8.
[http://dx.doi.org/10.2147/IJN.S26812] [PMID: 22267928]
[41]
Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007; 45(7): 1558-65.
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[42]
Echabbi F, Hamlich M, Harkati S, et al. Photocatalytic degradation of methylene blue by the use of titanium-doped calcined mussel shells CMS/TiO2. J Environ Chem Eng 2019; 7(5): 103293.
[http://dx.doi.org/10.1016/j.jece.2019.103293]
[43]
Zhang D, Yang J, Wang J, Yang J, Qiao G. Construction of Cu2O-reduced graphene oxide composites with enhanced photoelectric and photocatalytic properties. Opt Mater 2020; 100: 109612.
[http://dx.doi.org/10.1016/j.optmat.2019.109612]
[44]
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010; 39(1): 228-40.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[45]
Li B, Liu T, Hu L, Wang Y. A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant. J Phys Chem Solids 2013; 74(4): 635-40.
[http://dx.doi.org/10.1016/j.jpcs.2012.12.020]
[46]
Roy I, Bhattacharyya A, Sarkar G, et al. In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: A reusable catalyst. RSC Advances 2014; 4(94): 52044-52.
[http://dx.doi.org/10.1039/C4RA08127G]
[47]
Butte SM, Waghule SA. Optical properties of Cu2O and CuO In: 3RD International conference on condensed matter and applied physics (ICC-2019) AIP Conference Proceedings 2020. 2220(1): 020093.
[48]
Zou W, Zhang L, Liu L, et al. Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Appl Catal B 2016; 181: 495-503.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.017]
[49]
Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J Phys Chem Lett 2018; 9(23): 6814-7.
[http://dx.doi.org/10.1021/acs.jpclett.8b02892] [PMID: 30990726]
[50]
McWilliams S, Flynn CD, McWilliams J, et al. Nanostructured Cu2O synthesized via bipolar electrochemistry. Nanomaterials (Basel) 2019; 9(12): 1781.
[http://dx.doi.org/10.3390/nano9121781] [PMID: 31847448]
[51]
Nine MJ, Munkhbayar B, Rahman MS, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater Chem Phys 2013; 141(2-3): 636-42.
[http://dx.doi.org/10.1016/j.matchemphys.2013.05.032]
[52]
Hussein N, Khadum MM. Evaluation of the biosynthesized silver nanoparticles” effects on biofilm formation. J Appl Sci Nanotechnol 2021; 1(1): 23-31.
[http://dx.doi.org/10.53293/jasn.2021.11019]
[53]
Stankovich S, Dikin DDA, Piner RDR, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2016; 45(7): 1558-65.
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[54]
Alibeyli R, Ata A, Topaç E. Reduced Graphene Oxide Synthesis via Improved Hummers’ Method. Akad Platf 2017: Conference: ISITES 2014 2017.
[55]
Bhargava R, Khan S. Enhanced optical properties of Cu2O anchored on Reduced Graphene Oxide (rGO) sheets. J Phys Condens Matter 2018; 30(33): 335703.
[http://dx.doi.org/10.1088/1361-648X/aad2b2] [PMID: 29995640]
[56]
Zheng Y, Wang Z, Peng F, Wang A, Cai X, Fu L. Growth of Cu2O nanoparticle on reduced graphene sheets with high photocatalytic activity for degradation of Rhodamine B. Fuller Nanotub Carbon Nanostruct 2016; 24(2): 1-17.
[http://dx.doi.org/10.1080/1536383X.2015.1125342]
[57]
Bolotin KI, Sikes KJ, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008; 146(9-10): 351-5.
[http://dx.doi.org/10.1016/j.ssc.2008.02.024]
[58]
Kaur S, Singh V. Visible light induced sonophotocatalytic degradation of reactive red dye 198 using dye sensitized TiO2. Ultrason Sonochem 2007; 14(5): 531-7.
[http://dx.doi.org/10.1016/j.ultsonch.2006.09.015] [PMID: 17289421]
[59]
Dariani RS, Esmaeili A, Mortezaali A, Dehghanpour S. Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik (Stuttg) 2016; 127(18): 7143-54.
[http://dx.doi.org/10.1016/j.ijleo.2016.04.026]
[60]
Akbari A, Sabouri Z, Hosseini HA, Hashemzadeh A, Khatami M, Darroudi M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg Chem Commun 2020; 115: 107867.
[http://dx.doi.org/10.1016/j.inoche.2020.107867]
[61]
Aragaw BA, Dagnaw A. Copper/reduced graphene oxide nanocomposite for high performance photocatalytic methylene blue dye degradation. Ethiop J Sci Technol 2019; 12(2): 125-37.
[http://dx.doi.org/10.4314/ejst.v12i2.2]
[62]
Kaiqiang Z, Jun MS, Tae HL, et al. Copper oxide–graphene oxide nanocomposite: efcient catalyst for hydrogenation of nitroaromatics in water. Nano Converg 2019; 6(1): 1-7.
[http://dx.doi.org/10.1186/s40580-019-0176-3]
[63]
Kumar S, Ojha AK. In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation. Mater Chem Phys 2016; 171: 126-36.
[http://dx.doi.org/10.1016/j.matchemphys.2015.12.008]
[64]
Kumar S, Ojha AK, Bhorolua D, Das J, Kumar A, Hazarika A. Facile synthesis of CuO nanowires and Cu2O nanospheres grown on rGO surface and exploiting its photocatalytic, antibacterial and supercapacitive properties. Phys B Physica B 2019; 558: 74-81.
[http://dx.doi.org/10.1016/j.physb.2019.01.040]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy