Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Drag Resistivity of Hole-Hole Static Interactions with the Effect of Non- Homogeneous Dielectric Medium

Author(s): Sharad Kumar Upadhyay* and L.K. Saini

Volume 8, Issue 2, 2023

Published on: 23 August, 2022

Page: [194 - 198] Pages: 5

DOI: 10.2174/2405461507666220628161237

Price: $65

Abstract

Background: We have studied the Coulomb drag phenomena for hole-hole static potentials theoretically and measured numerically using the random phase approximation (RPA) method.

Objective: The drag resistivity is evaluated at low temperature, large interlayer separation limit and weakly screening regime, with the geometry of two atomically thin materials, such as BLG/GaAsbased multilayer system, which is a promising system in nanomaterials and technology.

Methods: Static local field corrections (LFC) are considered to take into account the Exchangecorrelations (XC) and mutual interaction effects with varying concentrations of the active and passive layer.

Results: It has been found that the drag resistivity gets enhanced on using the LFC effects and increases on increasing the effective mass. In Fermi-Liquid regime, drag resistivity is directly proportional to T2, n-3, d-4 and ε2 with respect to temperature (T), density (n), interlayer separation (d~nm) and dielectric constant (ε2), respectively.

Conclusion: Dependency of drag resistivity is measured and compared to 2D e-e and e-h coupledlayer systems with and without the effect of non-homogeneous dielectric medium.

Keywords: Drag resistivity, weak interaction, low temperature, hole-hole, static interactions, LFC.

« Previous
Graphical Abstract

[1]
Jauho AP, Smith H. Coulomb drag between parallel twodimensional electron systems. Phys Rev B Condens Matter 1993; 47(8): 4420-8.
[http://dx.doi.org/10.1103/PhysRevB.47.4420] [PMID: 10006589]
[2]
Kamenev A, Oreg Y. Coulomb drag in normal metals and superconductors: Diagrammatic approach. Phys Rev B Condens Matter 1995; 52(10): 7516-27.
[http://dx.doi.org/10.1103/PhysRevB.52.7516] [PMID: 9979698]
[3]
Upadhyay SK, Saini LK. Coulomb drag of electron-electron interactions in gaas bilayer with a non-homogeneous dielectric background. Adv Mater Lett 2020; 11(7): 20071539.
[http://dx.doi.org/10.5185/amlett.2020.071539]
[4]
Upadhyay SK, Saini LK. Coulomb drag study in electron-electron bilayer system with a dielectric medium Phys E Low-dimensional Syst Nanostructures 2020. 124: 114350
[http://dx.doi.org/10.1016/j.physe.2020.114350]
[5]
Upadhyay SK, Saini LK. Study of coulomb drag with the effect of local field correction and dielectric medium. Physica B 2021; 614: 412982.
[http://dx.doi.org/10.1016/j.physb.2021.412982]
[6]
Upadhyay SK, Saini LK. Study of drag resistivity in dielectric medium with the correlations effect. Appl Phys, A Mater Sci Process 2021; 127(4): 276.
[http://dx.doi.org/10.1007/s00339-021-04422-y]
[7]
Upadhyay SK, Saini LK. Coulomb drag study in graphene/GaAs bilayer system with the effect of local field correction and dielectric medium. Phys E Low-dimensional Syst Nanostructures 2021. 127: 114484
[http://dx.doi.org/10.1016/j.physe.2020.114484]
[8]
Upadhyay SK, Saini LK. Drag resistivity in bilayergraphene/GaAs coupled layer system with the effect of local field corrections. Eur Phys J Plus 2021; 136(4): 433.
[http://dx.doi.org/10.1140/epjp/s13360-021-01377-0]
[9]
Pillarisetty R, Noh H, Tsui DC, De Poortere EP, Tutuc E, Shayegan M. Frictional drag between two dilute two-dimensional hole layers. Phys Rev Lett 2002; 89(1): 016805.
[http://dx.doi.org/10.1103/PhysRevLett.89.016805] [PMID: 12097063]
[10]
Solomon PM, Price PJ, Frank DJ, La Tulipe DC. New phenomena in coupled transport between 2D and 3D electron-gas layers. Phys Rev Lett 1989; 63(22): 2508-11.
[http://dx.doi.org/10.1103/PhysRevLett.63.2508] [PMID: 10040906]
[11]
Scharf B, Matos-Abiague A. Coulomb drag between massless and massive fermions. Phys Rev B Condens Matter Mater Phys 2012; 86(11): 115425.
[http://dx.doi.org/10.1103/PhysRevB.86.115425]
[12]
Höpfel RA, Shah J, Wolff PA, Gossard AC. Negative absolute mobility of minority electrons in GaAs quantum wells. Phys Rev Lett 1986; 56(25): 2736-9.
[http://dx.doi.org/10.1103/PhysRevLett.56.2736] [PMID: 10033077]
[13]
Höpfel RA, Shah J. Electron-hole drag in semiconductors. Solid-State Electron 1988; 31(3): 643-8.
[http://dx.doi.org/10.1016/0038-1101(88)90359-0]
[14]
Solomon PM, Laikhtman B. Mutual drag of 2D and 3D electron gases in heterostructures. Superlattices Microstruct 1991; 10(1): 89-94.
[http://dx.doi.org/10.1016/0749-6036(91)90154-J]
[15]
Gramila TJ, Eisenstein JP, MacDonald AH, Pfeiffer LN, West KW. Mutual friction between parallel two-dimensional electron systems. Phys Rev Lett 1991; 66(9): 1216-9.
[http://dx.doi.org/10.1103/PhysRevLett.66.1216] [PMID: 10044025]
[16]
Gramila TJ, Eisenstein JP, MacDonald AH, Pfeiffer LN, West KW. Electron-electron scattering between parallel two-dimensional electron gases. Surf Sci 1992; 263(1): 446-50.
[http://dx.doi.org/10.1016/0039-6028(92)90386-K]
[17]
Gramila TJ, Eisenstein JP, MacDonald AH, Pfeiffer LN, West KW. Measuring electron—electron scattering rates through mutual friction. Physica B 1994; 197(1): 442-8.
[http://dx.doi.org/10.1016/0921-4526(94)90243-7]
[18]
Eisenstein JP. New transport phenomena in coupled quantum wells. Superlattices Microstruct 1992; 12(1): 107-14.
[http://dx.doi.org/10.1016/0749-6036(92)90231-S]
[19]
Pillarisetty R, Noh H, Tutuc E, De Poortere EP, Tsui DC, Shayegan M. In-plane magnetodrag between dilute two-dimensional systems. Phys Rev Lett 2003; 90(22): 226801.
[http://dx.doi.org/10.1103/PhysRevLett.90.226801] [PMID: 12857330]
[20]
Gamucci A, Spirito D, Carrega M, et al. Anomalous lowtemperature Coulomb drag in graphene-GaAs heterostructures. Nat Commun 2014; 5(1): 5824.
[http://dx.doi.org/10.1038/ncomms6824] [PMID: 25524426]
[21]
Zheng B, Croxall AF, Waldie J, et al. Switching between attractive and repulsive Coulomb-interaction-mediated drag in an ambipolar GaAs/AlGaAs bilayer device. Appl Phys Lett 2016; 108(6): 62102.
[http://dx.doi.org/10.1063/1.4941760]
[22]
Simonet P, Hennel S, Overweg H, et al. Anomalous Coulomb drag between bilayer graphene and a {GaAs} electron gas. New J Phys 2017; 19(10): 103042.
[http://dx.doi.org/10.1088/1367-2630/aa887e]
[23]
Ho DYH, Yudhistira I, Hu BY-K, Adam S. Theory of Coulomb drag in spatially inhomogeneous 2D materials. Commun Phys 2018; 1(1): 41.
[http://dx.doi.org/10.1038/s42005-018-0039-y]
[24]
Kellogg M, Spielman IB, Eisenstein JP, Pfeiffer LN, West KW. Observation of quantized Hall drag in a strongly correlated bilayer electron system. Phys Rev Lett 2002; 88(12): 126804.
[http://dx.doi.org/10.1103/PhysRevLett.88.126804] [PMID: 11909491]
[25]
Kellogg M, Eisenstein JP, Pfeiffer LN, West KW. Evidence for 2kF electron–electron scattering processes in Coulomb drag. Solid State Commun 2002; 123(12): 515-9.
[http://dx.doi.org/10.1016/S0038-1098(02)00426-X]
[26]
Croxall AF, Das Gupta K, Nicoll CA, et al. Anomalous coulomb drag in electron-hole bilayers. Phys Rev Lett 2008; 101(24): 246801.
[http://dx.doi.org/10.1103/PhysRevLett.101.246801] [PMID: 19113643]
[27]
Morath CP, Seamons JA, Reno JL, Lilly MP. Density imbalance effect on the Coulomb drag upturn in an undoped electron-hole bilayer. Phys Rev B Condens Matter Mater Phys 2009; 79(4): 41305.
[http://dx.doi.org/10.1103/PhysRevB.79.041305]
[28]
Seamons JA, Morath CP, Reno JL, Lilly MP. Coulomb drag in the exciton regime in electron-hole bilayers. Phys Rev Lett 2009; 102(2): 026804.
[http://dx.doi.org/10.1103/PhysRevLett.102.026804] [PMID: 19257304]
[29]
Mosko M, Cambel V, Mosková A. Electron-electron drag between parallel two-dimensional gases. Phys Rev B Condens Matter 1992; 46(8): 5012-5.
[http://dx.doi.org/10.1103/PhysRevB.46.5012] [PMID: 10004272]
[30]
Pillarisetty R, Noh H, Tutuc E, et al. Coulomb drag near the metal-insulator transition in two dimensions. Phys Rev B Condens Matter Mater Phys 2005; 71(11): 115307.
[http://dx.doi.org/10.1103/PhysRevB.71.115307]
[31]
Tso HC, Vasilopoulos P, Peeters FM. Coulomb coupling between spatially separated electron and hole layers: Generalized random-phase approximation. Phys Rev Lett 1993; 70(14): 2146-9.
[http://dx.doi.org/10.1103/PhysRevLett.70.2146] [PMID: 10053482]
[32]
Tso HC, Vasilopoulos P, Peeters PM. Coupled electron-hole transport: Generalized random-phase approximation and density functional theory. Surf Sci 1994; 305(1): 400-4.
[http://dx.doi.org/10.1016/0039-6028(94)90925-3]
[33]
Kim S, Jo I, Nah J, Yao Z, Banerjee SK, Tutuc E. Coulomb drag of massless fermions in graphene. Phys Rev B Condens Matter Mater Phys 2011; 83(16): 161401.
[http://dx.doi.org/10.1103/PhysRevB.83.161401]
[34]
Amorim B, Peres NMR. On Coulomb drag in double layer systems. J Phys Condens Matter 2012; 24(33): 335602.
[http://dx.doi.org/10.1088/0953-8984/24/33/335602] [PMID: 22836243]
[35]
Vazifehshenas T, Salavati-fard T. Inelastic Coulomb scattering rate within the finite-temperature Hubbard approximation. Phys Scr 2010; 81(2): 25701.
[http://dx.doi.org/10.1088/0031-8949/81/02/025701]
[36]
Salavati-fard T, Vazifehshenas T. Local field correction effect on inelastic Coulomb scattering lifetime of two-dimensional quasiparticles at low temperatures. Physica B 2011; 406(10): 1883-5.
[http://dx.doi.org/10.1016/j.physb.2011.02.047]
[37]
Hwang EH, Sarma SD, Braude V, Stern A. Frictional drag in dilute bilayer 2D hole systems. Phys Rev Lett 2003; 90(8): 086801.
[http://dx.doi.org/10.1103/PhysRevLett.90.086801] [PMID: 12633449]
[38]
Zou K, Hong X, Zhu J. Effective mass of electrons and holes in bilayer graphene: Electron-hole asymmetry and electron-electron interaction. Phys Rev B Condens Matter Mater Phys 2011; 84(8): 85408.
[http://dx.doi.org/10.1103/PhysRevB.84.085408]
[39]
Upadhyay SK, Saini LK. Drag resistivity in InAs/GaAs and InAs/GaSb bilayer due to electron-electron interactions. AIP Conf Proc 2020. 2220(1):140031
[http://dx.doi.org/10.1063/5.0002594]
[40]
Saini LK, Upadhyay SK, Bahuguna BP. Investigations of optical and thermoelectric response of GaBi monolayer AIP Conf Proc. 2020. 2220(1): 20158
[http://dx.doi.org/10.1063/5.0002593]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy