Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Hologram QSAR and Topomer CoMFA Study on Naphthyridone Derivatives as ATAD2 Bromodomain Inhibitors

Author(s): Zhenxia lv, Jing Ren, Shaobo Zhang, Bokai Wang, Yuxin Peng, Wu Yao and Jintao Yuan*

Volume 2, Issue 3, 2022

Published on: 15 August, 2022

Article ID: e160522204804 Pages: 11

DOI: 10.2174/2666001602666220516093452

Price: $65

Abstract

Background: ATAD2 is closely related to the occurrence and proliferation of many tumors. Thus, exploring ATAD2 inhibitors is greatly significant for the prevention and treatment of tumors. In this study, the quantitative structure–activity relationship (QSAR) analyses of 57 naphthyridone derivatives were conducted using hologram quantitative structure–activity relationship (HQSAR) and topomer comparative molecular field analysis (topomer CoMFA).

Methods: The 57 naphthyridone derivatives were divided into the training (44 derivatives) and testing (13 derivatives) sets. HQSAR and topomer CoMFA models were obtained by applying the SYBYL-X software and validated using various validation parameters. Contribution maps from the best HQSAR model and the contour maps from the best topomer CoMFA model were analyzed.

Results: The most effective HQSAR model exhibited significant cross-validated (q2 = 0.872) and non cross-validated (r2 = 0.972) correlation coefficients, and the most effective topomer CoMFA model had q2 = 0.861 and r2 = 0.962. Several external validation parameters, such as 𝒬F12, 𝒬F22, r2m, Δr2m, and CCC, were used to calculate the correlation coefficients of the test set samples and validate both models. The result exhibited a powerful predictive capability. Graphical results from HQSAR and topomer CoMFA were validated by the binding mode in the crystal structure.

Conclusion: The models may be beneficial to enhance the understanding of the structure–activity relationships for this class of compounds and also provide useful clues for the design of potential ATAD2 bromodomain inhibitors.

Keywords: ATAD2 bromodomain inhibitors, hologram QSAR, topomer CoMFA, naphthyridone derivatives, proliferation, contour map.

Graphical Abstract

[1]
Chaikuad, A.; Petros, A.M.; Fedorov, O.; Xu, J.; Knapp, S. Structure-based approaches towards identification of fragments for the low-druggability ATAD2 bromodomain. MedChemComm, 2014, 5(12), 1843-1848.
[http://dx.doi.org/10.1039/C4MD00237G]
[2]
Snider, J.; Thibault, G.; Houry, W.A. The AAA+ superfamily of functionally diverse proteins. Genome Biol., 2008, 9(4), 216.
[http://dx.doi.org/10.1186/gb-2008-9-4-216] [PMID: 18466635]
[3]
Morozumi, Y.; Boussouar, F.; Tan, M.; Chaikuad, A.; Jamshidikia, M.; Colak, G.; He, H.; Nie, L.; Petosa, C.; de Dieuleveult, M.; Curtet, S.; Vitte, A.L.; Rabatel, C.; Debernardi, A.; Cosset, F.L.; Verhoeyen, E.; Emadali, A.; Schweifer, N.; Gianni, D.; Gut, M.; Guardiola, P.; Rousseaux, S.; Gérard, M.; Knapp, S.; Zhao, Y.; Khochbin, S. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J. Mol. Cell Biol., 2016, 8(4), 349-362.
[http://dx.doi.org/10.1093/jmcb/mjv060] [PMID: 26459632]
[4]
Revenko, A.S.; Kalashnikova, E.V.; Gemo, A.T.; Zou, J.X.; Chen, H.W. Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol. Cell. Biol., 2010, 30(22), 5260-5272.
[http://dx.doi.org/10.1128/MCB.00484-10] [PMID: 20855524]
[5]
Raeder, M.B.; Birkeland, E.; Trovik, J.; Krakstad, C.; Shehata, S.; Schumacher, S.; Zack, T.I.; Krohn, A.; Werner, H.M.; Moody, S.E.; Wik, E.; Stefansson, I.M.; Holst, F.; Oyan, A.M.; Tamayo, P.; Mesirov, J.P.; Kalland, K.H.; Akslen, L.A.; Simon, R.; Beroukhim, R.; Salvesen, H.B. Integrated genomic analysis of the 8q24 amplification in endometrial cancers identifies ATAD2 as essential to MYC-dependent cancers. PLoS One, 2013, 8(2)e54873
[http://dx.doi.org/10.1371/journal.pone.0054873] [PMID: 23393560]
[6]
Fouret, R.; Laffaire, J.; Hofman, P.; Beau-Faller, M.; Mazieres, J.; Validire, P.; Girard, P.; Camilleri-Bröet, S.; Vaylet, F.; Leroy-Ladurie, F.; Soria, J.C.; Fouret, P. A comparative and integrative approach identifies ATPase family, AAA domain containing 2 as a likely driver of cell proliferation in lung adenocarcinoma. Clin. Cancer Res., 2012, 18(20), 5606-5616.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0505] [PMID: 22914773]
[7]
Taghavi, A.; Akbari, M.E.; Hashemi-Bahremani, M.; Nafissi, N.; Khalilnezhad, A.; Poorhosseini, S.M.; Hashemi-Gorji, F.; Yassaee, V.R. Gene expression profiling of the 8q22-24 position in human breast cancer: TSPYL5, MTDH, ATAD2 and CCNE2 genes are implicated in oncogenesis, while WISP1 and EXT1 genes may predict a risk of metastasis. Oncol. Lett., 2016, 12(5), 3845-3855.
[http://dx.doi.org/10.3892/ol.2016.5218] [PMID: 27895739]
[8]
Wan, W.N.; Zhang, Y.X.; Wang, X.M.; Liu, Y.J.; Zhang, Y.Q.; Que, Y.H.; Zhao, W.J. ATAD2 is highly expressed in ovarian carcinomas and indicates poor prognosis. Asian Pac. J. Cancer Prev., 2014, 15(6), 2777-2783.
[http://dx.doi.org/10.7314/APJCP.2014.15.6.2777] [PMID: 24761900]
[9]
Wang, H.L.; Zhou, P.Y.; Zhang, Y.; Liu, P. Relationships between abnormal MMP2 expression and prognosis in gastric cancer: A meta-analysis of cohort studies. Cancer Biother. Radiopharm., 2014, 29(4), 166-172.
[http://dx.doi.org/10.1089/cbr.2014.1608] [PMID: 24784911]
[10]
Couto, P.P.; Bastos-Rodrigues, L.; Schayek, H.; Melo, F.M.; Lisboa, R.G.C.; Miranda, D.M.; Vilhena, A.; Bale, A.E.; Friedman, E.; De Marco, L. Spectrum of germline mutations in smokers and non-smokers in Brazilian Non-Small-Cell Lung Cancer (NSCLC) patients. Carcinogenesis, 2017, 38(11), 1112-1118.
[http://dx.doi.org/10.1093/carcin/bgx089] [PMID: 28968711]
[11]
Zheng, L.; Li, T.; Zhang, Y.; Guo, Y.; Yao, J.; Dou, L.; Guo, K. Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer. Oncol. Rep., 2015, 33(5), 2337-2344.
[http://dx.doi.org/10.3892/or.2015.3867] [PMID: 25813398]
[12]
Wu, G.; Liu, H.; He, H.; Wang, Y.; Lu, X.; Yu, Y.; Xia, S.; Meng, X.; Liu, Y. miR-372 down-regulates the oncogene ATAD2 to influence hepatocellular carcinoma proliferation and metastasis. BMC Cancer, 2014, 14(1), 107.
[http://dx.doi.org/10.1186/1471-2407-14-107] [PMID: 24552534]
[13]
Chung, C.; Tough, D.F. Bromodomains: A new target class for small molecule drug discovery. Drug Discov. Today Ther. Strateg., 2012, 9(2-3), e111-e120.
[http://dx.doi.org/10.1016/j.ddstr.2011.12.002]
[14]
Hussain, M.; Zhou, Y.; Song, Y.; Hameed, H.M.A.; Jiang, H.; Tu, Y.; Zhang, J. ATAD2 in cancer: A pharmacologically challenging but tractable target. Expert Opin. Ther. Targets, 2018, 22(1), 85-96.
[http://dx.doi.org/10.1080/14728222.2018.1406921] [PMID: 29148850]
[15]
Harner, M.J.; Chauder, B.A.; Phan, J.; Fesik, S.W. Fragment-based screening of the bromodomain of ATAD2. J. Med. Chem., 2014, 57(22), 9687-9692.
[http://dx.doi.org/10.1021/jm501035j] [PMID: 25314628]
[16]
Bamborough, P.; Chung, C.W.; Furze, R.C.; Grandi, P.; Michon, A.M.; Sheppard, R.J.; Barnett, H.; Diallo, H.; Dixon, D.P.; Douault, C.; Jones, E.J.; Karamshi, B.; Mitchell, D.J.; Prinjha, R.K.; Rau, C.; Watson, R.J.; Werner, T.; Demont, E.H. Structure-based optimization of naphthyridones into potent ATAD2 bromodomain inhibitors. J. Med. Chem., 2015, 58(15), 6151-6178.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00773] [PMID: 26230603]
[17]
Sepehri, B.; Rasouli, Z.; Hassanzadeh, Z.; Ghavami, R. Molecular docking and QSAR analysis of naphthyridone derivatives as ATAD2 bromodomain inhibitors: Application of CoMFA, LS-SVM, and RBF neural network. Med. Chem. Res., 2016, 25(12), 2895-2905.
[http://dx.doi.org/10.1007/s00044-016-1686-8]
[18]
More, U.A.; Patel, S.; Rahevar, V.; Noolvi, M.N.; Aminabhavi, T.M.; Joshi, S.D. In silico ADME and QSAR studies on a set of coumarin derivatives as acetylcholinesterase inhibitors against Alzheimer’s disease: CoMFA, CoMSIA, topomer CoMFA, and HQSAR. Lett. Drug Des. Discov., 2020, 17(6), 684-712.
[http://dx.doi.org/10.2174/1570180816666190712095907]
[19]
Al-Attraqchi, O.H.A.; Venugopala, K.N. 2D- and 3D-QSAR Modeling of Imidazole-Based Glutaminyl Cyclase Inhibitors. Curr. Computeraided Drug Des., 2020, 16(6), 682-697.
[http://dx.doi.org/10.2174/1573409915666190918150136] [PMID: 31533602]
[20]
Yu, S.; Zhou, Q.; Zhang, X.; Jia, S.; Gan, Y.; Zhang, Y.; Shi, J.; Yuan, J. Hologram quantitative structure–activity relationship and topomer comparative molecular-field analysis to predict the affinities of azo dyes for cellulose fibers. Dyes Pigments, 2018, 153, 35-43.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.053]
[21]
Demont, E.H.; Chung, C.W.; Furze, R.C.; Grandi, P.; Michon, A.M.; Wellaway, C.; Barrett, N.; Bridges, A.M.; Craggs, P.D.; Diallo, H.; Dixon, D.P.; Douault, C.; Emmons, A.J.; Jones, E.J.; Karamshi, B.V.; Locke, K.; Mitchell, D.J.; Mouzon, B.H.; Prinjha, R.K.; Roberts, A.D.; Sheppard, R.J.; Watson, R.J.; Bamborough, P. Fragment-based discovery of low-micromolar ATAD2 bromodomain inhibitors. J. Med. Chem., 2015, 58(14), 5649-5673.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00772] [PMID: 26155854]
[22]
Yu, S.; Yuan, J.; Shi, J.; Ruan, X.; Zhang, T.; Wang, Y.; Du, Y. HQSAR and topomer CoMFA for predicting melanocortin-4 receptor binding affinities of trans-4-(4-chlorophenyl) pyrrolidine-3-carboxamides. Chemom. Intell. Lab. Syst., 2015, 146, 34-41.
[http://dx.doi.org/10.1016/j.chemolab.2015.04.017]
[23]
Kiralj, R.; Ferreira, M.M.C. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Braz. Chem. Soc., 2009, 20(4), 770-787.
[http://dx.doi.org/10.1590/S0103-50532009000400021]
[24]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[25]
Roy, R.K.; Das, R.N.; Ambure, P.; Aher, R.B. Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom. Intell. Lab. Syst., 2016, 152, 18-33.
[http://dx.doi.org/10.1016/j.chemolab.2016.01.008]
[26]
Shi, L.M.; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; Blair, R.M.; Branham, W.S.; Dial, S.L.; Moland, C.L.; Sheehan, D.M. QSAR models using a large diverse set of estrogens. J. Chem. Inf. Comput. Sci., 2001, 41(1), 186-195.
[http://dx.doi.org/10.1021/ci000066d] [PMID: 11206373]
[27]
Schüürmann, G.; Ebert, R-U.; Chen, J.; Wang, B.; Kühne, R. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean. J. Chem. Inf. Model., 2008, 48(11), 2140-2145.
[http://dx.doi.org/10.1021/ci800253u] [PMID: 18954136]
[28]
Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45(1), 255-268.
[http://dx.doi.org/10.2307/2532051] [PMID: 2720055]
[29]
Lin, L.I. Assay validation using the concordance correlation coefficient. Biometrics, 1992, 48(2), 599-604.
[http://dx.doi.org/10.2307/2532314]
[30]
Ojha, P.K.; Mitra, I. Further exploring rm2 metrics for validation of QSPR models. Chemom. Intell. Lab. Syst., 2011, 107(1), 194-205.
[31]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst., 2015, 145, 22-29.
[http://dx.doi.org/10.1016/j.chemolab.2015.04.013]
[32]
Tong, J.; Zhan, P.; Bai, M.; Yao, T. Molecular modeling studies of human immunodeficiency virus type 1 protease inhibitors using three-dimensional quantitative structure-activity relationship, virtual screening, and docking simulations. J. Chemometr., 2016, 30(9), 523-536.
[http://dx.doi.org/10.1002/cem.2809]
[33]
Yuan, J.; Pu, Y.; Yin, L. Prediction of binding affinities of PCDDs, PCDFs and PCBs using docking-based comparative molecular similarity indices analysis. Environ. Toxicol. Pharmacol., 2014, 38(1), 1-7.
[http://dx.doi.org/10.1016/j.etap.2014.04.019] [PMID: 24858058]
[34]
Zhou, Y.; Hussain, M.; Kuang, G.; Zhang, J.; Tu, Y. Mechanistic insights into peptide and ligand binding of the ATAD2-bromodomain via atomistic simulations disclosing a role of induced fit and conformational selection. Phys. Chem. Chem. Phys., 2018, 20(36), 23222-23232.
[http://dx.doi.org/10.1039/C8CP03860K] [PMID: 30137066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy