Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Knockdown of ARL5B Induces Mitochondrial-mediated Apoptosis and Inhibits Glycolysis in Breast Cancer Cells by Activating MDA5 Signaling

Author(s): Lei Zhang, Xuqiao Hu, Huaiyu Wu, Hongtian Tian, Jieying Zeng, Di Song, Keen Yang, Jing Chen, Jinfeng Xu* and Fajin Dong*

Volume 22, Issue 10, 2022

Published on: 17 August, 2022

Page: [843 - 853] Pages: 11

DOI: 10.2174/1568009622666220511112538

Price: $65

conference banner
Abstract

Aim: Mitochondria are essential for energy metabolism in the tumor microenvironment and the survival of cancer cells.

Background: ADP-ribosylation factor–like GTPase 5b (ARL5B) has been found to be associated with mitochondrial dysfunction and breast cancer (BC) progression, but the underlying mechanism needs to be further understood.

Objective: We investigated the effects of ARL5B on the apoptosis and glycolysis of breast cancer cells and its underlying mechanisms.

Methods: Quantitative reverse transcription-PCR (qRT-PCR) and western blot assays were used to detect the expression of ARL5B in breast cancer tissues and cells. An ARL5B loss-of-function assay was performed to verify its role in BC development.

Results: ARL5B was upregulated in breast cancer tissues and cell lines. ARL5B knockdown induced apoptosis and activated the mitochondrial pathway in breast cancer cells. Interestingly, the inhibition of ARL5B repressed the aerobic glycolysis of breast cancer cells. The role of ARL5B in breast cancer cells was exerted by mediating the activation of viral RNA sensor MDA5-evoked signaling. Silencing ARL5B triggered MDA5 signaling by upregulating the key proteins involved in the MDA5 pathway. Importantly, MDA5 silencing reversed the effects of ARL5B knockdown on mitochondrial-mediated apoptosis and glycolysis, whereas poly (I:C), as a ligand for MDA5, further enhanced ARL5B knockdown- facilitated mitochondrial apoptosis and the inhibition of glycolysis.

Conclusion: The knockdown of ARL5B activated MDA5 signaling and thus led to the enhanced mitochondrial- mediated apoptosis and glycolysis inhibition in breast cancer cells. Our study suggested that ARL5B might be a potential therapy target for BC.

Keywords: Energy metabolism, apoptosis, ARL5B, breast cancer, mitochondria, cytochrome C.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[3]
Xue, M.; Ge, Y.; Yu, C.; Zheng, Z.; He, X.; Zhao, J. Apoptosis is induced by docosahexaenoic acid in breast cancer cells via death recep-tor and mitochondria-mediated pathways. Mol. Med. Rep., 2017, 16(1), 978-982.
[http://dx.doi.org/10.3892/mmr.2017.6678] [PMID: 28586001]
[4]
Cui, L.; Bu, W.; Song, J.; Feng, L.; Xu, T.; Liu, D.; Ding, W.; Wang, J.; Li, C.; Ma, B.; Luo, Y.; Jiang, Z.; Wang, C.; Chen, J.; Hou, J.; Yan, H.; Yang, L.; Jia, X. Apoptosis induction by alantolactone in breast cancer MDA-MB-231 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. Arch. Pharm. Res., 2018, 41(3), 299-313.
[http://dx.doi.org/10.1007/s12272-017-0990-2] [PMID: 29214600]
[5]
AlBasher, G.; AlKahtane, A.A.; Alarifi, S.; Ali, D.; Alessia, M.S.; Almeer, R.S.; Abdel-Daim, M.M.; Al-Sultan, N.K.; Al-Qahtani, A.A.; Ali, H.; Alkahtani, S. Methotrexate-induced apoptosis in human ovarian adenocarcinoma SKOV-3 cells via ROS-mediated bax/bcl-2-cyt-c re-lease cascading. OncoTargets Ther., 2018, 12, 21-30.
[http://dx.doi.org/10.2147/OTT.S178510] [PMID: 30588027]
[6]
Ganapathy-Kanniappan, S.; Geschwind, J.F. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol. Cancer, 2013, 12, 152.
[http://dx.doi.org/10.1186/1476-4598-12-152] [PMID: 24298908]
[7]
Abbaszadeh, Z.; Çeşmeli, S.; Biray Avcı, Ç. Crucial players in glycolysis: Cancer progress. Gene, 2020, 726144158
[http://dx.doi.org/10.1016/j.gene.2019.144158] [PMID: 31629815]
[8]
Liang, T.; Ye, X.; Yan, D.; Deng, C.; Li, Z.; Tian, B. FAM46B promotes apoptosis and inhibits glycolysis of prostate cancer through inhi-bition of the MYC-LDHA Axis. OncoTargets Ther., 2020, 13, 8771-8782.
[http://dx.doi.org/10.2147/OTT.S258724] [PMID: 32943883]
[9]
Schömel, N.; Gruber, L.; Alexopoulos, S.J.; Trautmann, S.; Olzomer, E.M.; Byrne, F.L.; Hoehn, K.L.; Gurke, R.; Thomas, D.; Ferreirós, N.; Geisslinger, G.; Wegner, M.S. UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells. Sci. Rep., 2020, 10(1), 8182.
[http://dx.doi.org/10.1038/s41598-020-65182-y] [PMID: 32424263]
[10]
Bianchi, G.; Martella, R.; Ravera, S.; Marini, C.; Capitanio, S.; Orengo, A.; Emionite, L.; Lavarello, C.; Amaro, A.; Petretto, A.; Pfeffer, U.; Sambuceti, G.; Pistoia, V.; Raffaghello, L.; Longo, V.D. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget, 2015, 6(14), 11806-11819.
[http://dx.doi.org/10.18632/oncotarget.3688] [PMID: 25909219]
[11]
Wu, Z.; Wu, J.; Zhao, Q.; Fu, S.; Jin, J. Emerging roles of aerobic glycolysis in breast cancer. Clin. Transl. Oncol., 2020, 22(5), 631-646.
[http://dx.doi.org/10.1007/s12094-019-02187-8] [PMID: 31359335]
[12]
Sadler, A.J. The role of MDA5 in the development of autoimmune disease. J. Leukoc. Biol., 2018, 103(2), 185-192.
[PMID: 28974542]
[13]
Wu, Y.; Wu, X.; Wu, L.; Wang, X.; Liu, Z. The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy. Transl. Res., 2017, 190, 51-60.
[http://dx.doi.org/10.1016/j.trsl.2017.08.004] [PMID: 28917654]
[14]
Linder, A.; Hornung, V. Mitochondrial dsRNA: A New DAMP for MDA5. Dev. Cell, 2018, 46(5), 530-532.
[http://dx.doi.org/10.1016/j.devcel.2018.08.019] [PMID: 30205036]
[15]
Long, J.C.; Fodor, E. The PB2 subunit of the influenza a virus RNA polymerase is imported into the mitochondrial matrix. J. Virol., 2016, 90(19), 8729-8738.
[http://dx.doi.org/10.1128/JVI.01384-16] [PMID: 27440905]
[16]
Duewell, P.; Beller, E.; Kirchleitner, S.V.; Adunka, T.; Bourhis, H.; Siveke, J.; Mayr, D.; Kobold, S.; Endres, S.; Schnurr, M. Targeted activation of melanoma differentiation-associated protein 5 (MDA5) for immunotherapy of pancreatic carcinoma. OncoImmunology, 2015, 4(10)e1029698
[http://dx.doi.org/10.1080/2162402X.2015.1029698] [PMID: 26504669]
[17]
Wang, S.Q.; Yang, X.Y.; Yu, X.F.; Cui, S.X.; Qu, X.J. Knockdown of IGF-1R triggers viral RNA sensor MDA5- and RIG-I-mediated mito-chondrial apoptosis in colonic cancer cells. Mol. Ther. Nucleic Acids, 2019, 16, 105-117.
[http://dx.doi.org/10.1016/j.omtn.2019.02.008] [PMID: 30861413]
[18]
Palchetti, S.; Starace, D.; De Cesaris, P.; Filippini, A.; Ziparo, E.; Riccioli, A. Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells. J. Biol. Chem., 2015, 290(9), 5470-5483.
[http://dx.doi.org/10.1074/jbc.M114.601625] [PMID: 25568326]
[19]
Yi, L.; Sun, D.; Han, Q.; Liu, Z.; Zeng, Z.; Wu, Y.; Chai, X.; Liu, X. Interferon regulatory factor 3 mediates Poly(I:C)-induced innate im-mune response and apoptosis in non small cell lung cancer. Int. J. Oncol., 2018, 52(5), 1623-1632.
[PMID: 29512705]
[20]
Houghton, F.J.; Bellingham, S.A.; Hill, A.F.; Bourges, D.; Ang, D.K.; Gemetzis, T.; Gasnereau, I.; Gleeson, P.A. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp. Cell Res., 2012, 318(5), 464-477.
[http://dx.doi.org/10.1016/j.yexcr.2011.12.023] [PMID: 22245584]
[21]
Toh, W.H.; Tan, J.Z.; Zulkefli, K.L.; Houghton, F.J.; Gleeson, P.A. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. Traffic, 2017, 18(3), 159-175.
[http://dx.doi.org/10.1111/tra.12465] [PMID: 28000370]
[22]
Pu, J.; Schindler, C.; Jia, R.; Jarnik, M.; Backlund, P.; Bonifacino, J.S. BORC, a multisubunit complex that regulates lysosome positioning. Dev. Cell, 2015, 33(2), 176-188.
[http://dx.doi.org/10.1016/j.devcel.2015.02.011] [PMID: 25898167]
[23]
Tan, J.Z.A.; Gleeson, P.A. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J. Biol. Chem., 2019, 294(5), 1618-1631.
[http://dx.doi.org/10.1074/jbc.RA118.005222] [PMID: 30545942]
[24]
Juraeva, D.; Haenisch, B.; Zapatka, M.; Frank, J.; Witt, S.H.; Mühleisen, T.W.; Treutlein, J.; Strohmaier, J.; Meier, S.; Degenhardt, F.; Gieg-ling, I.; Ripke, S.; Leber, M.; Lange, C.; Schulze, T.G.; Mössner, R.; Nenadic, I.; Sauer, H.; Rujescu, D.; Maier, W.; Børglum, A.; Ophoff, R.; Cichon, S.; Nöthen, M.M.; Rietschel, M.; Mattheisen, M.; Brors, B. Integrated pathway-based approach identifies association between genomic regions at CTCF and CACNB2 and schizophrenia. PLoS Genet., 2014, 10(6)e1004345
[http://dx.doi.org/10.1371/journal.pgen.1004345] [PMID: 24901509]
[25]
Vergara, C.; Valencia, A.; Thio, C.L.; Goedert, J.J.; Mangia, A.; Piazzolla, V.; Johnson, E.; Kral, A.H.; O’Brien, T.R.; Mehta, S.H.; Kirk, G.D.; Kim, A.Y.; Lauer, G.M.; Chung, R.T.; Cox, A.L.; Peters, M.G.; Khakoo, S.I.; Alric, L.; Cramp, M.E.; Donfield, S.M.; Edlin, B.R.; Busch, M.P.; Alexander, G.; Rosen, H.R.; Murphy, E.L.; Wojcik, G.L.; Taub, M.A.; Thomas, D.L.; Duggal, P. A multi-ancestry sex strati-fied genome-wide association study of spontaneous clearance of hepatitis C virus. J. Infect. Dis., 2021, 223(12), 2090-2098.
[PMID: 33119750]
[26]
Zhao, S.; Zhang, Y.; Pei, M.; Wu, L.; Li, J. miR-145 inhibits mitochondrial function of ovarian cancer by targeting ARL5B. J. Ovarian Res., 2021, 14(1), 8.
[http://dx.doi.org/10.1186/s13048-020-00762-0] [PMID: 33419459]
[27]
Xu, Y.; Ye, S.; Zhang, N.; Zheng, S.; Liu, H.; Zhou, K.; Wang, L.; Cao, Y.; Sun, P.; Wang, T. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun. (Lond.), 2020, 40(10), 484-500.
[http://dx.doi.org/10.1002/cac2.12075] [PMID: 32805088]
[28]
Guo, Y.; Wei, L.; Zhou, Y.; Lu, N.; Tang, X.; Li, Z.; Wang, X. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic. Biol. Med., 2020, 146, 119-129.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.413] [PMID: 31669347]
[29]
Rittig, A.H.; Johansen, C.; Celis, P.; Odum, N.; Litman, T.; Woetmann, A.; Lindahl, L.M.; Iversen, L. Suppressed microRNA-195-5p ex-pression in mycosis fungoides promotes tumor cell proliferation. Exp. Dermatol., 2020.
[PMID: 32492224]
[30]
Chen, Q.; Fu, W.J.; Tang, X.P.; Wang, L.; Niu, Q.; Wang, S.; Lin, Y.; Cao, M.F.; Hu, R.; Wen, H.Y.; Wang, Y.; Zhang, X.; Yao, X.H. ADP-Ribosylation Factor Like GTPase 4C (ARL4C) augments stem-like traits of glioblastoma cells by upregulating ALDH1A3. J. Cancer, 2021, 12(3), 818-826.
[http://dx.doi.org/10.7150/jca.45052] [PMID: 33403039]
[31]
Dykes, S.S.; Gray, A.L.; Coleman, D.T.; Saxena, M.; Stephens, C.A.; Carroll, J.L.; Pruitt, K.; Cardelli, J.A. The Arf-like GTPase Arl8b is essential for three-dimensional invasive growth of prostate cancer in vitro and xenograft formation and growth in vivo. Oncotarget, 2016, 7(21), 31037-31052.
[http://dx.doi.org/10.18632/oncotarget.8832] [PMID: 27105540]
[32]
Ponnala, S.; Chetty, C.; Veeravalli, K.K.; Dinh, D.H.; Klopfenstein, J.D.; Rao, J.S. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells. Int. J. Oncol., 2012, 40(2), 509-518.
[PMID: 22076676]
[33]
Amaral, A.; Lourenço, B.; Marques, M.; Ramalho-Santos, J. Mitochondria functionality and sperm quality. Reproduction, 2013, 146(5), R163-R174.
[http://dx.doi.org/10.1530/REP-13-0178] [PMID: 23901129]
[34]
Chang, J.C.; Chang, H.S.; Wu, Y.C.; Cheng, W.L.; Lin, T.T.; Chang, H.J.; Kuo, S.J.; Chen, S.T.; Liu, C.S. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 30.
[http://dx.doi.org/10.1186/s13046-019-1028-z] [PMID: 30674338]
[35]
Jin, J.; Qiu, S.; Wang, P.; Liang, X.; Huang, F.; Wu, H.; Zhang, B.; Zhang, W.; Tian, X.; Xu, R.; Shi, H.; Wu, X. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J. Exp. Clin. Cancer Res., 2019, 38(1), 377.
[http://dx.doi.org/10.1186/s13046-019-1351-4] [PMID: 31455352]
[36]
Yang, K.; Huang, R.; Fujihira, H.; Suzuki, T.; Yan, N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J. Exp. Med., 2018, 215(10), 2600-2616.
[http://dx.doi.org/10.1084/jem.20180783] [PMID: 30135079]
[37]
Hsu, W.M.; Huang, C.C.; Lee, H.Y.; Wu, P.Y.; Wu, M.T.; Chuang, H.C.; Lin, L.L.; Chuang, J.H. MDA5 complements TLR3 in suppression of neuroblastoma. Oncotarget, 2015, 6(28), 24935-24946.
[http://dx.doi.org/10.18632/oncotarget.4511] [PMID: 26208481]
[38]
Inao, T.; Harashima, N.; Monma, H.; Okano, S.; Itakura, M.; Tanaka, T.; Tajima, Y.; Harada, M. Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer. Breast Cancer Res. Treat., 2012, 134(1), 89-100.
[http://dx.doi.org/10.1007/s10549-011-1930-3] [PMID: 22203435]
[39]
Fresquet, V.; Garcia-Barchino, M.J.; Larrayoz, M.J.; Celay, J.; Vicente, C.; Fernandez-Galilea, M.; Larrayoz, M.J.; Calasanz, M.J.; Panizo, C.; Junza, A.; Han, J.; Prior, C.; Fortes, P.; Pio, R.; Oyarzabal, J.; Martínez-Baztán, Á.; Paiva, B.; Moreno-Aliaga, M.J.; Odero, M.D.; Agirre, X.; Yanes, O.; Prósper, F.; Martinez-Climent, J.A. Endogenous retroelement activation by epigenetic therapy reverses the Warburg effect and elicits mitochondrial-mediated cancer cell death. Cancer Discov., 2020, 11(5), 1268-1285.
[PMID: 33355179]
[40]
Kitai, Y.; Takeuchi, O.; Kawasaki, T.; Ori, D.; Sueyoshi, T.; Murase, M.; Akira, S.; Kawai, T. Negative regulation of melanoma differentia-tion-associated gene 5 (MDA5)-dependent antiviral innate immune responses by Arf-like protein 5B. J. Biol. Chem., 2015, 290(2), 1269-1280.
[http://dx.doi.org/10.1074/jbc.M114.611053] [PMID: 25451939]
[41]
Zhang, W.; Wang, G.; Xu, Z.G.; Tu, H.; Hu, F.; Dai, J.; Chang, Y.; Chen, Y.; Lu, Y.; Zeng, H.; Cai, Z.; Han, F.; Xu, C.; Jin, G.; Sun, L.; Pan, B.S.; Lai, S.W.; Hsu, C.C.; Xu, J.; Chen, Z.Z.; Li, H.Y.; Seth, P.; Hu, J.; Zhang, X.; Li, H.; Lin, H.K. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell, 2019, 178(1), 176-189.e15.
[http://dx.doi.org/10.1016/j.cell.2019.05.003] [PMID: 31155231]
[42]
Zhu, L.; Li, Y.; Xie, X.; Zhou, X.; Gu, M.; Jie, Z.; Ko, C.J.; Gao, T.; Hernandez, B.E.; Cheng, X.; Sun, S.C. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat. Cell Biol., 2019, 21(12), 1604-1614.
[http://dx.doi.org/10.1038/s41556-019-0429-8] [PMID: 31792381]
[43]
Mao, H.; Sun, Y. Neddylation-independent activities of MLN4924. Adv. Exp. Med. Biol., 2020, 1217, 363-372.
[http://dx.doi.org/10.1007/978-981-15-1025-0_21] [PMID: 31898238]
[44]
Zhou, M.J.; Chen, F.Z.; Chen, H.C.; Wan, X.X.; Zhou, X.; Fang, Q.; Zhang, D.Z. ISG15 inhibits cancer cell growth and promotes apopto-sis. Int. J. Mol. Med., 2017, 39(2), 446-452.
[http://dx.doi.org/10.3892/ijmm.2016.2845] [PMID: 28035359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy