Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Arsenic Trioxide Restrains Lung Cancer Growth and Metastasis by Blocking the Calcineurin-NFAT Pathway by Upregulating DSCR1

Author(s): Meng-Hang Yang*, Yu-Sheng Wang, Xiao-Qian Shi, Xue-Wei Zhao* and Bing Li*

Volume 22, Issue 10, 2022

Published on: 18 August, 2022

Page: [854 - 864] Pages: 11

DOI: 10.2174/1568009622666220629154619

Price: $65

Abstract

Background: Anti-angiogenesis therapy mostly aimed at targeting vascular endothelial growth factor (VEGF) and its receptors have been widely applied to lung cancer. However, the improvement in the patient's overall survival remains dissatisfying. Previously, we demonstrated that arsenic trioxide (As2O3) exerts an anti-lung cancer effect through anti-angiogenesis, but the details of the mechanism in play remain unclear. Herein, we focused on the calcineurin-NFAT pathway, downstream of VEGF, and its endogenous inhibitor DSCR1.

Objective: To demonstrate the mechanism of As2O3 restraining lung cancer growth and metastasis by blocking the calcineurin-NFAT pathway by upregulating DSCR1.

Methods: We constructed xenografts and metastasis models based on wild-type (WT) and DSCR1 knockout (DSCR1-/-) mice, and carried out qPCR, Western blot, immunohistochemistry, in vivo imaging and calculated microvessel density to evaluate the effects of As2O3 on angiogenesis, tumor growth, metastasis, and the protein expression levels of DSCR1 and calcineurin-NFAT pathway-related molecules.

Results: As2O3 inhibited tumor growth and metastasis, reduced microvessel formation, and induced vascular lumen malformation in WT mice. At the protein level, As2O3 upregulated DSCR1, downregulated NFAT2 and its downstream molecules, but had no effect on calcineurin A. However, in DSCR1-/- mice, the above-mentioned effects of As2O3 were abolished.

Conclusion: As2O3 can suppress lung cancer growth and metastasis through anti-angiogenesis effects by blocking the calcineurin-NFAT pathway by upregulating DSCR1. The results shed light on the antitumor mechanism of As2O3 and are a step forward in the identification of As2O3 as a new drug in the treatment of lung cancer.

Keywords: Arsenic trioxide, lung cancer, angiogenesis, metastasis, calcineurin-NFAT, DSCR1.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countrie. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[3]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[4]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[7]
Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer, 2019, 19(1), 9-31.
[http://dx.doi.org/10.1038/s41568-018-0081-9] [PMID: 30532012]
[8]
Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet, 2016, 388(10043), 518-529.
[http://dx.doi.org/10.1016/S0140-6736(15)01088-0] [PMID: 26853587]
[9]
Jain, R.K. Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[10]
Janning, M.; Loges, S. Anti-angiogenics: Their value in lung cancer therapy. Oncol. Res. Treat., 2018, 41(4), 172-180.
[http://dx.doi.org/10.1159/000488119] [PMID: 29631257]
[11]
Gridelli, C.; Rossi, A.; Maione, P.; Rossi, E.; Castaldo, V.; Sacco, P.C.; Colantuoni, G. Vascular disrupting agents: A novel mechanism of action in the battle against non-small cell lung cancer. Oncologist, 2009, 14(6), 612-620.
[http://dx.doi.org/10.1634/theoncologist.2008-0287] [PMID: 19474164]
[12]
Scagliotti, G.; Govindan, R. Targeting angiogenesis with multitargeted tyrosine kinase inhibitors in the treatment of non-small cell lung cancer. Oncologist, 2010, 15(5), 436-446.
[http://dx.doi.org/10.1634/theoncologist.2009-0225] [PMID: 20427383]
[13]
Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med., 2006, 355(24), 2542-2550.
[http://dx.doi.org/10.1056/NEJMoa061884] [PMID: 17167137]
[14]
Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[15]
Gottfried, M.; Bennouna, J.; Bondarenko, I.; Douillard, J.Y.; Heigener, D.F.; Krzakowski, M.; Mellemgaard, A.; Novello, S.; Orlov, S.; Summers, Y.; von Pawel, J.; Stöhr, J.; Kaiser, R.; Reck, M. Efficacy and safety of nintedanib plus docetaxel in patients with advanced lung adenocarcinoma: Complementary and exploratory analyses of the phase III LUME-lung 1 study. Target. Oncol., 2017, 12(4), 475-485.
[http://dx.doi.org/10.1007/s11523-017-0517-2] [PMID: 28702806]
[16]
Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; Gann, C.N.; Barrueco, J.; Gaschler-Markefski, B.; Novello, S. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol., 2014, 15(2), 143-155.
[http://dx.doi.org/10.1016/S1470-2045(13)70586-2] [PMID: 24411639]
[17]
Rao, A.; Luo, C.; Hogan, P.G. Transcription factors of the NFAT family: Regulation and function. Annu. Rev. Immunol., 1997, 15(1), 707-747.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.707] [PMID: 9143705]
[18]
Buchholz, M.; Ellenrieder, V. An emerging role for Ca2+/calcine-urin/NFAT signaling in cancerogenesis. Cell Cycle, 2007, 6(1), 16-19.
[http://dx.doi.org/10.4161/cc.6.1.3650] [PMID: 17245111]
[19]
Mancini, M.; Toker, A. NFAT proteins: Emerging roles in cancer progression. Nat. Rev. Cancer, 2009, 9(11), 810-820.
[http://dx.doi.org/10.1038/nrc2735] [PMID: 19851316]
[20]
Gachet, S.; Ghysdael, J. Calcineurin/NFAT signaling in lymphoid malignancies. Gen. Physiol. Biophys., 2009, 28, 47-54.
[21]
Baek, K.H.; Zaslavsky, A.; Lynch, R.C.; Britt, C.; Okada, Y.; Siarey, R.J.; Lensch, M.W.; Park, I.H.; Yoon, S.S.; Minami, T.; Korenberg, J.R.; Folkman, J.; Daley, G.Q.; Aird, W.C.; Galdzicki, Z.; Ryeom, S. Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature, 2009, 459(7250), 1126-1130.
[http://dx.doi.org/10.1038/nature08062] [PMID: 19458618]
[22]
Yiu, G.K.; Toker, A. NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J. Biol. Chem., 2006, 281(18), 12210-12217.
[http://dx.doi.org/10.1074/jbc.M600184200] [PMID: 16505480]
[23]
Medyouf, H.; Ghysdael, J. The calcineurin/NFAT signaling pathway: A novel therapeutic target in leukemia and solid tumors. Cell Cycle, 2008, 7(3), 297-303.
[http://dx.doi.org/10.4161/cc.7.3.5357] [PMID: 18235236]
[24]
Fuentes, J.J.; Pritchard, M.A.; Planas, A.M.; Bosch, A.; Ferrer, I.; Estivill, X. A new human gene from the down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum. Mol. Genet., 1995, 4(10), 1935-1944.
[http://dx.doi.org/10.1093/hmg/4.10.1935] [PMID: 8595418]
[25]
Kingsbury, T.J.; Cunningham, K.W. A conserved family of calcineurin regulators. Genes Dev., 2000, 14(13), 1595-1604.
[http://dx.doi.org/10.1101/gad.14.13.1595] [PMID: 10887154]
[26]
Qin, J.J.; Nag, S.; Wang, W.; Zhou, J.; Zhang, W.D.; Wang, H.; Zhang, R. NFAT as cancer target: Mission possible? Biochim. Biophys. Acta, 2014, 1846(2), 297-311.
[PMID: 25072963]
[27]
Ma, N.; Shen, W.; Pang, H.; Zhang, N.; Shi, H.; Wang, J.; Zhang, H. The effect of RCAN1 on the biological behaviors of small cell lung cancer. Tumour Biol., 2017, 39(6), 1010428317700405.
[http://dx.doi.org/10.1177/1010428317700405] [PMID: 28631570]
[28]
Shin, J.; Lee, J.C.; Baek, K.H. A single extra copy of Dscr1 improves survival of mice developing spontaneous lung tumors through suppression of tumor angiogenesis. Cancer Lett., 2014, 342(1), 70-81.
[http://dx.doi.org/10.1016/j.canlet.2013.08.047] [PMID: 24051307]
[29]
Li, W.X.; Zheng, J.J.; Zhao, G.; Lyu, C.T.; Lu, W.Q. Overexpression of DSCR1 prevents proliferation and predicts favorable prognosis in colorectal cancer patients. World J. Surg. Oncol., 2021, 19(1), 100.
[http://dx.doi.org/10.1186/s12957-021-02212-7] [PMID: 33827593]
[30]
Wang, C.; Saji, M.; Justiniano, S.E.; Yusof, A.M.; Zhang, X.; Yu, L.; Fernández, S.; Wakely, P., Jr; La Perle, K.; Nakanishi, H.; Pohlman, N.; Ringel, M.D. RCAN1-4 is a thyroid cancer growth and metastasis suppressor. JCI Insight, 2017, 2(5), e90651.
[http://dx.doi.org/10.1172/jci.insight.90651] [PMID: 28289712]
[31]
Jin, H.; Wang, C.; Jin, G.; Ruan, H.; Gu, D.; Wei, L.; Wang, H.; Wang, N.; Arunachalam, E.; Zhang, Y.; Deng, X.; Yang, C.; Xiong, Y.; Feng, H.; Yao, M.; Fang, J.; Gu, J.; Cong, W.; Qin, W. Regulator of calcineurin 1 gene isoform 4, down-regulated in hepatocellular carcinoma, prevents proliferation, migration, and invasive activity of cancer cells and metastasis of orthotopic tumors by inhibiting nuclear translocation of NFAT1. Gastroenterology, 2017, 153(3), 799-811.e33.
[http://dx.doi.org/10.1053/j.gastro.2017.05.045] [PMID: 28583823]
[32]
Huang, B.; Jiang, Z.; Wu, S.; Wu, H.; Zhang, X.; Chen, J.; Zhao, F.; Liu, J. RCAN1.4 suppresses the osteosarcoma growth and metastasis via interfering with the calcineurin/NFAT signaling pathway. J. Bone Oncol., 2021, 30, 100383.
[http://dx.doi.org/10.1016/j.jbo.2021.100383] [PMID: 34336566]
[33]
Minami, T.; Jiang, S.; Schadler, K.; Suehiro, J.; Osawa, T.; Oike, Y.; Miura, M.; Naito, M.; Kodama, T.; Ryeom, S. The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases. Cell Rep., 2013, 4(4), 709-723.
[http://dx.doi.org/10.1016/j.celrep.2013.07.021] [PMID: 23954784]
[34]
Lo-Coco, F.; Cicconi, L.; Breccia, M. Current standard treatment of adult acute promyelocytic leukaemia. Br. J. Haematol., 2016, 172(6), 841-854.
[http://dx.doi.org/10.1111/bjh.13890] [PMID: 26687281]
[35]
Shi, X.Q.; Yang, M.H.; Huang, H.; Fang, Z.; Shi, Z.Q.; Tang, H.; Wang, X.Y.; Chen, Y.; Lv, Y.; Chen, D.; Li, B. Efficacy and mechanism of arsenic trioxide intrapleural injection in non-small cell lung cancer patients with malignant pleural effusions J. Intern. Med. Concepts. Pract, 2019, 14(2), 77-82.
[http://dx.doi.org/10.16138/j.1673-6087.2019.02.003]
[36]
Tan, X.M.; Xiu, Q.Y.; Li, B. Intracavitary administration of arsenic trioxide in treatment of lung cancer complicated with pleural effusion Acad. J. Second. Mil. Med. Univ, 2009, 30(7), 866-868.
[http://dx.doi.org/10.3724/SP.J.1008.2009.00866]
[37]
Xie, S.L.; Yang, M.H.; Chen, K.; Huang, H.; Zhao, X.W.; Zang, Y.S.; Li, B. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem. Biophys., 2015, 71(3), 1325-1333.
[http://dx.doi.org/10.1007/s12013-014-0352-3] [PMID: 25413961]
[38]
Yang, M.H.; Zang, Y.S.; Huang, H.; Chen, K.; Li, B.; Sun, G.Y.; Zhao, X.W. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets, 2014, 14(6), 557-566.
[http://dx.doi.org/10.2174/1568009614666140725090000] [PMID: 25088040]
[39]
Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. BioMed Res. Int., 2019, 2019, 4647252.
[http://dx.doi.org/10.1155/2019/4647252] [PMID: 31093499]
[40]
Ryeom, S.; Baek, K.H.; Rioth, M.J.; Lynch, R.C.; Zaslavsky, A.; Birsner, A.; Yoon, S.S.; McKeon, F. Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell, 2008, 13(5), 420-431.
[http://dx.doi.org/10.1016/j.ccr.2008.02.018] [PMID: 18455125]
[41]
Fu, Z.; Chen, X.; Guan, S.; Yan, Y.; Lin, H.; Hua, Z.C. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget, 2015, 6(23), 19469-19482.
[http://dx.doi.org/10.18632/oncotarget.3625] [PMID: 26254223]
[42]
Kim, A.; Ma, J.Y. Rhaponticin decreases the metastatic and angiogenic abilities of cancer cells via suppression of the HIF 1α pathway. Int. J. Oncol., 2018, 53(3), 1160-1170.
[http://dx.doi.org/10.3892/ijo.2018.4479] [PMID: 30015877]
[43]
Hwang-Bo, J.; Bae, M.G.; Park, J.H.; Chung, I.S. 3-O-Acetyloleanolic acid inhibits VEGF-A-induced lymphangiogenesis and lymph node metastasis in an oral cancer sentinel lymph node animal model. BMC Cancer, 2018, 18(1), 714.
[http://dx.doi.org/10.1186/s12885-018-4630-0] [PMID: 29976150]
[44]
Thurtle-Schmidt, D.M.; Lo, T.W. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochem. Mol. Biol. Educ., 2018, 46(2), 195-205.
[http://dx.doi.org/10.1002/bmb.21108] [PMID: 29381252]
[45]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy