Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Localized Nano-mediated Interleukin-12 Gene Therapy: Promising Candidate for Cancer Immunotherapeutics

Author(s): Jeaneen Venkatas and Moganavelli Singh*

Volume 22, Issue 10, 2022

Published on: 27 July, 2022

Page: [825 - 842] Pages: 18

DOI: 10.2174/1568009622666220609115109

Price: $65

Abstract

Background: Interleukin-12 (IL-12) has a pleiotropic nature that allows it to induce immune responses while reversing tumour-induced immunosuppression. Therefore, this paper discusses the application and potential of IL-12 as an antitumor immunotherapeutic agent, emphasizing its advantages and limitations and the need for and the development of localized IL-12 nano-delivery strategies in cancer immunotherapy.

Methods: Several databases from the National Centre for Biotechnology Information, WorldCat.org and the National Library of Medicine were searched for peer-reviewed studies to assess the potential of localized nano-mediated interleukin-12 gene therapy for cancer treatment.

Results: The literature search showed that IL-12 is a promising cancer immunotherapeutic agent. However, the systemic delivery of IL-12 was compromised by severe dose-limiting side effects, prompting the need for localized gene therapy to express the interleukin within the tumour microenvironment while minimizing systematic exposure. Although viral and non-viral gene therapy have demonstrated some efficacy in preclinical trials, the era of nanomedicine has opened novel avenues to improve therapeutic indices with minimal side effects. IL-12 activity can be further potentiated with other anticancer molecules that display immunostimulatory, autoantigenic and cytotoxic properties. Combination therapy has gained significant interest in the last decade as it increases gene therapy's therapeutic properties by decreasing the threshold for IL-12 efficacy and preventing systematic toxicity.

Conclusion: The findings of this article will provide researchers with the knowledge to create immunotherapeutic nanovectors which work synergistically with their therapeutic payload to enhance the therapeutic effect of the IL-12 gene to eliminate cancer cells.

Keywords: Cancer, gene therapy, immunotherapy, interleukin-12, nano-delivery, nanomedicine.

Graphical Abstract

[1]
Moodley, T.; Singh, M. Current stimuli-responsive mesoporous silica nanoparticles for cancer therapy. Pharmaceutics, 2021, 13(1), 71.
[http://dx.doi.org/10.3390/pharmaceutics13010071] [PMID: 33430390]
[2]
Gupta, S.; Kumar, P.; Das, B.C. HPV: Molecular pathways and targets. Curr. Probl. Cancer, 2018, 42(2), 161-174.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.03.003] [PMID: 29706467]
[3]
Venkatas, J.; Singh, M. Cervical cancer: A meta-analysis, therapy, and future of nanomedicine. Ecancermedicalscience, 2020, 14, 1111-1128.
[http://dx.doi.org/10.3332/ecancer.2020.1111]
[4]
Venkatas, J.; Singh, M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond.), 2021, 16(15), 1311-1328.
[http://dx.doi.org/10.2217/nnm-2021-0044] [PMID: 34027672]
[5]
Gorchakov, A.A.; Kulemzin, S.V.; Kochneva, G.V.; Taranin, A.V. Challenges and prospects of chimeric antigen receptor T-cell therapy for metastatic prostate cancer. Eur. Urol., 2020, 77(3), 299-308.
[http://dx.doi.org/10.1016/j.eururo.2019.08.014] [PMID: 31471138]
[6]
Cotzomi-Ortega, I.; Rosas-Cruz, A.; Ramírez-Ramírez, D.; Reyes-Leyva, J.; Rodriguez-Sosa, M.; Aguilar-Alonso, P.; Maycotte, P. Autoph-agy inhibition induces the secretion of macrophage migration inhibitory factor (MIF) with autocrine and paracrine effects on the promo-tion of malignancy in breast cancer. Biology (Basel), 2020, 9(1), 20.
[http://dx.doi.org/10.3390/biology9010020] [PMID: 31963754]
[7]
Marth, C.; Wieser, V.; Tsibulak, I.; Zeimet, A.G. Immunotherapy in ovarian cancer: Fake news or the real deal? Int. J. Gynecol. Cancer, 2019, 29(1), 201-211.
[http://dx.doi.org/10.1136/ijgc-2018-000011] [PMID: 30640705]
[8]
Lasek, W.; Zagożdżon, R.; Jakobisiak, M. Interleukin 12: Still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother., 2014, 63(5), 419-435.
[http://dx.doi.org/10.1007/s00262-014-1523-1] [PMID: 24514955]
[9]
Nguyen, H.M.; Guz-Montgomery, K.; Saha, D. Oncolytic virus encoding a master proinflammatory cytokine interleukin 12 in cancer im-munotherapy. Cells, 2020, 9(2), 400.
[http://dx.doi.org/10.3390/cells9020400] [PMID: 32050597]
[10]
Hernandez-Alcoceba, R.; Poutou, J.; Ballesteros-Briones, M.C.; Smerdou, C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy, 2016, 8(2), 179-198.
[http://dx.doi.org/10.2217/imt.15.109] [PMID: 26786809]
[11]
Vilalta, M.; Hughes, N.P.; Von Eyben, R.; Giaccia, A.J.; Graves, E.E. Patterns of vasculature in mouse models of lung cancer are depend-ent on location. Mol. Imaging Biol., 2017, 19(2), 215-224.
[http://dx.doi.org/10.1007/s11307-016-1010-5] [PMID: 27709411]
[12]
Mukhopadhyay, A.; Wright, J.; Shirley, S.; Canton, D.A.; Burkart, C.; Connolly, R.J.; Campbell, J.S.; Pierce, R.H. Characterization of ab-scopal effects of intratumoral electroporation-mediated IL-12 gene therapy. Gene Ther., 2019, 26(1-2), 1-15.
[http://dx.doi.org/10.1038/s41434-018-0044-5] [PMID: 30323352]
[13]
Guo, P.; Huang, J.; Moses, M.A. Cancer nanomedicines in an evolving oncology landscape. Trends Pharmacol. Sci., 2020, 41(10), 730-742.
[http://dx.doi.org/10.1016/j.tips.2020.08.001] [PMID: 32873407]
[14]
Du, X.; Wang, J.; Zhou, Q.; Zhang, L.; Wang, S.; Zhang, Z.; Yao, C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv., 2018, 25(1), 1516-1525.
[http://dx.doi.org/10.1080/10717544.2018.1480674] [PMID: 29968512]
[15]
Rezaee, M.; Oskuee, R.K.; Nassirli, H.; Malaekeh-Nikouei, B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J. Control. Release, 2016, 236, 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.023] [PMID: 27317365]
[16]
Singh, M.; Ariatti, M. A cationic cytofectin with long spacer mediates favourable transfection in transformed human epithelial cells. Int. J. Pharm., 2006, 309(1-2), 189-198.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.023] [PMID: 16384674]
[17]
Yang, Y.; Chawla, A.; Zhang, J.; Esa, A.; Jang, H.L.; Khademhosseini, A. Applications of nanotechnology for regenerative medicine: Healing tissues at the nanoscale. In: Principles of Regenerative Medicine, 3rd ed; Atala, A.; Lanza, R.; Mikos, A.J.; Nerem, R., Eds.; Elsevier Academic Press: Amsterdam, Netherlands,2019, pp. 485-504.
[http://dx.doi.org/10.1016/B978-0-12-809880-6.00029-1]
[18]
Singh, D.; Singh, M. Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro. Pharmaceutics, 2021, 13(3), 298.
[http://dx.doi.org/10.3390/pharmaceutics13030298] [PMID: 33668320]
[19]
Hewitt, S.L.; Bailey, D.; Zielinski, J.; Apte, A.; Musenge, F.; Karp, R.; Burke, S.; Garcon, F.; Mishra, A.; Gurumurthy, S.; Watkins, A.; Arnold, K.; Moynihan, J.; Clancy-Thompson, E.; Mulgrew, K.; Adjei, G.; Deschler, K.; Potz, D.; Moody, G.; Leinster, D.A.; Novick, S.; Sulikowski, M.; Bagnall, C.; Martin, P.; Lapointe, J.M.; Si, H.; Morehouse, C.; Sedic, M.; Wilkinson, R.W.; Herbst, R.; Frederick, J.P.; Luheshi, N. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res., 2020, 26(23), 6284-6298.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0472] [PMID: 32817076]
[20]
Teng, M.W.; Galon, J.; Fridman, W.H.; Smyth, M.J. From mice to humans: Developments in cancer immunoediting. J. Clin. Invest., 2015, 125(9), 3338-3346.
[http://dx.doi.org/10.1172/JCI80004] [PMID: 26241053]
[21]
Heeren, A.M.; van Luijk, I.F.; Lakeman, J.; Pocorni, N.; Kole, J.; de Menezes, R.X.; Kenter, G.G.; Bosse, T.; de Kroon, C.D.; Jordanova, E.S. Neoadjuvant cisplatin and paclitaxel modulate tumor-infiltrating T cells in patients with cervical cancer. Cancer Immunol. Immunother., 2019, 68(11), 1759-1767.
[http://dx.doi.org/10.1007/s00262-019-02412-x] [PMID: 31616965]
[22]
O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, 16(3), 151-167.
[http://dx.doi.org/10.1038/s41571-018-0142-8] [PMID: 30523282]
[23]
Kunimasa, K.; Goto, T. Immunosurveillance and immunoediting of lung cancer: Current perspectives and challenges. Int. J. Mol. Sci., 2020, 21(2), 597.
[http://dx.doi.org/10.3390/ijms21020597] [PMID: 31963413]
[24]
Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer, 2019, 120(1), 6-15.
[http://dx.doi.org/10.1038/s41416-018-0328-y] [PMID: 30413827]
[25]
Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenviron-ment. Cytokine, 2015, 74(2), 318-326.
[http://dx.doi.org/10.1016/j.cyto.2015.02.007] [PMID: 25742773]
[26]
Petty, A.J.; Yang, Y. Tumor-associated macrophages: Implications in cancer immunotherapy. Immunotherapy, 2017, 9(3), 289-302.
[http://dx.doi.org/10.2217/imt-2016-0135] [PMID: 28231720]
[27]
Luo, Q.; Zhang, L.; Luo, C.; Jiang, M. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy. Cancer Lett., 2019, 454, 191-203.
[http://dx.doi.org/10.1016/j.canlet.2019.04.017] [PMID: 30998963]
[28]
Li, J.; Huang, L.; Zhao, H.; Yan, Y.; Lu, J. The role of interleukins in colorectal cancer. Int. J. Biol. Sci., 2020, 16(13), 2323-2339.
[http://dx.doi.org/10.7150/ijbs.46651] [PMID: 32760201]
[29]
Liu, X.; Li, Y.; Sun, X.; Muftuoglu, Y.; Wang, B.; Yu, T.; Hu, Y.; Ma, L.; Xiang, M.; Guo, G.; You, C.; Gao, X.; Wei, Y. Powerful anti-colon cancer effect of modified nanoparticle-mediated IL-15 immunogene therapy through activation of the host immune system. Theranostics, 2018, 8(13), 3490-3503.
[http://dx.doi.org/10.7150/thno.24157] [PMID: 30026861]
[30]
Dimberg, J.; Shamoun, L.; Landerholm, K.; Andersson, R.E.; Kolodziej, B.; Wågsäter, D. Genetic variants of the IL2 gene related to risk and survival in patients with colorectal cancer. Anticancer Res., 2019, 39(9), 4933-4940.
[http://dx.doi.org/10.21873/anticanres.13681] [PMID: 31519598]
[31]
Li, J.; Lin, W.; Chen, H.; Xu, Z.; Ye, Y.; Chen, M. Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immuno-therapy. Cell. Immunol., 2020, 349, 104042.
[http://dx.doi.org/10.1016/j.cellimm.2020.104042] [PMID: 32061376]
[32]
Wang, C.; Lu, Y.; Chen, L.; Gao, T.; Yang, Q.; Zhu, C.; Chen, Y. Th9 cells are subjected to PD-1/PD-L1-mediated inhibition and are capa-ble of promoting CD8 T cell expansion through IL-9R in colorectal cancer. Int. Immunopharmacol., 2020, 78, 106019.
[http://dx.doi.org/10.1016/j.intimp.2019.106019] [PMID: 31776089]
[33]
Paquette, M.; Vilera-Perez, L.G.; Beaudoin, S.; Ekindi-Ndongo, N.; Boudreaut, P.L.; Bonin, M.A.; Battista, M.C.; Bentourkia, M.; Lopez, A.F.; Lecomte, R.; Marsault, E.; Guérin, B.; Sabbagh, R.; Leyton, J.V. Targeting IL-5Rα with antibody-conjugates reveals a strategy for im-aging and therapy for invasive bladder cancer. OncoImmunology, 2017, 6(10), e1331195.
[http://dx.doi.org/10.1080/2162402X.2017.1331195] [PMID: 29123949]
[34]
Paul, S.; Pearlman, A.H.; Douglass, J.; Mog, B.J.; Hsiue, E.H.C.; Hwang, M.S.; DiNapoli, S.R.; Konig, M.F.; Brown, P.A.; Wright, K.M.; Sur, S. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci. Transl. Med., 2021, 13, 595.
[http://dx.doi.org/10.1126/scitranslmed.abd3595]
[35]
Hasegawa, H.; Mizoguchi, I.; Chiba, Y.; Ohashi, M.; Xu, M.; Yoshimoto, T. Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine family. Front. Immunol., 2016, 7, 479.
[http://dx.doi.org/10.3389/fimmu.2016.00479] [PMID: 27867385]
[36]
Fabbi, M.; Carbotti, G.; Ferrini, S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm., 2017, 2017, 3958069.
[http://dx.doi.org/10.1155/2017/3958069] [PMID: 28255204]
[37]
Pylayeva-Gupta, Y. Molecular pathways: Interleukin-35 in autoimmunity and cancer. Clin. Cancer Res., 2016, 22(20), 4973-4978.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0743] [PMID: 27582486]
[38]
Yan, J.; Smyth, M.J.; Teng, M.W.L. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb. Perspect. Biol., 2018, 10, a028530.
[39]
Chiocca, E.A.; John, S.Y.; Lukas, R.V.; Solomon, I.H.; Ligon, K.L.; Nakashima, H.; Triggs, D.A.; Reardon, D.A.; Wen, P.; Stopa, B.M.; Naik, A. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci. Transl. Med., 2019, 11, 680.
[http://dx.doi.org/10.1126/scitranslmed.aaw5680]
[40]
Mittal, D.; Vijayan, D.; Putz, E.M.; Aguilera, A.R.; Markey, K.A.; Straube, J.; Kazakoff, S.; Nutt, S.L.; Takeda, K.; Hill, G.R.; Waddell, N.; Smyth, M.J. Interleukin-12 from CD103+ Batf3-dependent dendritic cells required for NK-cell suppression of metastasis. Cancer Immunol. Res., 2017, 5(12), 1098-1108.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0341] [PMID: 29070650]
[41]
Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The immunobiology of the interleukin-12 family: Room for discovery. Immunity, 2019, 50(4), 851-870.
[http://dx.doi.org/10.1016/j.immuni.2019.03.011] [PMID: 30995503]
[42]
Koneru, M.; Purdon, T.J.; Spriggs, D.; Koneru, S.; Brentjens, R.J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. OncoImmunology, 2015, 4(3), e994446.
[http://dx.doi.org/10.4161/2162402X.2014.994446] [PMID: 25949921]
[43]
Tugues, S.; Burkhard, S.H.; Ohs, I.; Vrohlings, M.; Nussbaum, K.; Vom Berg, J.; Kulig, P.; Becher, B. New insights into IL-12-mediated tumor suppression. Cell Death Differ., 2015, 22(2), 237-246.
[http://dx.doi.org/10.1038/cdd.2014.134] [PMID: 25190142]
[44]
Guo, Y.; Cao, W.; Zhu, Y. Immunoregulatory functions of the IL-12 family of cytokines in antiviral systems. Viruses, 2019, 11(9), 772.
[http://dx.doi.org/10.3390/v11090772] [PMID: 31443406]
[45]
Li, H.; Yang, B.; Huang, J.; Lin, Y.; Xiang, T.; Wan, J.; Li, H.; Chouaib, S.; Ren, G. Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells. Oncotarget, 2015, 6(30), 29637-29650.
[http://dx.doi.org/10.18632/oncotarget.4936] [PMID: 26359357]
[46]
Hu, Q.; Shang, L.; Wang, M.; Tu, K.; Hu, M.; Yu, Y.; Xu, M.; Kong, L.; Guo, Y.; Zhang, Z. Co-Delivery of paclitaxel and interleukin-12 regulating tumor microenvironment for cancer immunochemotherapy. Adv. Healthc. Mater., 2020, 9(10), e1901858.
[http://dx.doi.org/10.1002/adhm.201901858] [PMID: 32348030]
[47]
Netchiporouk, E.; Litvinov, I.V.; Moreau, L.; Gilbert, M.; Sasseville, D.; Duvic, M. Deregulation in STAT signaling is important for cuta-neous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle, 2014, 13(21), 3331-3335.
[http://dx.doi.org/10.4161/15384101.2014.965061] [PMID: 25485578]
[48]
Powell, M.D.; Read, K.A.; Sreekumar, B.K.; Jones, D.M.; Oestreich, K.J. IL-12 signaling drives the differentiation and function of a TH1-derived TFH1-like cell population. Sci. Rep., 2019, 9(1), 13991.
[http://dx.doi.org/10.1038/s41598-019-50614-1] [PMID: 31570752]
[49]
Halpert, M.M.; Konduri, V.; Liang, D.; Chen, Y.; Wing, J.B.; Paust, S.; Levitt, J.M.; Decker, W.K. Dendritic cell-secreted cytotoxic T-lymphocyte-associated protein-4 regulates the T-cell response by downmodulating bystander surface B7. Stem Cells Dev., 2016, 25(10), 774-787.
[http://dx.doi.org/10.1089/scd.2016.0009] [PMID: 26979751]
[50]
Gorczynski, R.M.; Zhu, F. Checkpoint blockade in solid tumors and B-cell malignancies, with special consideration of the role of CD200. Cancer Manag. Res., 2017, 9, 601-609.
[http://dx.doi.org/10.2147/CMAR.S147326] [PMID: 29180896]
[51]
Voest, E.E.; Kenyon, B.M.; O’Reilly, M.S.; Truitt, G.; D’Amato, R.J.; Folkman, J. Inhibition of angiogenesis in vivo by interleukin 12. J. Natl. Cancer Inst., 1995, 87(8), 581-586.
[http://dx.doi.org/10.1093/jnci/87.8.581] [PMID: 7538593]
[52]
Ríos-Navarro, C.; de Pablo, C.; Collado-Diaz, V.; Orden, S.; Blas-Garcia, A.; Martínez-Cuesta, M.Á.; Esplugues, J.V.; Alvarez, A. Differ-ential effects of anti-TNF-α and anti-IL-12/23 agents on human leukocyte-endothelial cell interactions. Eur. J. Pharmacol., 2015, 765, 355-365.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.054] [PMID: 26344475]
[53]
Garris, C.S.; Arlauckas, S.P.; Kohler, R.H.; Trefny, M.P.; Garren, S.; Piot, C.; Engblom, C.; Pfirschke, C.; Siwicki, M.; Gungabeesoon, J.; Freeman, G.J.; Warren, S.E.; Ong, S.; Browning, E.; Twitty, C.G.; Pierce, R.H.; Le, M.H.; Algazi, A.P.; Daud, A.I.; Pai, S.I.; Zippelius, A.; Weissleder, R.; Pittet, M.J. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity, 2018, 49(6), 1148-1161.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.09.024] [PMID: 30552023]
[54]
Ito, H.; Ando, T.; Ogiso, H.; Arioka, Y.; Seishima, M. Inhibition of induced nitric oxide synthase enhances the anti-tumor effects on can-cer immunotherapy using TLR7 agonist in mice. Cancer Immunol. Immunother., 2015, 64(4), 429-436.
[http://dx.doi.org/10.1007/s00262-014-1644-6] [PMID: 25567751]
[55]
Atkins, M.B.; Robertson, M.J.; Gordon, M.; Lotze, M.T.; DeCoste, M.; DuBois, J.S.; Ritz, J.; Sandler, A.B.; Edington, H.D.; Garzone, P.D.; Mier, J.W.; Canning, C.M.; Battiato, L.; Tahara, H.; Sherman, M.L. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res., 1997, 3(3), 409-417.
[PMID: 9815699]
[56]
Bajetta, E.; Del Vecchio, M.; Mortarini, R.; Nadeau, R.; Rakhit, A.; Rimassa, L.; Fowst, C.; Borri, A.; Anichini, A.; Parmiani, G. Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin. Cancer Res., 1998, 4(1), 75-85.
[PMID: 9516955]
[57]
Hurteau, J.A.; Blessing, J.A.; DeCesare, S.L.; Creasman, W.T. Evaluation of recombinant human interleukin-12 in patients with recurrent or refractory ovarian cancer: A gynecologic oncology group study. Gynecol. Oncol., 2001, 82(1), 7-10.
[http://dx.doi.org/10.1006/gyno.2001.6255] [PMID: 11426954]
[58]
Motzer, R.J.; Rakhit, A.; Thompson, J.A.; Nemunaitis, J.; Murphy, B.A.; Ellerhorst, J.; Schwartz, L.H.; Berg, W.J.; Bukowski, R.M. Ran-domized multicenter phase II trial of subcutaneous recombinant human interleukin-12 versus interferon-alpha 2a for patients with ad-vanced renal cell carcinoma. J. Interferon Cytokine Res., 2001, 21(4), 257-263.
[http://dx.doi.org/10.1089/107999001750169934] [PMID: 11359657]
[59]
Wadler, S.; Levy, D.; Frederickson, H.L.; Falkson, C.I.; Wang, Y.; Weller, E.; Burk, R.; Ho, G.; Kadish, A.S. A phase II trial of interleukin-12 in patients with advanced cervical cancer: Clinical and immunologic correlates. Eastern Cooperative Oncology Group study E1E96. Gynecol. Oncol., 2004, 92(3), 957-964.
[http://dx.doi.org/10.1016/j.ygyno.2003.12.022] [PMID: 14984966]
[60]
Younes, A.; Pro, B.; Robertson, M.J.; Flinn, I.W.; Romaguera, J.E.; Hagemeister, F.; Dang, N.H.; Fiumara, P.; Loyer, E.M.; Cabanillas, F.F.; McLaughlin, P.W.; Rodriguez, M.A.; Samaniego, F. Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin. Cancer Res., 2004, 10(16), 5432-5438.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0540] [PMID: 15328181]
[61]
Lacy, M.Q.; Jacobus, S.; Blood, E.A.; Kay, N.E.; Rajkumar, S.V.; Greipp, P.R. Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): A trial of the Eastern Cooperative Oncology Group. Leuk. Res., 2009, 33(11), 1485-1489.
[http://dx.doi.org/10.1016/j.leukres.2009.01.020] [PMID: 19243818]
[62]
Bekaii-Saab, T.S.; Roda, J.M.; Guenterberg, K.D.; Ramaswamy, B.; Young, D.C.; Ferketich, A.K.; Lamb, T.A.; Grever, M.R.; Shapiro, C.L.; Carson, W.E. III A phase I trial of paclitaxel and trastuzumab in combination with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol. Cancer Ther., 2009, 8(11), 2983-2991.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0820] [PMID: 19887543]
[63]
Alvarez, R.D.; Sill, M.W.; Davidson, S.A.; Muller, C.Y.; Bender, D.P.; DeBernardo, R.L.; Behbakht, K.; Huh, W.K. A phase II trial of in-traperitoneal EGEN-001, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: A gynecologic oncology group study. Gynecol. Oncol., 2014, 133(3), 433-438.
[http://dx.doi.org/10.1016/j.ygyno.2014.03.571] [PMID: 24708919]
[64]
Almeida, J.L.; Dakic, A.; Kindig, K.; Kone, M.; Letham, D.L.D.; Langdon, S.; Peat, R.; Holding-Pillai, J.; Hall, E.M.; Ladd, M.; Shaffer, M.D.; Berg, H.; Li, J.; Wigger, G.; Lund, S.; Steffen, C.R.; Fransway, B.B.; Geraghty, B.; Natoli, M.; Bauer, B.; Gollin, S.M.; Lewis, D.W.; Reid, Y. Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines. PLoS One, 2019, 14(6), e0218412.
[http://dx.doi.org/10.1371/journal.pone.0218412] [PMID: 31220119]
[65]
Chyuan, I.T.; Lai, J.H. New insights into the IL-12 and IL-23: From a molecular basis to clinical application in immune-mediated inflam-mation and cancers. Biochem. Pharmacol., 2020, 175, 113928.
[http://dx.doi.org/10.1016/j.bcp.2020.113928] [PMID: 32217101]
[66]
Men, K.; Huang, R.; Zhang, X.; Zhang, R.; Zhang, Y.; He, M.; Tong, R.; Yang, L.; Wei, Y.; Duan, X. Local and systemic delivery of inter-leukin-12 gene by cationic micelles for cancer immunogene therapy. J. Biomed. Nanotechnol., 2018, 14(10), 1719-1730.
[http://dx.doi.org/10.1166/jbn.2018.2593] [PMID: 30041719]
[67]
Yang, S.X.; Wei, W.S.; Ouyan, Q.W.; Jiang, Q.H.; Zou, Y.F.; Qu, W.; Tu, J.H.; Zhou, Z.B.; Ding, H.L.; Xie, C.W.; Lei, Q.M.; Zhong, C.R. Interleukin-12 activated CD8+ T cells induces apoptosis in breast cancer cells and reduces tumor growth. Biomed. Pharmacother., 2016, 84, 1466-1471.
[http://dx.doi.org/10.1016/j.biopha.2016.10.046] [PMID: 27810342]
[68]
Núñez-Marrero, A. Assessing the role of the interleukin-12/STAT4 Axis in breast cancer by a bioinformatics approach. Int. J. Sci. Basic Appl. Res., 2019, 48(2), 38-52.
[PMID: 32467824]
[69]
Núñez-Marrero, A.; Arroyo, N.; Godoy, L.; Rahman, M.Z.; Matta, J.L.; Dutil, J. SNPs in the interleukin-12 signaling pathway are associat-ed with breast cancer risk in Puerto Rican women. Oncotarget, 2020, 11(37), 3420-3431.
[http://dx.doi.org/10.18632/oncotarget.27707] [PMID: 32973967]
[70]
Peralta-Zaragoza, O.; Bermúdez-Morales, V.H.; Pérez-Plasencia, C.; Salazar-León, J.; Gómez-Cerón, C.; Madrid-Marina, V. Targeted treatments for cervical cancer: A review. OncoTargets Ther., 2012, 5, 315-328.
[http://dx.doi.org/10.2147/OTT.S25123] [PMID: 23144564]
[71]
Wang, H.L.; Xu, H.; Lu, W.H.; Zhu, L.; Yu, Y.H.; Hong, F.Z. In vitro and in vivo evaluations of human papillomavirus type 16 (HPV16)-derived peptide-loaded dendritic cells (DCs) with a CpG oligodeoxynucleotide (CpG-ODN) adjuvant as tumor vaccines for immunothera-py of cervical cancer. Arch. Gynecol. Obstet., 2014, 289(1), 155-162.
[http://dx.doi.org/10.1007/s00404-013-2938-1] [PMID: 23912529]
[72]
Markel, J.E.; Lacinski, R.A.; Lindsey, B.A. Nanocapsule delivery of IL-12. Adv. Exp. Med. Biol., 2020, 1257, 155-168.
[http://dx.doi.org/10.1007/978-3-030-43032-0_13] [PMID: 32483738]
[73]
García Paz, F.; Madrid Marina, V.; Morales Ortega, A.; Santander González, A.; Peralta Zaragoza, O.; Burguete García, A.; Torres Poveda, K.; Moreno, J.; Alcocer González, J.; Hernandez Marquez, E.; Bermúdez Morales, V. The relationship between the antitumor effect of the IL-12 gene therapy and the expression of Th1 cytokines in an HPV16-positive murine tumor model. Mediators Inflamm., 2014, 2014, 510846.
[http://dx.doi.org/10.1155/2014/510846] [PMID: 24808638]
[74]
Waldmann, T.A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol., 2018, 10, a028472.
[http://dx.doi.org/10.1101/cshperspect.a028472]
[75]
Wang, P.; Li, X.; Wang, J.; Gao, D.; Li, Y.; Li, H.; Chu, Y.; Zhang, Z.; Liu, H.; Jiang, G.; Cheng, Z.; Wang, S.; Dong, J.; Feng, B.; Chard, L.S.; Lemoine, N.R.; Wang, Y. Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat. Commun., 2017, 8(1), 1395.
[http://dx.doi.org/10.1038/s41467-017-01385-8] [PMID: 29123084]
[76]
Gajewski, T.F.; Woo, S.R.; Zha, Y.; Spaapen, R.; Zheng, Y.; Corrales, L.; Spranger, S. Cancer immunotherapy strategies based on over-coming barriers within the tumor microenvironment. Curr. Opin. Immunol., 2013, 25(2), 268-276.
[http://dx.doi.org/10.1016/j.coi.2013.02.009] [PMID: 23579075]
[77]
Lyerly, H.K.; Osada, T.; Hartman, Z.C. Right time and place for IL12: Targeted delivery stimulates immune therapy. Clin. Cancer Res., 2019, 25(1), 9-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2819] [PMID: 30377197]
[78]
Vo, J.L.; Yang, L.; Kurtz, S.L.; Smith, S.G.; Koppolu, B.P.; Ravindranathan, S.; Zaharoff, D.A. Neoadjuvant immunotherapy with chitosan and interleukin-12 to control breast cancer metastasis. OncoImmunology, 2015, 3(12), e968001.
[http://dx.doi.org/10.4161/21624011.2014.968001] [PMID: 25964864]
[79]
Smith, S.G.; Koppolu, B.P.; Ravindranathan, S.; Kurtz, S.L.; Yang, L.; Katz, M.D.; Zaharoff, D.A. Intravesical chitosan/interleukin-12 immunotherapy induces tumor-specific systemic immunity against murine bladder cancer. Cancer Immunol. Immunother., 2015, 64(6), 689-696.
[http://dx.doi.org/10.1007/s00262-015-1672-x] [PMID: 25754122]
[80]
Nguyen, K.G.; Vrabel, M.R.; Mantooth, S.M.; Hopkins, J.J.; Wagner, E.S.; Gabaldon, T.A.; Zaharoff, D.A. A Localized interleukin-12 for cancer immunotherapy. Front. Immunol., 2020, 11, 575597.
[http://dx.doi.org/10.3389/fimmu.2020.575597] [PMID: 33178203]
[81]
Lin, L.; Rayman, P.; Pavicic, P.G., Jr; Tannenbaum, C.; Hamilton, T.; Montero, A.; Ko, J.; Gastman, B.; Finke, J.; Ernstoff, M.; Diaz-Montero, C.M. Ex vivo conditioning with IL-12 protects tumor-infiltrating CD8+ T cells from negative regulation by local IFN-γ. Cancer Immunol. Immunother., 2019, 68(3), 395-405.
[http://dx.doi.org/10.1007/s00262-018-2280-3] [PMID: 30552459]
[82]
Anguela, X.M.; High, K.A. Entering the modern era of gene therapy. Annu. Rev. Med., 2019, 70(1), 273-288.
[http://dx.doi.org/10.1146/annurev-med-012017-043332] [PMID: 30477394]
[83]
Zou, Y.; Zheng, M.; Yang, W.; Meng, F.; Miyata, K.; Kim, H.J.; Kataoka, K.; Zhong, Z. Virus‐mimicking chimaeric polymersomes boost targeted cancer siRNA therapy in vivo. Adv. Mater., 2017, 29(42), 1703285.
[http://dx.doi.org/10.1002/adma.201703285] [PMID: 28961339]
[84]
Lambricht, L.; Lopes, A.; Kos, S.; Sersa, G.; Préat, V.; Vandermeulen, G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin. Drug Deliv., 2016, 13(2), 295-310.
[http://dx.doi.org/10.1517/17425247.2016.1121990] [PMID: 26578324]
[85]
Daniels, A.N.; Singh, M. Sterically stabilized siRNA:gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine (Lond.), 2019, 14(11), 1387-1401.
[http://dx.doi.org/10.2217/nnm-2018-0462] [PMID: 31166141]
[86]
Maiyo, F.; Singh, M. Folate-targeted mRNA delivery using chitosan-functionalized selenium nanoparticles: Potential in cancer immuno-therapy. Pharmaceuticals (Basel), 2019, 12(4), 164.
[http://dx.doi.org/10.3390/ph12040164] [PMID: 31690043]
[87]
Wang, S.; Chen, X. Identification of potential biomarkers in cervical cancer with combined public mRNA and miRNA expression microar-ray data analysis. Oncol. Lett., 2018, 16(4), 5200-5208.
[http://dx.doi.org/10.3892/ol.2018.9323] [PMID: 30250588]
[88]
Tahamtan, A.; Barati, M.; Tabarraei, A.; Mohebbi, S.R.; Shirian, S.; Gorji, A.; Ghaemi, A. Antitumor immunity induced by genetic immun-ization with Chitosan nanoparticle formulated adjuvanted for HPV-16 E7 DNA vaccine. Iran. J. Immunol., 2018, 15(4), 269-280.
[http://dx.doi.org/10.22034/IJI.2018.39396] [PMID: 30593741]
[89]
Pishavar, E.; Oroojalian, F.; Ramezani, M.; Hashemi, M. Cholesterol-conjugated PEGylated PAMAM as an efficient nanocarrier for plas-mid encoding interleukin-12 immunogene delivery toward colon cancer cells. Biotechnol. Prog., 2020, 36(3), e2952.
[http://dx.doi.org/10.1002/btpr.2952] [PMID: 31846226]
[90]
Bhatia, S.; Longino, N.V.; Miller, N.J.; Kulikauskas, R.; Iyer, J.G.; Ibrani, D.; Blom, A.; Byrd, D.R.; Parvathaneni, U.; Twitty, C.G.; Camp-bell, J.S.; Le, M.H.; Gargosky, S.; Pierce, R.H.; Heller, R.; Daud, A.I.; Nghiem, P. Intratumoral delivery of plasmid IL12 via electro-poration leads to regression of injected and noninjected tumors in Merkel cell carcinoma. Clin. Cancer Res., 2020, 26(3), 598-607.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0972] [PMID: 31582519]
[91]
Dehshahri, A.; Sadeghpour, H.; Mohazzabieh, E.; Saatchi Avval, S.; Mohammadinejad, R. Targeted double domain nanoplex based on galactosylated polyethylenimine enhanced the delivery of IL-12 plasmid. Biotechnol. Prog., 2020, 36(5), e3002.
[http://dx.doi.org/10.1002/btpr.3002] [PMID: 32281252]
[92]
Greaney, S.K.; Algazi, A.P.; Tsai, K.K.; Takamura, K.T.; Chen, L.; Twitty, C.G.; Zhang, L.; Paciorek, A.; Pierce, R.H.; Le, M.H.; Daud, A.I.; Fong, L. Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol. Res., 2020, 8(2), 246-254.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0359] [PMID: 31852717]
[93]
Mbatha, L.S.; Maiyo, F.; Daniels, A.; Singh, M. Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics, 2021, 13(6), 900.
[http://dx.doi.org/10.3390/pharmaceutics13060900] [PMID: 34204271]
[94]
Jain, R.; Frederick, J.P.; Huang, E.Y.; Burke, K.E.; Mauger, D.M.; Andrianova, E.A.; Farlow, S.J.; Siddiqui, S.; Pimentel, J.; Cheung-Ong, K.; McKinney, K.M.; Köhrer, C.; Moore, M.J.; Chakraborty, T. M MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther., 2018, 28(5), 285-296.
[http://dx.doi.org/10.1089/nat.2018.0734] [PMID: 30088967]
[95]
Weng, Y.; Li, C.; Yang, T.; Hu, B.; Zhang, M.; Guo, S.; Xiao, H.; Liang, X.J.; Huang, Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv., 2020, 40, 107534.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107534] [PMID: 32088327]
[96]
Kaczmarek, J.C.; Kowalski, P.S.; Anderson, D.G. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med., 2017, 9(1), 60.
[http://dx.doi.org/10.1186/s13073-017-0450-0] [PMID: 28655327]
[97]
Lundstrom, K. Latest development on RNA-based drugs and vaccines. Future Sci. OA, 2018, 4(5), FSO300.
[http://dx.doi.org/10.4155/fsoa-2017-0151] [PMID: 29796303]
[98]
Xiong, Q.; Lee, G.Y.; Ding, J.; Li, W.; Shi, J. Biomedical applications of mRNA nanomedicine. Nano Res., 2018, 11(10), 5281-5309.
[http://dx.doi.org/10.1007/s12274-018-2146-1] [PMID: 31007865]
[99]
Barton, K.N.; Siddiqui, F.; Pompa, R.; Freytag, S.O.; Khan, G.; Dobrosotskaya, I.; Ajlouni, M.; Zhang, Y.; Cheng, J.; Movsas, B.; Kwon, D. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic can-cer. Mol. Ther. Oncolytics, 2020, 20, 94-104.
[http://dx.doi.org/10.1016/j.omto.2020.11.006] [PMID: 33575474]
[100]
Chiu, T.L.; Wang, M.J.; Su, C.C. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J. Biomed. Sci., 2012, 19(1), 45.
[http://dx.doi.org/10.1186/1423-0127-19-45] [PMID: 22520731]
[101]
Thomas, E.D.; Meza-Perez, S.; Bevis, K.S.; Randall, T.D.; Gillespie, G.Y.; Langford, C.; Alvarez, R.D. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice. J. Ovarian Res., 2016, 9(1), 70.
[http://dx.doi.org/10.1186/s13048-016-0282-3] [PMID: 27784340]
[102]
Sewbalas, A.; Islam, R.; van Otterlo, W.A.L.; de Koning, C.B.; Singh, M.; Arbuthnot, P.; Ariatti, M. Enhancement of transfection activity in HEK293 cells by lipoplexes containing cholesteryl nitrogen-pivoted aza-crown ethers. Med. Chem. Res., 2013, 22(6), 2561-2569.
[http://dx.doi.org/10.1007/s00044-012-0252-2]
[103]
Fernandez-Sendin, M.; Tenesaca, S.; Vasquez, M.; Aranda, F.; Berraondo, P. Production and use of adeno-associated virus vectors as tools for cancer immunotherapy. Methods Enzymol., 2020, 635, 185-203.
[http://dx.doi.org/10.1016/bs.mie.2019.05.007] [PMID: 32122545]
[104]
Akinyelu, A.; Oladimeji, O.; Singh, M. Lactobionic acid-chitosan functionalized gold coated poly(lactide-co-glycolide) nanoparticles for hepatocyte targeted gene delivery. Adv. Nat. Sci. Nanosci. Nanotechnol., 2020, 11(4), 045017.
[http://dx.doi.org/10.1088/2043-6254/abc9c3]
[105]
Pahle, J.; Walther, W. Vectors and strategies for nonviral cancer gene therapy. Expert Opin. Biol. Ther., 2016, 16(4), 443-461.
[http://dx.doi.org/10.1517/14712598.2016.1134480] [PMID: 26761200]
[106]
Balcomb, B.; Singh, M.; Singh, S. Synthesis and characterization of layered double hydroxides and their potential as nonviral gene deliv-ery vehicles. ChemistryOpen, 2015, 4(2), 137-145.
[http://dx.doi.org/10.1002/open.201402074] [PMID: 25969811]
[107]
Lin, G.; Li, L.; Panwar, N.; Wang, J.; Tjin, S.C.; Wang, X.; Yong, K.T. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord. Chem. Rev., 2018, 374, 133-152.
[http://dx.doi.org/10.1016/j.ccr.2018.07.001]
[108]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2018, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[109]
Jagaran, K.; Singh, M. Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. Int. J. Mol. Sci., 2021, 22(16), 9082.
[http://dx.doi.org/10.3390/ijms22169082] [PMID: 34445784]
[110]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol., 2019, 9, 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[111]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.060] [PMID: 28057464]
[112]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[113]
Carrasco, M.J.; Alishetty, S.; Alameh, M.G.; Said, H.; Wright, L.; Paige, M.; Soliman, O.; Weissman, D.; Cleveland, T.E., IV; Grishaev, A.; Buschmann, M.D. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascu-lar administration. Commun. Biol., 2021, 4(1), 956.
[http://dx.doi.org/10.1038/s42003-021-02441-2] [PMID: 34381159]
[114]
Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Let’s talk about lipid nanoparticles. Nat. Rev. Mater., 2021, 6(2), 99.
[http://dx.doi.org/10.1038/s41578-021-00281-4]
[115]
Nejati, K.; Dadashpour, M.; Gharibi, T.; Mellatyar, H.; Akbarzadeh, A. Biomedical applications of functionalized gold nanoparticles: A review. J. Cluster Sci., 2021, 2021(1), 1-16.
[http://dx.doi.org/10.1007/s10876-020-01955-9]
[116]
Paris, J.L.; Baeza, A.; Vallet-Regí, M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inor-ganic nanoparticles for delivery of cancer therapeutics. Expert Opin. Drug Deliv., 2019, 16(10), 1095-1112.
[http://dx.doi.org/10.1080/17425247.2019.1662786] [PMID: 31469003]
[117]
Singh, P.; Srivastava, S.; Singh, S.K. Nanosilica: Recent progress in synthesis, functionalization, biocompatibility, and biomedical applica-tions. ACS Biomater. Sci. Eng., 2019, 5(10), 4882-4898.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00464] [PMID: 33455238]
[118]
Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr. Drug Metab., 2019, 20(6), 416-429.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[119]
Juárez, A.A.S.; Alvarado, E.M.; Gallegos, E.R. Cell death induced by photodynamic therapy with the conjugate of gold nanoparticles-PpIX in HeLa cell line.AIP Conf. Proc 2019 209, 4008-4012;
[http://dx.doi.org/10.1063/1.5095911]
[120]
Vago, R.; Collico, V.; Zuppone, S.; Prosperi, D.; Colombo, M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol. Res., 2016, 111, 619-641.
[http://dx.doi.org/10.1016/j.phrs.2016.07.007] [PMID: 27436147]
[121]
Yang, Z.; Ma, Y.; Zhao, H.; Yuan, Y.; Kim, B.Y.S. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(2), e1590.
[http://dx.doi.org/10.1002/wnan.1590] [PMID: 31696664]
[122]
Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[123]
Lohr, F.; Lo, D.Y.; Zaharoff, D.A.; Hu, K.; Zhang, X.; Li, Y.; Zhao, Y.; Dewhirst, M.W.; Yuan, F.; Li, C.Y. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res., 2001, 61(8), 3281-3284.
[PMID: 11309280]
[124]
Aggarwal, R.; Targhotra, M.; Kumar, B.; Sahoo, P.K.; Chauhan, M.K. Polyplex: A promising gene delivery system. Int. J. Res. Pharm. Nano Sci., 2019, 12(6), 199-221.
[http://dx.doi.org/10.37285//ijpsn.2019.12.6.1]
[125]
Ibraheem, D.; Elaissari, A.; Fessi, H. Gene therapy and DNA delivery systems. Int. J. Pharm., 2014, 459(1-2), 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[126]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[127]
Anchordoquy, T.J.; Barenholz, Y.; Boraschi, D.; Chorny, M.; Decuzzi, P.; Dobrovolskaia, M.A.; Farhangrazi, Z.S.; Farrell, D.; Gabizon, A.; Ghandehari, H.; Godin, B.; La-Beck, N.M.; Ljubimova, J.; Moghimi, S.M.; Pagliaro, L.; Park, J.H.; Peer, D.; Ruoslahti, E.; Serkova, N.J.; Simberg, D. Mechanisms, and barriers in cancer nanomedicine: Addressing challenges, looking for solutions. ACS Nano, 2017, 11(1), 12-18.
[http://dx.doi.org/10.1021/acsnano.6b08244] [PMID: 28068099]
[128]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[129]
Sun, Q.; Barz, M.; De Geest, B.G.; Diken, M.; Hennink, W.E.; Kiessling, F.; Lammers, T.; Shi, Y. Nanomedicine and macroscale materials in immuno-oncology. Chem. Soc. Rev., 2019, 48(1), 351-381.
[http://dx.doi.org/10.1039/C8CS00473K] [PMID: 30465669]
[130]
Oladimeji, O.; Akinyelu, J.; Singh, M. Nanomedicines for subcellular targeting: The mitochondrial perspective. Curr. Med. Chem., 2020, 27(33), 5480-5509.
[http://dx.doi.org/10.2174/0929867326666191125092111] [PMID: 31763965]
[131]
Maney, V.; Singh, M. The synergism of Platinum-Gold bimetallic nanoconjugates enhance 5-Fluorouracil delivery in vitro. Pharmaceutics, 2019, 11(9), 439.
[http://dx.doi.org/10.3390/pharmaceutics11090439] [PMID: 31480562]
[132]
Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res., 2019, 52(6), 1543-1554.
[http://dx.doi.org/10.1021/acs.accounts.9b00148] [PMID: 31120725]
[133]
Zaharoff, D.A.; Hance, K.W.; Rogers, C.J.; Schlom, J.; Greiner, J.W. Intratumoral immunotherapy of established solid tumors with chi-tosan/IL-12. J. Immunother., 2010, 33(7), 697-705.
[http://dx.doi.org/10.1097/CJI.0b013e3181eb826d] [PMID: 20664357]
[134]
Díez, S.; Navarro, G. de ILarduya, C.T. In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J. Gene Med., 2009, 11(1), 38-45.
[http://dx.doi.org/10.1002/jgm.1273] [PMID: 19021130]
[135]
Liu, X.; Gao, X.; Zheng, S.; Wang, B.; Li, Y.; Zhao, C.; Muftuoglu, Y.; Chen, S.; Li, Y.; Yao, H.; Sun, H.; Mao, Q.; You, C.; Guo, G.; Wei, Y. Modified nanoparticle mediated IL-12 immunogene therapy for colon cancer. Nanomedicine , 2017, 13(6), 1993-2004.
[http://dx.doi.org/10.1016/j.nano.2017.04.006] [PMID: 28428054]
[136]
Lai, I.; Swaminathan, S.; Baylot, V.; Mosley, A.; Dhanasekaran, R.; Gabay, M.; Felsher, D.W. Lipid nanoparticles that deliver IL-12 mes-senger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer, 2018, 6(1), 125.
[http://dx.doi.org/10.1186/s40425-018-0431-x] [PMID: 30458889]
[137]
A Study of MEDI1191 in Sequential and Concurrent Combination with Durvalumab in Subjects with Advanced Solid Tumors 2021.clinicaltrials.gov/ct2/show/results//
[138]
Maiyo, F.; Singh, M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine (Lond.), 2017, 12(9), 1075-1089.
[http://dx.doi.org/10.2217/nnm-2017-0024] [PMID: 28440710]
[139]
Gounden, S.; Daniels, A.; Singh, M. Chitosan-modified silver nanoparticles enhance cisplatin activity in breast cancer cells. Biointerface Res. Appl. Chem., 2020, 11(3), 10572-10584.
[http://dx.doi.org/10.33263/BRIAC113.1057210584]
[140]
Wang, Y.J.; Fletcher, R.; Yu, J.; Zhang, L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis., 2018, 5(3), 194-203.
[http://dx.doi.org/10.1016/j.gendis.2018.05.003] [PMID: 30320184]
[141]
Conlon, K.C.; Miljkovic, M.D.; Waldmann, T.A. Cytokines in the treatment of cancer. J. Interferon Cytokine Res., 2019, 39(1), 6-21.
[http://dx.doi.org/10.1089/jir.2018.0019] [PMID: 29889594]
[142]
Puca, E.; Probst, P.; Stringhini, M.; Murer, P.; Pellegrini, G.; Cazzamalli, S.; Hutmacher, C.; Gouyou, B.; Wulhfard, S.; Matasci, M.; Villa, A.; Neri, D. The antibody-based delivery of interleukin-12 to solid tumors boosts NK and CD8+ T cell activity and synergizes with im-mune checkpoint inhibitors. Int. J. Cancer, 2020, 146(9), 2518-2530.
[http://dx.doi.org/10.1002/ijc.32603] [PMID: 31374124]
[143]
Ren, G.; Tian, G.; Liu, Y.; He, J.; Gao, X.; Yu, Y.; Liu, X.; Zhang, X.; Sun, T.; Liu, S.; Yin, J.; Li, D. Recombinant Newcastle disease virus encoding IL-12 and/or IL-2 as potential candidate for hepatoma carcinoma therapy. Technol. Cancer Res. Treat., 2016, 15(5), NP83-NP94.
[http://dx.doi.org/10.1177/1533034615601521] [PMID: 26303327]
[144]
Oh, E.; Oh, J.E.; Hong, J.; Chung, Y.; Lee, Y.; Park, K.D.; Kim, S.; Yun, C.O. Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J. Control. Release, 2017, 259, 115-127.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.028] [PMID: 28336378]
[145]
Kamensek, U.; Cemazar, M.; Lampreht Tratar, U.; Ursic, K.; Sersa, G. Antitumor in situ vaccination effect of TNFα and IL-12 plasmid DNA electrotransfer in a murine melanoma model. Cancer Immunol. Immunother., 2018, 67(5), 785-795.
[http://dx.doi.org/10.1007/s00262-018-2133-0] [PMID: 29468364]
[146]
Xu, H.Y.; Li, N.; Yao, N.; Xu, X.F.; Wang, H.X.; Liu, X.Y.; Zhang, Y. CD8+ T cells stimulated by exosomes derived from RenCa cells mediate specific immune responses through the FasL/Fas signaling pathway and, combined with GM CSF and IL 12, enhance the an-ti renal cortical adenocarcinoma effect. Oncol. Rep., 2019, 42(2), 866-879.
[http://dx.doi.org/10.3892/or.2019.7208] [PMID: 31233203]
[147]
Vom Berg, J.; Vrohlings, M.; Haller, S.; Haimovici, A.; Kulig, P.; Sledzinska, A.; Weller, M.; Becher, B. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J. Exp. Med., 2013, 210(13), 2803-2811.
[http://dx.doi.org/10.1084/jem.20130678] [PMID: 24277150]
[148]
Cao, L.; Zeng, Q.; Xu, C.; Shi, S.; Zhang, Z.; Sun, X. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenovi-ral vector expressing IL-12. Mol. Pharm., 2013, 10(5), 1804-1814.
[http://dx.doi.org/10.1021/mp300602j] [PMID: 23534449]
[149]
Denies, S.; Cicchelero, L.; Van Audenhove, I.; Sanders, N.N. Combination of interleukin-12 gene therapy, metronomic cyclophosphamide and DNA cancer vaccination directs all arms of the immune system towards tumor eradication. J. Control. Release, 2014, 187, 175-182.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.045] [PMID: 24887014]
[150]
Cutrera, J.; King, G.; Jones, P.; Kicenuik, K.; Gumpel, E.; Xia, X.; Li, S. Safe and effective treatment of spontaneous neoplasms with inter-leukin 12 electro-chemo-gene therapy. J. Cell. Mol. Med., 2015, 19(3), 664-675.
[http://dx.doi.org/10.1111/jcmm.12382] [PMID: 25628149]
[151]
Sun, Y.; Yang, J.; Yang, T.; Li, Y.; Zhu, R.; Hou, Y.; Liu, Y. Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetfor-min-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater., 2021, 128, 447-461.
[http://dx.doi.org/10.1016/j.actbio.2021.04.034] [PMID: 33894351]
[152]
Tsung, K.; Norton, J.A. An immunological view of chemotherapy. Immunotherapy, 2015, 7(9), 941-943.
[http://dx.doi.org/10.2217/imt.15.62] [PMID: 26310824]
[153]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[154]
Huang, K.W.; Wu, H.L.; Lin, H.L.; Liang, P.C.; Chen, P.J.; Chen, S.H.; Lee, H.I.; Su, P.Y.; Wu, W.H.; Lee, P.H.; Hwang, L.H.; Chen, D.S. Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma mod-el. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14769-14774.
[http://dx.doi.org/10.1073/pnas.1009534107] [PMID: 20679198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy