Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Hydrazide-hydrazones as Small Molecule Tropomyosin Receptor Kina se A (TRKA) Inhibitors: Synthesis, Anticancer Activities, In silico ADME and Molecular Docking Studies

Author(s): Mohammad Sayed Alam* and Dong-Ung Lee

Volume 19, Issue 1, 2023

Published on: 06 July, 2022

Page: [47 - 63] Pages: 17

DOI: 10.2174/1573406418666220427105041

Price: $65

Abstract

Aim: The aim of the study was to search for new anticancer agents as TRKA inhibitors.

Background: A series of new salicylic acid hydrazide hydrazones were synthesized and evaluated for their in vitro anticancer activities against lung (A549), ovarian (SK-OV-3), skin (SK-MEL-2), and colon (HCT15) cancer cell lines, and tropomyosin receptor kinase A (TRKA) inhibitory activities.

Objective: In this study, we focused on the synthesis and anticancer properties evaluation of salicylic acid hydrazide hydrazones as TRKA inhibitors. The in vitro anticancer activities of hydrazone analogs were measured against four cancer cell lines, and the TRKA inhibitory properties were investigated using an enzyme assay to determine their modes of action. In silico molecular docking was conducted using the crystal structure of the TRKA receptor to study the interactions and modes of binding at its active site, and ligand-based target predictions were used to identify putative secondary enzymatic targets of the synthesized compounds. Additionally, pharmacokinetic properties, toxicity effects, and drug scores of the studied molecules were also assessed.

Methods: A series of hydrazide hydrazones were prepared by means of a facile and straight-forward two-step reaction under soft reflux conditions from a methyl ester of substituted aromatic acids and hydrazine hydrate followed by the condensation with substituted aldehydes. In vitro cytotoxic properties of the synthesized compounds were screened against four human cancer cells using the SRB (sulforhodamine-B) colorimetric method. The TRKA inhibitory activity was measured by enzymatic assay. In silico ADME, drug score properties, docking studies, and ligand-based target prediction analyses were performed using Osiris Cheminformatics and AutoDock Vina, and SwissTargetPrediction bioinformatics software.

Results: In vitro bioassays revealed that compound 6 exhibited the most potent broad-spectrum anticancer activities with IC50 values of 0.144, <0.001, 0.019, and 0.022 μM against A549, SK-OV-3, SK-MEL-2, and HCT15 cancer cells, respectively, followed by compounds 11, 3a, and 9. In TRKA inhibitory assays, compounds 3e and 11 demonstrated the highest potency with IC50 values of 111 and 614 nM, respectively. The results of docking studies on 3e and 11 with the active site of the TRKA receptor revealed that both compounds interacted as previously reported TRKA inhibitors with high docking scores.

Conclusion: New salicylic acid hydrazide hydrazones were synthesized, and the most active compounds exhibited significant anticancer properties against A549, SK-OV-3, SK-MEL-2, and HCT15 cancer cells, suggesting to be good candidates for in vivo studies.

The results obtained in the present study would help in the design and preparation of new hydrazidehydrazone analogs as potential TRKA inhibitors for cancer treatment.

Keywords: Hydrazide-hydrazones, anticancer, TRKA inhibitors, ADME, drug score, docking studies.

Graphical Abstract

[1]
Rayburn, E.R.; Ezell, S.J.; Zhang, R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol., 2009, 1(1), 29-43.
[http://dx.doi.org/10.4255/mcpharmacol.09.05] [PMID: 20333321]
[2]
He, J.; Wang, X.; Zhao, X.; Liang, Y.; He, H.; Fu, L. Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety. Eur. J. Med. Chem., 2012, 54, 925-930.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.003] [PMID: 22749192]
[3]
Swami, U.; Grivas, P.; Pal, S.K.; Agarwal, N. Utilization of systemic therapy for treatment of advanced urothelial carcinoma: Lessons from real world experience. Cancer Treat. Res. Commun., 2021, 27, 100325.
[http://dx.doi.org/10.1016/j.ctarc.2021.100325] [PMID: 33549986]
[4]
Cagan, R.; Meyer, P. Rethinking cancer: Current challenges and opportunities in cancer research. Dis. Model. Mech., 2017, 10(4), 349-352.
[http://dx.doi.org/10.1242/dmm.030007] [PMID: 28381596]
[5]
Ren, K.; Dubner, R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: Role of BDNF-TrkB signaling and NMDA receptors. Mol. Neurobiol., 2007, 35(3), 224-235.
[http://dx.doi.org/10.1007/s12035-007-0028-8] [PMID: 17917111]
[6]
Lai, K.O.; Wong, A.S.; Cheung, M.C.; Xu, P.; Liang, Z.; Lok, K.C.; Xie, H.; Palko, M.E.; Yung, W.H.; Tessarollo, L.; Cheung, Z.H.; Ip, N.Y. TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat. Neurosci., 2012, 15(11), 1506-1515.
[http://dx.doi.org/10.1038/nn.3237] [PMID: 23064382]
[7]
Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov., 2015, 5(1), 25-34.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0765] [PMID: 25527197]
[8]
Klein, R.; Jing, S.Q.; Nanduri, V.; O’Rourke, E.; Barbacid, M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell, 1991, 65(1), 189-197.
[http://dx.doi.org/10.1016/0092-8674(91)90419-Y] [PMID: 1849459]
[9]
Klein, R.; Nanduri, V.; Jing, S.A.; Lamballe, F.; Tapley, P.; Bryant, S.; Cordon-Cardo, C.; Jones, K.R.; Reichardt, L.F.; Barbacid, M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 1991, 66(2), 395-403.
[http://dx.doi.org/10.1016/0092-8674(91)90628-C] [PMID: 1649702]
[10]
Ip, N.Y.; Ibáñez, C.F.; Nye, S.H.; McClain, J.; Jones, P.F.; Gies, D.R.; Belluscio, L.; Le Beau, M.M.; Espinosa, R., III; Squinto, S.P. Mammalian neurotrophin-4: Structure, chromosomal localization, tissue distribution, and receptor specificity. Proc. Natl. Acad. Sci. USA, 1992, 89(7), 3060-3064.
[http://dx.doi.org/10.1073/pnas.89.7.3060] [PMID: 1313578]
[11]
Lamballe, F.; Klein, R.; Barbacid, M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell, 1991, 66(5), 967-979.
[http://dx.doi.org/10.1016/0092-8674(91)90442-2] [PMID: 1653651]
[12]
Siniscalco, D.; Giordano, C.; Rossi, F.; Maione, S.; de Novellis, V. Role of neurotrophins in neuropathic pain. Curr. Neuropharmacol., 2011, 9(4), 523-529.
[http://dx.doi.org/10.2174/157015911798376208] [PMID: 22654713]
[13]
Skaper, S.D. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol. Disord. Drug Targets, 2008, 7(1), 46-62.
[http://dx.doi.org/10.2174/187152708783885174] [PMID: 18289031]
[14]
Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open, 2016, 1(2), e000023.
[http://dx.doi.org/10.1136/esmoopen-2015-000023] [PMID: 27843590]
[15]
Jin, W.; Kim, G.M.; Kim, M.S.; Lim, M.H.; Yun, C.; Jeong, J.; Nam, J.S.; Kim, S.J. TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis, 2010, 31(11), 1939-1947.
[http://dx.doi.org/10.1093/carcin/bgq180] [PMID: 20802235]
[16]
Harada, G.; Gongora, A.B.L.; da Costa, C.M.F.; Santini, F.C. TRK inhibitors in non-small cell lung cancer. Curr. Treat. Options Oncol., 2020, 21(5), 39.
[http://dx.doi.org/10.1007/s11864-020-00741-z] [PMID: 32328803]
[17]
Ardini, E.; Bosotti, R.; Borgia, A.L.; De Ponti, C.; Somaschini, A.; Cammarota, R.; Amboldi, N.; Raddrizzani, L.; Milani, A.; Magnaghi, P.; Ballinari, D.; Casero, D.; Gasparri, F.; Banfi, P.; Avanzi, N.; Saccardo, M.B.; Alzani, R.; Bandiera, T.; Felder, E.; Donati, D.; Pesenti, E.; Sartore-Bianchi, A.; Gambacorta, M.; Pierotti, M.A.; Siena, S.; Veronese, S.; Galvani, A.; Isacchi, A. The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol. Oncol., 2014, 8(8), 1495-1507.
[http://dx.doi.org/10.1016/j.molonc.2014.06.001] [PMID: 24962792]
[18]
Greco, A.; Miranda, C.; Pierotti, M.A. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol. Cell. Endocrinol., 2010, 321(1), 44-49.
[http://dx.doi.org/10.1016/j.mce.2009.10.009] [PMID: 19883730]
[19]
Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D.M.; Hechtman, J.; Wei, G.; Cam, N.R.; Christiansen, J.; Luo, D.; Maneval, E.C.; Bauer, T.; Patel, M.; Liu, S.V.; Ou, S.H.; Farago, A.; Shaw, A.; Shoemaker, R.F.; Lim, J.; Hornby, Z.; Multani, P.; Ladanyi, M.; Berger, M.; Katabi, N.; Ghossein, R.; Ho, A.L. What hides behind the MASC: Clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol., 2016, 27(5), 920-926.
[http://dx.doi.org/10.1093/annonc/mdw042] [PMID: 26884591]
[20]
Frattini, V.; Trifonov, V.; Chan, J.M.; Castano, A.; Lia, M.; Abate, F.; Keir, S.T.; Ji, A.X.; Zoppoli, P.; Niola, F.; Danussi, C.; Dolgalev, I.; Porrati, P.; Pellegatta, S.; Heguy, A.; Gupta, G.; Pisapia, D.J.; Canoll, P.; Bruce, J.N.; McLendon, R.E.; Yan, H.; Aldape, K.; Finocchiaro, G.; Mikkelsen, T.; Privé, G.G.; Bigner, D.D.; Lasorella, A.; Rabadan, R.; Iavarone, A. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet., 2013, 45(10), 1141-1149.
[http://dx.doi.org/10.1038/ng.2734] [PMID: 23917401]
[21]
Gysin, S.; Salt, M.; Young, A.; McCormick, F. Therapeutic strategies for targeting ras proteins. Genes Cancer, 2011, 2(3), 359-372.
[http://dx.doi.org/10.1177/1947601911412376] [PMID: 21779505]
[22]
McCarthy, C.; Walker, E. Tropomyosin receptor kinase inhibitors: A patent update 2009 - 2013. Expert Opin. Ther. Pat., 2014, 24(7), 731-744.
[http://dx.doi.org/10.1517/13543776.2014.910195] [PMID: 24809946]
[23]
Yan, W.; Lakkaniga, N.R.; Carlomagno, F.; Santoro, M.; McDonald, N.Q.; Lv, F.; Gunaganti, N.; Frett, B.; Li, H.Y. Insights into current tropomyosin receptor kinase (TRK) inhibitors: Development and clinical application. J. Med. Chem., 2019, 62(4), 1731-1760.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01092] [PMID: 30188734]
[24]
Jiang, T.; Wang, G.; Liu, Y.; Feng, L.; Wang, M.; Liu, J.; Chen, Y.; Ouyang, L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm. Sin. B, 2021, 11(2), 355-372.
[http://dx.doi.org/10.1016/j.apsb.2020.05.004] [PMID: 33643817]
[25]
Bhole, R.P.; Borkar, D.D.; Bhusari, K.P.; Patil, P.A. Design and synthesis of p-hydroxybenzohydrazide derivatives for their antimycobacterial activity. J. Korean Chem. Soc, 2012, 56, 236-245.
[http://dx.doi.org/10.5012/jkcs.2012.56.2.236]
[26]
Bhalerao, M.B.; Dhumal, S.T.; Deshmukh, A.R.; Nawale, L.U.; Khedkar, V.; Sarkar, D.; Mane, R.A. New bithiazolyl hydrazones: Novel synthesis, characterization and antitubercular evaluation. Bioorg. Med. Chem. Lett., 2017, 27(2), 288-294.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.056] [PMID: 27914801]
[27]
Popiołekek, Ł Hydrazide-hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res., 2017, 26(2), 287-301.
[http://dx.doi.org/10.1007/s00044-016-1756-y] [PMID: 28163562]
[28]
Zha, G.F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.032] [PMID: 28539243]
[29]
Alam, M.S.; Lee, D.U. Synthesis, biological evaluation, drug-likeness, and in silico screening of novel benzylidene-hydrazone analogues as small molecule anticancer agents. Arch. Pharm. Res., 2016, 39(2), 191-201.
[http://dx.doi.org/10.1007/s12272-015-0699-z] [PMID: 26694484]
[30]
Husain, A.; Varshney, M.M.; Parcha, V.; Ahmad, A.; Khan, S.A. Nalidixic acid Schiff bases: Synthesis and biological evaluation. Lett. Drug Des. Discov., 2018, 15, 103-111.
[http://dx.doi.org/10.2174/1570180814666170710160751]
[31]
Kalluraya, B.; Isloor, A.M.; Frank, P.V.; Jagadeesha, R.L. Synthesis and pharmacological activity of some-4-(substituted)-2-4-arylhydrazono-3-methyl-5-oxo-2-pyrazolin-1-yl] thiazoles. Ind. J. Het. Chem, 2004, 13, 245-248.
[32]
de Oliveira, K.N.; Costa, P.; Santin, J.R.; Mazzambani, L.; Bürger, C.; Mora, C.; Nunes, R.J.; de Souza, M.M. Synthesis and antidepressant-like activity evaluation of sulphonamides and sulphonylhydrazones. Bioorg. Med. Chem., 2011, 19(14), 4295-4306.
[http://dx.doi.org/10.1016/j.bmc.2011.05.056] [PMID: 21696965]
[33]
Hayakawa, M.; Kawaguchi, K.; Kaizawa, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.; Raynaud, F.I.; Parker, P.; Workman, P.; Waterfield, M.D. Synthesis and biological evaluation of sulfonylhydrazone-substituted imidazo[1,2-a]pyridines as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem., 2007, 15(17), 5837-5844.
[http://dx.doi.org/10.1016/j.bmc.2007.05.070] [PMID: 17601739]
[34]
Al-Salem, H.S.; Arifuzzaman, M.; Alkahtani, H.M.; Abdalla, A.N.; Issa, I.S.; Alqathama, A.; Albalawi, F.S.; Motiur Rahman, A.F.M. A series of isatin-hydrazones with cytotoxic activity and CDK2 Kinase inhibitory activity: A potential type II ATP competitive inhibitor. Molecules, 2020, 25(19), 4400.
[http://dx.doi.org/10.3390/molecules25194400]
[35]
Lisina, S.V.; Brel, A.K.; Mazanova, L.S.; Spasov, A.A. Synthesis and antipyretic activity of new salicylic acid derivatives. Pharm. Chem. J., 2008, 42, 574-576.
[http://dx.doi.org/10.1007/s11094-009-0184-4]
[36]
Hassan, G.S.; Soliman, G.A. Design, synthesis and anti-ulcerogenic effect of some of furo-salicylic acid derivatives on acetic acid-induced ulcerative colitis. Eur. J. Med. Chem., 2010, 45(9), 4104-4112.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.071] [PMID: 20573425]
[37]
da Silva, M.; Menezes, C.M.S.; Ferreira, E.I.; Leite, C.Q.F.; Sato, D.N.; Correia, C.C.; Pimenta, C.P.; Botelho, K.C.A. Topliss method in the optimization of salicylic Acid derivatives as potential antimycobacterial agents. Chem. Biol. Drug Des., 2008, 71(2), 167-172.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00621.x] [PMID: 18221309]
[38]
Machado, P.; Rosa, F.A.; Rossatto, M.; da Sant’Anna, G.S.; Sauzem, P.D.; da Silva, R.M.S.; Rubin, M.A.; Ferreira, J.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Synthesis and structure of novel 4,5-dihydro-1H-pyrazoles: Salicylic acid based analgesic agents. ARKIVOC, 2007, 16, 281-297.
[39]
Pattan, S.R.; Rabara, P.; Pattan, J.S.; Bukitaga, A.A.; Wakale, V.S.; Musmade, D.S. Synthesis and evaluation of some novel substituted 1,3,4-oxadiazole and pyrazole derivatives for antitubercular activity. Indian J. Chem., 2009, 48B, 1453-1456.
[40]
Shelke, V.A.; Jadhav, S.M.; Shankarwar, S.G.; Munde, A.S.; Chondhekar, T.K. Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide. Bull. Chem. Soc. Ethiop., 2011, 25, 381-391.
[http://dx.doi.org/10.4314/bcse.v25i3.68590]
[41]
Chaturvedi, R.; Shah, J. Salicylic acid in plant disease resistance.Salicylic acid. A Plant Hormone; Hayat, S.; Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands, 2007, pp. 335-370.
[http://dx.doi.org/10.1007/1-4020-5184-0_12]
[42]
Chowdhury, M.A.; Abdellatif, K.R.A.; Dong, Y.; Das, D.; Yu, G.; Velázquez, C.A.; Suresh, M.R.; Knaus, E.E. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: Dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2009, 19(24), 6855-6861.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.083] [PMID: 19884005]
[43]
Alam, M.S.; Choi, S.U.; Lee, D.U. Synthesis, anticancer, and docking studies of salicyl-hydrazone analogues: A novel series of small potent tropomyosin receptor kinase A inhibitors. Bioorg. Med. Chem., 2017, 25(1), 389-396.
[http://dx.doi.org/10.1016/j.bmc.2016.11.005] [PMID: 27856237]
[44]
Liu, L.; Alam, M.S.; Lee, D.U. Synthesis, antioxidant activity, fluorescence properties of new europium complexes with 2-hydroxynaphth-1-aldehyde benzoyl hydrazone Schiff base. Bull. Korean Chem. Soc., 2012, 33, 3361-3367.
[http://dx.doi.org/10.5012/bkcs.2012.33.10.3361]
[45]
Budiati, T.; Stephanie, D.A.; Widjajakusuma, E.C. Rapid solvent-free microwave-assisted synthesis of some N′-benzylidene salicylic acid hydrazides. Indo J. Chem, 2012, 12, 163-166.
[http://dx.doi.org/10.22146/ijc.21357]
[46]
Singh, A.K.; Thakur, S.; Pani, B.; Ebenso, E.E.; Quraishi, M.A.; Pandey, A.K. 2-Hydroxy-N′-((thiophene-2-yl)methylene)benzohy-drazide: Ultrasound-assisted synthesis and corrosion inhibition study. ACS Omega, 2018, 3(4), 4695-4705.
[http://dx.doi.org/10.1021/acsomega.8b00003] [PMID: 31458691]
[47]
Zhang, Y.X. N′-(Furan-2-ylmethylene)-2-hydroxybenzohydrazide. Acta Crystallogr., 2008, E64, o2208.
[48]
Kasinski, A.L.; Kelnar, K.; Stahlhut, C.; Orellana, E.; Zhao, J.; Shimer, E.; Dysart, S.; Chen, X.; Bader, A.G.; Slack, F.J. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene, 2015, 34(27), 3547-3555.
[http://dx.doi.org/10.1038/onc.2014.282] [PMID: 25174400]
[49]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[50]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[51]
Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(Suppl. 1), S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[52]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[53]
Tanoli, S.A.; Tanoli, N.U.; Usmani, S.; Ferreira, A.G. The exploration of interaction studies of smaller size, mostly ignored yet intrinsically inestimable molecules towards BSA; An example of STD and DOSY NMR. Cent. Eur. J. Chem., 2014, 12, 332-340.
[54]
Park, H.; Chi, O.; Kim, J.; Hong, S. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure. J. Chem. Inf. Model., 2011, 51(11), 2986-2993.
[http://dx.doi.org/10.1021/ci200378s] [PMID: 22017333]
[55]
Bertrand, T.; Kothe, M.; Liu, J.; Dupuy, A.; Rak, A.; Berne, P.F.; Davis, S.; Gladysheva, T.; Valtre, C.; Crenne, J.Y.; Mathieu, M. The crystal structures of TrkA and TrkB suggest key regions for achieving selective inhibition. J. Mol. Biol., 2012, 423(3), 439-453.
[http://dx.doi.org/10.1016/j.jmb.2012.08.002] [PMID: 22902478]
[56]
Schwarz, D.; Merget, B.; Deane, C.; Fulle, S. Modeling conformational flexibility of kinases in inactive states. Proteins, 2019, 87(11), 943-951.
[http://dx.doi.org/10.1002/prot.25756] [PMID: 31168936]
[57]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[58]
Zhang, M.Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol., 2007, 18(6), 478-488.
[http://dx.doi.org/10.1016/j.copbio.2007.10.005] [PMID: 18035532]
[59]
Pathania, S.; Singh, P.K. Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical screening parameter in drug designing protocols? Expert Opin. Drug Metab. Toxicol., 2021, 17(4), 351-354.
[http://dx.doi.org/10.1080/17425255.2021.1865309] [PMID: 33320017]
[60]
Bergström, C.A.S.; Larsson, P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int. J. Pharm., 2018, 540(1-2), 185-193.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.044] [PMID: 29421301]
[61]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[62]
Feng, Z.; Cao, J.; Zhang, Q.; Lin, L. The drug likeness analysis of anti-inflammatory clerodane diterpenoids. Chin. Med., 2020, 15(1), 126.
[http://dx.doi.org/10.1186/s13020-020-00407-w] [PMID: 33298100]
[63]
Deb, P.K.; Kaur, R.; Chandrasekaran, B.; Bala, M.; Gill, D.; Kaki, V.R.; Akkinepalli, R.R.; Mailavaram, R. Synthesis, anti-inflammatory evaluation, and docking studies of some new thiazole derivatives. Med. Chem. Res., 2014, 23, 2780-2792.
[http://dx.doi.org/10.1007/s00044-013-0861-4]
[64]
McDonnell, A.M.; Dang, C.H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol., 2013, 4(4), 263-268.
[PMID: 25032007]
[65]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 2018, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[66]
Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Côté, S.; Shoichet, B.K.; Urban, L. Large-scale prediction and testing of drug activity on side-effect targets. Nature, 2012, 486(7403), 361-367.
[http://dx.doi.org/10.1038/nature11159] [PMID: 22722194]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy