Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Quinoline: Synthesis to Application

Author(s): Ravi Kumar Mittal, Meenu Aggarwal, Kavita Khatana and Priyank Purohit*

Volume 19, Issue 1, 2023

Published on: 25 August, 2022

Page: [31 - 46] Pages: 16

DOI: 10.2174/1573406418666220303151919

Price: $65

Abstract

This review aims to provide a comprehensive report on the quinoline ring with respect to its synthesis, reactivity, and therapeutic values. The reactivity of quinoline for the metal, electrophile, and other reactive counterparts defines the shape of the quinoline pharmacophore, which is an important part of this report; moreover, its spectroscopic characteristics have been included herein with suitable illustration. The quinoline and its derivatives have been presented as well as the general synthetic approaches along with the new developments in the catalytic system; the relevant information is also summarized under the various separate activity classes. The synthesis of heterocyclic scaffolds has been a concern for scientists, so herein we have tried to include the synthetic parameters of quinoline with regard to the important pharmacological aspects.

Keywords: Quinoline, heterocycles, therapeutic effect, bioactive, quinoline pharmacophore, reactivity.

Graphical Abstract

[1]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[2]
Chung, P.Y.; Bian, Z.X.; Pun, H.Y.; Chan, D.; Chan, A.S.; Chui, C.H.; Tang, J.C.; Lam, K.H. Recent advances in research of natural and synthetic bioactive quinolines. Future Med. Chem., 2015, 7(7), 947-967.
[http://dx.doi.org/10.4155/fmc.15.34] [PMID: 26061110]
[3]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[4]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogs: A review. RSC Adv., 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J]
[5]
Dhiman, P.; Arora, N.; Thanikachalam, P.V.; Monga, V. Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg. Chem., 2019, 92, 103291.
[http://dx.doi.org/10.1016/j.bioorg.2019.103291] [PMID: 31561107]
[6]
Mandewale, M.C.; Thorat, B.; Patil, U.; Kale, B.; Yamgar, R. Developments in quinoline synthesis: A review. Heterocycl. Lett., 2015, 5(3), 475-488.
[7]
Chu, X.M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C.Y.; Sun, K.L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[8]
Friebolin, H.; Becconsall, J.K. Basic One-and Two-Dimensional NMR Spectroscopy; Wiley-VCH: Weinheim, 2005.
[9]
Breitmaier, E. Structure Elucidation by NMR in Organic Chemistry, A Practical Guide; Wiley: New York, 1993, pp. 31-34.
[10]
Mitra, A.; Assarpour, A.; Seaton, P.J.; Williamson, R.T. Synthesis of quinolines and their characterization by 2-D NMR spectroscopy. J. Chem. Educ., 2002, 79(1), 106.
[http://dx.doi.org/10.1021/ed079p106]
[11]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[12]
Denmark, S.E.; Venkatraman, S. On the mechanism of the Skraup-Doebner-Von Miller quinoline synthesis. J. Org. Chem., 2006, 71(4), 1668-1676.
[http://dx.doi.org/10.1021/jo052410h] [PMID: 16468822]
[13]
Li, J.J. Conrad–Limpach reaction. In: Name Reactions; Springer: Berlin, Heidelberg, 2009; pp. 133-134.
[14]
Povarov, L.S.; Grigos, V.I.; Mikhailov, B.M. The reaction of benzylidene aniline with some unsaturated compounds. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1963, 12(11), 1878-1880.
[http://dx.doi.org/10.1007/BF00843814]
[15]
Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free domino one-pot protocols for quinoline synthesis. RSC Adv., 2015, 5(52), 42020-42053.
[http://dx.doi.org/10.1039/C5RA07798B]
[16]
Shvekhgeimer, M.A. The Pfitzinger reaction. Chem. Heterocycl. Compd., 2004, 40(3), 257-294.
[http://dx.doi.org/10.1023/B:COHC.0000028623.41308.e5]
[17]
Manske, R.H.; Kulka, M. The S kraup synthesis of quinolines. Org. React., 2004, 7, 59-98.
[18]
Găină, L.; Cristea, C.; Moldovan, C.; Porumb, D.; Surducan, E.; Deleanu, C.; Mahamoud, A.; Barbe, J.; Silberg, I.A. Microwave-assisted synthesis of phenothiazine and qinoline derivatives. Int. J. Mol. Sci., 2007, 8(2), 70-80.
[http://dx.doi.org/10.3390/i8020070]
[19]
Amarasekara, A.S.; Hasan, M.A. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride Brönsted acidic ionic liquid catalyzed Skraup synthesis of quinolines under microwave heating. Tetrahedron Lett., 2014, 55(22), 3319-3321.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.047]
[20]
Guo, Q.; Wang, W.; Teng, W.; Chen, L.; Wang, Y.; Shen, B. Oxidant effect of H2O2 for the syntheses of quinoline derivatives via one-pot reaction of aniline and aldehyde. Synth. Commun., 2012, 42(17), 2574-2584.
[http://dx.doi.org/10.1080/00397911.2011.563022]
[21]
Li, X.G.; Cheng, X.; Zhou, Q.L. A convenient synthesis of 2-alkyl-8-quinoline carboxylic acids. Synth. Commun., 2002, 32(16), 2477-2481.
[http://dx.doi.org/10.1081/SCC-120003396]
[22]
Ramann, G.A.; Cowen, B.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal. Tetrahedron Lett., 2015, 56(46), 6436-6439.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.145]
[23]
Reitsema, R.H. The chemistry of 4-hydroxyquinolines. Chem. Rev., 1948, 43(1), 43-68.
[http://dx.doi.org/10.1021/cr60134a002] [PMID: 18876968]
[24]
Brouet, J.C.; Gu, S.; Peet, N.P.; Williams, J.D. Survey of solvents for the Conrad–Limpach synthesis of 4-hydroxyquinolones. Synth. Commun., 2009, 39(9), 5193-5196.
[http://dx.doi.org/10.1080/00397910802542044] [PMID: 20046955]
[25]
Gattu, R.; Basha, R.S.; Bagdi, P.R.; Khan, A.T. One-pot three-component regioselective synthesis of C1-functionalised 3-arylbenzo [f] quinoline. RSC Adv., 2016, 6(14), 11675-11682.
[http://dx.doi.org/10.1039/C5RA23413A]
[26]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[27]
Li, X.; Mao, Z.; Wang, Y.; Chen, W.; Lin, X. Molecular iodine-catalyzed and air-mediated tandem synthesis of quinolines via three-component reaction of amines, aldehydes, and alkynes. Tetrahedron, 2011, 67(21), 3858-3862.
[http://dx.doi.org/10.1016/j.tet.2011.03.087]
[28]
Zhu, H.; Yang, R.F.; Yun, L.H.; Li, J. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation. Chin. Chem. Lett., 2010, 21(1), 35-38.
[http://dx.doi.org/10.1016/j.cclet.2009.09.012]
[29]
Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M.C.; Soriano, E. Recent advances in the Friedländer reaction. Chem. Rev., 2009, 109(6), 2652-2671.
[http://dx.doi.org/10.1021/cr800482c] [PMID: 19361199]
[30]
Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S. o-Benzenedisulfonimide as a reusable Brønsted acid catalyst for efficient and facile synthesis of quinolines via Friedländer annulation. Tetrahedron Lett., 2010, 51(17), 2342-2344.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.139]
[31]
Khong, S.; Kwon, O. One-pot phosphine-catalyzed syntheses of quinolines. J. Org. Chem., 2012, 77(18), 8257-8267.
[http://dx.doi.org/10.1021/jo3015825] [PMID: 22928667]
[32]
Pandit, R.P.; Lee, Y.R. Copper (II) triflate-catalyzed reactions for the synthesis of novel and diverse quinoline carboxylates. RSC Adv., 2013, 3(44), 22039-22045.
[http://dx.doi.org/10.1039/c3ra44943b]
[33]
Tajik, H.; Niknam, K.; Sarrafan, M. 1-Butyl-3-methylimidazolium hydrogen sulfate ([bmim]-HSO4)–mediated synthesis of polysubstituted quinolines. Synth. Commun., 2011, 41(14), 2103-2114.
[http://dx.doi.org/10.1080/00397911.2010.497596]
[34]
Paul, A.; Warner, T.; John, C. Green Chemistry: Theory and Practice; Oxford University Press: London, 1998.
[35]
Clark, J.H. Chemistry goes green. Nat. Chem., 2009, 1(1), 12-13.
[http://dx.doi.org/10.1038/nchem.146] [PMID: 21378784]
[36]
Song, J.; Han, B. Green chemistry: A tool for the sustainable development of the chemical industry. Natl. Sci. Rev., 2015, 2(3), 255-256.
[http://dx.doi.org/10.1093/nsr/nwu076]
[37]
Saggadi, H.; Luart, D.; Thiebault, N.; Polaert, I.; Estel, L.; Len, C. Quinoline and phenanthroline preparation starting from glycerol via improved microwave-assisted modified Skraup reaction. RSC Adv., 2014, 4(41), 21456-21464.
[http://dx.doi.org/10.1039/C4RA00758A]
[38]
Muscia, G.C.; Bollini, M.; Carnevale, J.P.; Bruno, A.M.; Asis, S.E. Microwave-assisted Friedländer synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett., 2006, 47(50), 8811-8815.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.073]
[39]
Park, K.J.; Kwon, T.W. Environmentally benign synthesis of symmetrically substituted oligoquinolines under solvent‐free microwave irradiation. Bull. Korean Chem. Soc., 2015, 36(1), 180-182.
[http://dx.doi.org/10.1002/bkcs.10041]
[40]
Dinesh, B.R.; Baba, A.R.; Sankar, K.U.; Gowda, D.C. Synthesis of indolones and quinolones by reductive cyclization of O-nitroaryl acids using zinc dust and ammonium formate. J. Chem. Res., 2008, 2008(5), 287-288.
[http://dx.doi.org/10.3184/030823408X320647]
[41]
Niewerth, H.; Bergander, K.; Chhabra, S.R.; Williams, P.; Fetzner, S. Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol., 2011, 91(5), 1399-1408.
[http://dx.doi.org/10.1007/s00253-011-3378-0] [PMID: 21670979]
[42]
Venkanna, P.; Rajanna, K.C.; Kumar, M.S.; Ansari, M.B.; Ali, M.M. 2, 4, 6-Trichloro-1, 3, 5-triazine and N, N′-dimethylformamide as an effective Vilsmeier–Haack reagent for the synthesis of 2-chloro-3-formyl quinolines from acetanilides. Tetrahedron Lett., 2015, 56(37), 5164-5167.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.056]
[43]
Dogan Koružnjak, J.; Grdiša, M.; Slade, N.; Zamola, B.; Pavelić, K.; Karminski-Zamola, G. Novel derivatives of benzo[b]thieno[2,3-c]quinolones: Synthesis, photochemical synthesis, and antitumor evaluation. J. Med. Chem., 2003, 46(21), 4516-4524.
[http://dx.doi.org/10.1021/jm0210966] [PMID: 14521413]
[44]
Tan, Y.J.; Zhang, Z.; Wang, F.J.; Wu, H.H.; Li, Q.H. Mechanochemical milling promoted solvent-free imino Diels–Alder reaction catalyzed by FeCl3: Diastereoselective synthesis of cis-2, 4-diphenyl-1, 2, 3, 4-tetrahydroquinolines. RSC Adv., 2014, 4(67), 35635-35638.
[http://dx.doi.org/10.1039/C4RA05252H]
[45]
Javanshir, S.; Sharifi, S.; Maleki, A.; Sohrabi, B.; Kiasadegh, M. p‐toluenesulfonic acid‐catalyzed synthesis of polysubstituted quinolines via Friedländer reaction under ball‐milling conditions at room temperature and theoretical study on the mechanism using a density functional theory method. J. Phys. Org. Chem., 2014, 27(7), 589-596.
[http://dx.doi.org/10.1002/poc.3305]
[46]
Jun, C.H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev., 2004, 33(9), 610-618.
[http://dx.doi.org/10.1039/B308864M] [PMID: 15592626]
[47]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[48]
Beletskaya, I.P.; Cheprakov, A.V. The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313]
[49]
Seth, K.; Purohit, P.; Chakraborti, A.K. Cooperative catalysis by palladium-nickel binary nanocluster for Suzuki-Miyaura reaction of ortho-heterocycle-tethered sterically hindered aryl bromides. Org. Lett., 2014, 16(9), 2334-2337.
[http://dx.doi.org/10.1021/ol500587m] [PMID: 24720556]
[50]
Purohit, P.; Seth, K.; Kumar, A.; Chakraborti, A.K. C–O bond activation by nickel–palladium hetero-bimetallic nanoparticles for Suzuki–Miyaura reaction of bioactive heterocycle-tethered sterically hindered aryl carbonates. ACS Catal., 2017, 7(4), 2452-2457.
[http://dx.doi.org/10.1021/acscatal.6b02912]
[51]
Kakiuchi, F.; Kochi, T. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen bond cleavage. Synthesis, 2008, 2008(19), 3013-3039.
[http://dx.doi.org/10.1055/s-2008-1067256]
[52]
Lewis, J.C.; Bergman, R.G.; Ellman, J.A. Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation. Acc. Chem. Res., 2008, 41(8), 1013-1025.
[http://dx.doi.org/10.1021/ar800042p] [PMID: 18616300]
[53]
Seth, K.; Nautiyal, M.; Purohit, P.; Parikh, N.; Chakraborti, A.K. Palladium catalyzed Csp2-H activation for direct aryl hydroxylation: The unprecedented role of 1, 4-dioxane as a source of hydroxyl radicals. Chem. Commun., 2015, 51(1), 191-194.
[http://dx.doi.org/10.1039/C4CC06864E] [PMID: 25388158]
[54]
Chu, T.; Nikonov, G.I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev., 2018, 118(7), 3608-3680.
[http://dx.doi.org/10.1021/acs.chemrev.7b00572] [PMID: 29558125]
[55]
Basu, D.; Kumar, S.; Bandichhor, R. Transition metal-catalyzed CH activation for the synthesis of medicinally relevant molecules: A Re-view. J. Chem. Sci., 2018, 130(6), 1-1.
[http://dx.doi.org/10.1007/s12039-018-1468-6]
[56]
Wang, C.A.; Rej, S.; Chatani, N. Ruthenium (II)-catalyzed alkylation of CH bonds in aromatic amides with vinylsilanes. Chem. Lett., 2019, 48(10), 1185-1187.
[http://dx.doi.org/10.1246/cl.190483]
[57]
Ruiz, S.; Carrera, C.; Villuendas, P.; Urriolabeitia, E.P. Ru-Catalysed synthesis of fused heterocycle-pyridinones and -pyrones. Org. Biomol. Chem., 2017, 15(42), 8904-8913.
[http://dx.doi.org/10.1039/C7OB01497J] [PMID: 28994844]
[58]
Singh, K.S.; Sawant, S.G.; Dixneuf, P.H. Ruthenium (II)-catalyzed synthesis of pyrrole-and indole-fused isocoumarins by CH bond activation in DMF and water. ChemCatChem, 2016, 8(6), 1046-50.
[59]
Kim, J.; Kim, S.; Kim, D.; Chang, S. Ru-catalyzed deoxygenative regioselective C8-h arylation of quinoline N-oxides. J. Org. Chem., 2019, 84(20), 13150-13158.
[http://dx.doi.org/10.1021/acs.joc.9b01548] [PMID: 31322347]
[60]
Chinnagolla, R.K.; Jeganmohan, M. Regioselective ortho-arylation and alkenylation of N-alkyl benzamides with boronic acids via ruthenium-catalyzed C-H bond activation: An easy route to fluorenones synthesis. Org. Lett., 2012, 14(20), 5246-5249.
[http://dx.doi.org/10.1021/ol3024067] [PMID: 23039169]
[61]
Rajapakse, C.S.K. The concept of metal-drug synergism in the search for novel chloroquine derived antimalarial drugs. Chemistry in Sri Lanka., 2012. Available from: http://repository.kln.ac.lk/handle/123456789/3799
[62]
Aboelnaga, A.; EL-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev., 2018, 11(3), 254-263.
[http://dx.doi.org/10.1080/17518253.2018.1473505]
[63]
Madapa, S.; Tusi, Z.; Sridhar, D.; Kumar, A.; Siddiqi, M.I.; Srivastava, K.; Rizvi, A.; Tripathi, R.; Puri, S.K.; Shiva Keshava, G.B.; Shukla, P.K.; Batra, S. Search for new pharmacophores for antimalarial activity. Part I: Synthesis and antimalarial activity of new 2-methyl-6-ureido-4-quinolinamides. Bioorg. Med. Chem., 2009, 17(1), 203-221.
[http://dx.doi.org/10.1016/j.bmc.2008.11.021] [PMID: 19058973]
[64]
Suzuki, H.; Aly, N.S.; Wataya, Y.; Kim, H.S.; Tamai, I.; Kita, M.; Uemura, D. Preparation of quinoline hexose analogs as novel chloroquine-resistant malaria treatments (1). Synthesis of 4-hydroxyquinoline-β-glucosides. Chem. Pharm. Bull. (Tokyo), 2007, 55(5), 821-824.
[http://dx.doi.org/10.1248/cpb.55.821] [PMID: 17473479]
[65]
Amoozgar, Z. Design, synthesis, and biological evaluation of novel quinoline-based molecules with potential anticancer activity. Chem. Biol. Drug Des., 2016, 88(4), 585-591.
[66]
Roussaki, M.; Hall, B.; Lima, S.C.; da Silva, A.C.; Wilkinson, S.; Detsi, A. Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series. Bioorg. Med. Chem. Lett., 2013, 23(23), 6436-6441.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.047] [PMID: 24119553]
[67]
Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur. J. Med. Chem., 2018, 157, 1223-1248.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.095] [PMID: 30193220]
[68]
Fu, H.G.; Li, Z.W.; Hu, X.X.; Si, S.Y.; You, X.F.; Tang, S.; Wang, Y.X.; Song, D.Q. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules, 2019, 24(3), 548.
[http://dx.doi.org/10.3390/molecules24030548] [PMID: 30717338]
[69]
Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(20), 5759-5765.
[http://dx.doi.org/10.1016/j.bmc.2005.05.053] [PMID: 16002298]
[70]
Manera, C.; Cascio, M.G.; Benetti, V.; Allarà, M.; Tuccinardi, T.; Martinelli, A.; Saccomanni, G.; Vivoli, E.; Ghelardini, C.; Di Marzo, V.; Ferrarini, P.L. New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists. Bioorg. Med. Chem. Lett., 2007, 17(23), 6505-6510.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.089] [PMID: 17942307]
[71]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[72]
Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on disease-modifying antirheumatic drugs: synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect. J. Med. Chem., 1996, 39(26), 5176-5182.
[http://dx.doi.org/10.1021/jm9509408] [PMID: 8978845]
[73]
Lenoci, A.; Tomassi, S.; Conte, M.; Benedetti, R.; Rodriguez, V.; Carradori, S.; Secci, D.; Castellano, S.; Sbardella, G.; Filetici, P.; Novellino, E.; Altucci, L.; Rotili, D.; Mai, A. Quinoline-based p300 histone acetyltransferase inhibitors with pro-apoptotic activity in human leukemia U937 cells. ChemMedChem, 2014, 9(3), 542-548.
[http://dx.doi.org/10.1002/cmdc.201300536] [PMID: 24504685]
[74]
Miller, L.M.; Mayer, S.C.; Berger, D.M.; Boschelli, D.H.; Boschelli, F.; Di, L.; Du, X.; Dutia, M.; Floyd, M.B.; Johnson, M.; Kenny, C.H.; Krishnamurthy, G.; Moy, F.; Petusky, S.; Tkach, D.; Torres, N.; Wu, B.; Xu, W. Lead identification to generate 3-cyanoquinoline inhibitors of insulin-like growth factor receptor (IGF-1R) for potential use in cancer treatment. Bioorg. Med. Chem. Lett., 2009, 19(1), 62-66.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.037] [PMID: 19041240]
[75]
Zhu, Y.F.; Wang, X.C.; Connors, P.; Wilcoxen, K.; Gao, Y.; Gross, R.; Strack, N.; Gross, T.; McCarthy, J.R.; Xie, Q.; Ling, N.; Chen, C. Quinoline-carboxylic acids are potent inhibitors that inhibit the binding of Insulin-like Growth Factor (IGF) to IGF-binding proteins. Bioorg. Med. Chem. Lett., 2003, 13(11), 1931-1934.
[http://dx.doi.org/10.1016/S0960-894X(03)00322-6] [PMID: 12749901]
[76]
Wang, Y.; Ai, J.; Wang, Y.; Chen, Y.; Wang, L.; Liu, G.; Geng, M.; Zhang, A. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J. Med. Chem., 2011, 54(7), 2127-2142.
[http://dx.doi.org/10.1021/jm101340q] [PMID: 21405128]
[77]
Arya, K.; Agarwal, M. Microwave prompted multigram synthesis, structural determination, and photo-antiproliferative activity of fluorinated 4-hydroxyquinolinones. Bioorg. Med. Chem. Lett., 2007, 17(1), 86-93.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.082] [PMID: 17046250]
[78]
Soural, M.; Hlavác, J.; Hradil, P.; Frysová, I.; Hajdúch, M.; Bertolasi, V.; Maloň, M. Synthesis and cytotoxic activity of substituted 2-phenyl-3-hydroxy-4(1H)-quinolinones-7-carboxylic acids and their phenacyl esters. Eur. J. Med. Chem., 2006, 41(4), 467-474.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.008] [PMID: 16540209]
[79]
Banu, S.; Bollu, R.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Jain, N.; Vangala, R.; Manga, V. Design, synthesis and docking studies of novel 1,2-dihydro-4-hydroxy-2-oxoquinoline-3-carboxamide derivatives as a potential anti-proliferative agents. Eur. J. Med. Chem., 2017, 125, 400-410.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.062] [PMID: 27688193]
[80]
Mittal, R.K.; Purohit, P. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent. Anti-Cancer. Agents Med. Chem., 2020, 20(16), 1981-91.
[http://dx.doi.org/10.2174/1871520620666200619175906]
[81]
Purohit, P.; Mittal, R.K.; Khatana, K. Quinoline-3-carboxylic acids "DNA minor groove-binding agent". Anticancer. Agents Med. Chem., 2022, 22(2), 344-348.
[http://dx.doi.org/10.2174/1871520621666210513160714] [PMID: 33992065]
[82]
Mittal, RK; Purohit, P. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent. Anti-Cancer. Agents Med. Chem., 2021, 21(13), 1708-16.
[http://dx.doi.org/10.2174/1871520620999201124214112]
[83]
Kharkar, P.S.; Deodhar, M.N.; Kulkarni, V.M. Design, synthesis, antifungal activity, and ADME prediction of functional analogs of terbinafine. Med. Chem. Res., 2009, 18(6), 421-432.
[http://dx.doi.org/10.1007/s00044-008-9138-8]
[84]
Kumar, S.; Bawa, S.; Drabu, S.; Panda, B.P. Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents. Med. Chem. Res., 2011, 20(8), 1340-1348.
[http://dx.doi.org/10.1007/s00044-010-9463-6]
[85]
Yang, G.Z.; Zhu, J.K.; Yin, X.D.; Yan, Y.F.; Wang, Y.L.; Shang, X.F.; Liu, Y.Q.; Zhao, Z.M.; Peng, J.W.; Liu, H. Design, synthesis, and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J. Agric. Food Chem., 2019, 67(41), 11340-11353.
[http://dx.doi.org/10.1021/acs.jafc.9b04224] [PMID: 31532201]
[86]
Zhang, Z.; Liu, M.; Liu, W.; Xiang, J.; Li, J.; Li, Z.; Liu, X.; Huang, M.; Liu, A.; Zheng, X. Synthesis and fungicidal activities of perfluoropropan-2-yl-based novel quinoline derivatives. Heterocycl. Commun., 2019, 25(1), 91-97.
[http://dx.doi.org/10.1515/hc-2019-0002]
[87]
Rossiter, S.; Péron, J.M.; Whitfield, P.J.; Jones, K. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes. Bioorg. Med. Chem. Lett., 2005, 15(21), 4806-4808.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.044] [PMID: 16165359]
[88]
Fournet, A.; Barrios, A.A.; Muñoz, V.; Hocquemiller, R.; Cavé, A.; Bruneton, J. 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob. Agents Chemother., 1993, 37(4), 859-863.
[http://dx.doi.org/10.1128/AAC.37.4.859] [PMID: 8494383]
[89]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J.F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: Potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[http://dx.doi.org/10.1016/j.bmc.2003.09.007] [PMID: 14604664]
[90]
Proisl, K.; Kafka, S.; Kosmrlj, J. Chemistry and applications of 4-hydroxyquinolin-2-one and quinoline-2, 4-dionebased compounds. Curr. Org. Chem., 2017, 21(19), 1949-1975.
[http://dx.doi.org/10.2174/1385272821666170711155631]
[91]
DeVita, R.J.; Goulet, M.T.; Wyvratt, M.J.; Fisher, M.H.; Lo, J.L.; Yang, Y.T.; Cheng, K.; Smith, R.G. Investigation of the 4-O-alkylamine substituent of non-peptide quinolone GnRH receptor antagonists. Bioorg. Med. Chem. Lett., 1999, 9(17), 2621-2624.
[http://dx.doi.org/10.1016/S0960-894X(99)00447-3] [PMID: 10498221]
[92]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[http://dx.doi.org/10.1016/j.bmc.2009.02.026] [PMID: 19285414]
[93]
Taran, S.G.; Ukrainets, I.V.; Sidorenko, L.V.; Gorokhova, O.V.; Jaradat, N.A. 4-Hydroxy-2-quinolones. 44. Synthesis of 2-R-3-oxomorpholino [5, 6-c]-6-R′-Quinolin-5-ones. Chem. Heterocycl. Compd., 2000, 36(8), 944-947.
[http://dx.doi.org/10.1007/BF02256978]
[94]
Singh, I.P.; Bodiwala, H.S. Recent advances in anti-HIV natural products. Nat. Prod. Rep., 2010, 27(12), 1781-1800.
[http://dx.doi.org/10.1039/c0np00025f] [PMID: 20976350]
[95]
Vlietinck, A.J.; De Bruyne, T.; Apers, S.; Pieters, L.A. Plant-derived leading compounds for chemotherapy of Human Immunodeficiency Virus (HIV) infection. Planta Med., 1998, 64(2), 97-109.
[http://dx.doi.org/10.1055/s-2006-957384] [PMID: 9525100]
[96]
Cos, P.; Maes, L.; Vlietinck, A.; Pieters, L. Plant-derived leading compounds for chemotherapy of Human Immunodeficiency Virus (HIV) infection - an update (1998 - 2007). Planta Med., 2008, 74(11), 1323-1337.
[http://dx.doi.org/10.1055/s-2008-1081314] [PMID: 18671200]
[97]
Fournet, A.; Mahieux, R.; Fakhfakh, M.A.; Franck, X.; Hocquemiller, R.; Figadère, B. Substituted quinolines induce inhibition of proliferation of HTLV-1 infected cells. Bioorg. Med. Chem. Lett., 2003, 13(5), 891-894.
[http://dx.doi.org/10.1016/S0960-894X(02)01085-5] [PMID: 12617915]
[98]
Lucero, B.; Gomes, C.R.; Frugulhetti, I.C.; Faro, L.V.; Alvarenga, L.; de Souza, M.C.; de Souza, T.M.; Ferreira, V.F. Synthesis and anti-HSV-1 activity of quinolonic acyclovir analogues. Bioorg. Med. Chem. Lett., 2006, 16(4), 1010-1013.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.111] [PMID: 16321530]
[99]
Majerz-Maniecka, K.; Musiol, R.; Nitek, W.; Oleksyn, B.J.; Mouscadet, J.F.; Le Bret, M.; Polanski, J. Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(4), 1005-1009.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.083] [PMID: 16289813]
[100]
Tabassum, R.; Ashfaq, M.; Oku, H. Current pharmaceutical aspects of synthetic quinoline derivatives. Mini Rev. Med. Chem., 2021, 21(10), 1152-1172.
[http://dx.doi.org/10.2174/1389557520999201214234735] [PMID: 33319670]
[101]
Alaylar, B.; Aygün, B.; Turhan, K.; Karadayi, G.; Şakar, E.; Singh, V.P.; Sayyed, M.I.; Pelit, E.; Karabulut, A.; Güllüce, M.; Turgut, Z.; Isaoglu, M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem., 2021, 184, 109471.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109471]
[102]
Wang, M.; Zhang, G.; Zhao, J.; Cheng, N.; Wang, Y.; Fu, Y.; Zheng, Y.; Wang, J.; Zhu, M.; Cen, S.; He, J.; Wang, Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem., 2021, 214, 113208.
[http://dx.doi.org/10.1016/j.ejmech.2021.113208] [PMID: 33571829]
[103]
Daoud, D.; Hamani, H.; Douadi, T. Novel heterocyclic quinoline derivatives as green environmental corrosion inhibitors for carbon steel in HCl solution: An experimental and theoretical investigation. J. Adhes. Sci. Technol., 2021, 35(21), 1-27.
[http://dx.doi.org/10.1080/01694243.2021.1885923]
[104]
Lewinska, G.; Sanetra, J.; Marszalek, K.W. Application of quinoline derivatives in third-generation photovoltaics. J. Mater. Sci. Mater. Electron., 2021, 32(14), 1-5.
[http://dx.doi.org/10.1007/s10854-021-06225-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy