Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

An Overview of Dihydroartemisinin as a Promising Lead Compound for Development of Anticancer Agents

Author(s): Olagoke Zacchaeus Olatunde, Jianping Yong* and Canzhong Lu*

Volume 23, Issue 3, 2023

Published on: 13 September, 2022

Page: [265 - 289] Pages: 25

DOI: 10.2174/1389557522666220425124923

Price: $65

Abstract

Dihydroartemisinin (DHA) is a derivative of artemisinin, which firstly showed higher antimalarial activity. Over the years, DHA has also been discovered to exhibit higher anticancer efficacy without adverse side effects. Although some shortcomings have been discovered during biological evaluation (such as poor aqueous solubility, short half-life, and initial burst release effect), several attempts have been developed to overcome these shortcomings. For example, appropriate delivery techniques were used to improve its anticancer efficacy. In this minireview, we focused on summarizing the anticancer mechanisms, anticancer efficacy of free DHA and in combination therapies, hybrids, and nanoparticle formulations, which will provide adequate insights for its clinical use as anticancer agents, and on the design and synthesis of DHA derivatives for the development of anticancer agents.

Keywords: Dihydroartemisinin, derivatives, anticancer mechanisms, shortcomings, hybrids, nanoparticles

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Hsiao, W.L.W.; Liu, L. The role of traditional Chinese herbal medicines in cancer therapy--from TCM theory to mechanistic insights. Planta Med., 2010, 76(11), 1118-1131.
[http://dx.doi.org/10.1055/s-0030-1250186] [PMID: 20635308]
[3]
Crespo-Ortiz, M.P.; Wei, M.Q. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug. J. Biomed. Biotechnol., 2012, 2012, 1-18.
[4]
Sun, X.; Yan, P.; Zou, C.; Wong, Y.K.; Shu, Y.; Lee, Y.M.; Zhang, C.; Yang, N.D.; Wang, J.; Zhang, J. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med. Res. Rev., 2019, 39(6), 2172-2193.
[http://dx.doi.org/10.1002/med.21580] [PMID: 30972803]
[5]
Wang, J.G.; Xu, C.C.; Wong, Y.K.; Li, Y.J.; Liao, F.L.; Jiang, T.L.; Tu, Y.Y. Artemisinin, the magic drug discovered from traditional Chinese Medicine. Engineering (Beijing), 2019, 5(1), 32-39.
[http://dx.doi.org/10.1016/j.eng.2018.11.011]
[6]
Yuan, Y.N.; Ting, L.J.; Zhou, X.; Liu, Y. Discovery and development of artemisinin. Kexue Tongbao, 2017, 62(18), 1914-1927.
[http://dx.doi.org/10.1360/N972017-00320]
[7]
O’Neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin--the debate continues. Molecules, 2010, 15(3), 1705-1721.
[http://dx.doi.org/10.3390/molecules15031705] [PMID: 20336009]
[8]
Tan, R.X.; Zheng, W.F.; Tang, H.Q. Biologically active substances from the genus Artemisia. Planta Med., 1998, 64(4), 295-302.
[http://dx.doi.org/10.1055/s-2006-957438] [PMID: 9619108]
[9]
Yu, J.Y.; Li, X.Q.; Wei, M.X. Synthesis and biological activities of artemisinin-piperazine-dithiocarbamate derivatives. Eur. J. Med. Chem., 2019, 169, 21-28.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.071] [PMID: 30852384]
[10]
Gu, X.; Peng, Y.; Zhao, Y.; Liang, X.; Tang, Y.; Liu, J. A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer. Eur. J. Pharmacol., 2019, 858, 172382.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.011] [PMID: 31112710]
[11]
Magoulas, G.E.; Tsigkou, T.; Skondra, L.; Lamprou, M.; Tsoukala, P.; Kokkinogouli, V.; Pantazaka, E.; Papaioannou, D.; Athanassopoulos, C.M.; Papadimitriou, E. Synthesis of nοvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents. Bioorg. Med. Chem., 2017, 25(14), 3756-3767.
[http://dx.doi.org/10.1016/j.bmc.2017.05.018] [PMID: 28549888]
[12]
Appalasamy, S.; Lo, K.Y.; Ch’ng, S.J.; Nornadia, K.; Othman, A.S.; Chan, L.K. Antimicrobial activity of artemisinin and precursor derived from in vitro plantlets of Artemisia annua L. BioMed Res. Int., 2014, 2014, 215872-215872.
[http://dx.doi.org/10.1155/2014/215872] [PMID: 24575401]
[13]
Kim, W.S.; Choi, W.J.; Lee, S.; Kim, W.J.; Lee, D.C.; Sohn, U.D.; Shin, H.S.; Kim, W. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J. Physiol. Pharmacol., 2015, 19(1), 21-27.
[http://dx.doi.org/10.4196/kjpp.2015.19.1.21] [PMID: 25605993]
[14]
Wang, X.; Zheng, B.; Ashraf, U.; Zhang, H.; Cao, C.; Li, Q.; Chen, Z.; Imran, M.; Chen, H.; Cao, S.; Ye, J. Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Antiviral Res., 2020, 179, 104810.
[http://dx.doi.org/10.1016/j.antiviral.2020.104810] [PMID: 32360948]
[15]
Liu, X.; Cao, J.; Huang, G.; Zhao, Q.; Shen, J. Biological activities of artemisinin derivatives beyond malaria. Curr. Top. Med. Chem., 2019, 19(3), 205-222.
[http://dx.doi.org/10.2174/1568026619666190122144217] [PMID: 30674260]
[16]
Gong, Y.; Gallis, B.M.; Goodlett, D.R.; Yang, Y.; Lu, H.; Lacoste, E.; Lai, H.; Sasaki, T. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines. Anticancer Res., 2013, 33(1), 123-132.
[PMID: 23267137]
[17]
Efferth, T. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr. Drug Targets, 2006, 7(4), 407-421.
[http://dx.doi.org/10.2174/138945006776359412] [PMID: 16611029]
[18]
Sadava, D.; Phillips, T.; Lin, C.; Kane, S.E. Transferrin overcomes drug resistance to artemisinin in human small-cell lung carcinoma cells. Cancer Lett., 2002, 179(2), 151-156.
[http://dx.doi.org/10.1016/S0304-3835(02)00005-8] [PMID: 11888669]
[19]
Li, T.; Yao, L. Basic and clinical researches on antitumor effects of antimalarial artemisinin and its derivatives. Zhongguo Xinyao yu Linchuang Zazhi, 2008, 27, 227-230.
[20]
Cloete, T.T.; de Kock, C.; Smith, P.J.; N’Da, D.D. Synthesis, in vitro antiplasmodial activity and cytotoxicity of a series of artemisinin-triazine hybrids and hybrid-dimers. Eur. J. Med. Chem., 2014, 76, 470-481.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.040] [PMID: 24602791]
[21]
Jana, S.; Iram, S.; Thomas, J.; Liekens, S.; Dehaen, W. Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorg. Med. Chem., 2017, 25(14), 3671-3676.
[http://dx.doi.org/10.1016/j.bmc.2017.04.041] [PMID: 28529044]
[22]
Zhu, W.; Li, Y.; Zhao, D.; Li, H.; Zhang, W.; Xu, J.; Hou, J.; Feng, X.; Wang, H. Dihydroartemisinin suppresses glycolysis of LNCaP cells by inhibiting PI3K/AKT pathway and downregulating HIF-1α expression. Life Sci., 2019, 233, 116730.
[http://dx.doi.org/10.1016/j.lfs.2019.116730] [PMID: 31390552]
[23]
Gao, P.; Shen, S.; Li, X.; Liu, D.; Meng, Y.; Liu, Y.; Zhu, Y.; Zhang, J.; Luo, P.; Gu, L. Dihydroartemisinin inhibits the proliferation of leukemia cells k562 by suppressing pkm2 and glut1 mediated aerobic glycolysis. Drug Des. Devel. Ther., 2020, 14, 2091-2100.
[http://dx.doi.org/10.2147/DDDT.S248872] [PMID: 32546972]
[24]
Lu, M.; Sun, L.; Zhou, J.; Yang, J. Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondria-dependent pathway. Tumour Biol., 2014, 35(6), 5307-5314.
[http://dx.doi.org/10.1007/s13277-014-1691-9] [PMID: 24519064]
[25]
Im, E.; Yeo, C.; Lee, H.J.; Lee, E.O. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life Sci., 2018, 192, 286-292.
[http://dx.doi.org/10.1016/j.lfs.2017.11.008] [PMID: 29128513]
[26]
Lam, N.S.; Long, X.; Wong, J.W.; Griffin, R.C.; Doery, J.C.G. Artemisinin and its derivatives: A potential treatment for leukemia. Anticancer Drugs, 2019, 30(1), 1-18.
[http://dx.doi.org/10.1097/CAD.0000000000000697] [PMID: 30540593]
[27]
Zhou, Y.; Wang, X.; Zhang, J.; He, A.; Wang, Y.L.; Han, K.; Su, Y.; Yin, J.; Lv, X.; Hu, H. Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 2017, 8(11), 18260-18270.
[http://dx.doi.org/10.18632/oncotarget.15353] [PMID: 28209917]
[28]
Nunes, J.J.; Pandey, S.K.; Yadav, A.; Goel, S.; Ateeq, B. Targeting NF-kappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens. Neoplasia, 2017, 19(4), 333-345.
[http://dx.doi.org/10.1016/j.neo.2017.02.002] [PMID: 28319807]
[29]
Kadioglu, O. Chan, A.; Cong Ling Qiu, A.; Wong, V.K.W.; Colligs, V.; Wecklein, S.; Freund-Henni Rached, H.; Efferth, T.; Hsiao, W.W. Artemisinin derivatives target topoisomerase 1 and cause DNA Damage in silico and in vitro. Front. Pharmacol., 2017, 8, 711.
[http://dx.doi.org/10.3389/fphar.2017.00711] [PMID: 29062278]
[30]
Ohtaka, M.; Itoh, M.; Tohda, S. BMI1 inhibitors down-regulate NOTCH signaling and suppress proliferation of acute leukemia cells. Anticancer Res., 2017, 37(11), 6047-6053.
[PMID: 29061784]
[31]
Lai, H.C.; Singh, N.P.; Sasaki, T. Development of artemisinin compounds for cancer treatment. Invest. New Drugs, 2013, 31(1), 230-246.
[http://dx.doi.org/10.1007/s10637-012-9873-z] [PMID: 22935909]
[32]
Li, Z.; Li, Q.; Wu, J.; Wang, M.; Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: What else do we need to do? Molecules, 2016, 21(10), 1331.
[http://dx.doi.org/10.3390/molecules21101331] [PMID: 27739410]
[33]
Zhang, C.Z.; Zhang, H.; Yun, J.; Chen, G.G.; Lai, P.B. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem. Pharmacol., 2012, 83(9), 1278-1289.
[http://dx.doi.org/10.1016/j.bcp.2012.02.002] [PMID: 22342732]
[34]
Mao, H.; Gu, H.; Qu, X.; Sun, J.; Song, B.; Gao, W.; Liu, J.; Shao, Q. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int. J. Mol. Med., 2013, 31(1), 213-218.
[http://dx.doi.org/10.3892/ijmm.2012.1176] [PMID: 23138847]
[35]
Luo, J.; Chen, X.; Chen, G.; Zhou, X.; Lu, X.; Ling, Y.; Zhang, S.; Zhu, W.; Cao, J. Dihydroartemisinin induces radiosensitivity in cervical cancer cells by modulating cell cycle progression. Saudi Med. J., 2013, 34(3), 254-260.
[PMID: 23475089]
[36]
Tong, Y.; Liu, Y.; Zheng, H.; Zheng, L.; Liu, W.; Wu, J.; Ou, R.; Zhang, G.; Li, F.; Hu, M.; Liu, Z.; Lu, L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget, 2016, 7(21), 31413-31428.
[http://dx.doi.org/10.18632/oncotarget.8920] [PMID: 27119499]
[37]
Ma, Q.; Liao, H.; Xu, L.; Li, Q.; Zou, J.; Sun, R.; Xiao, D.; Liu, C.; Pu, W.; Cheng, J.; Zhou, X.; Huang, G.; Yao, L.; Zhong, X.; Guo, X. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chin. Med., 2020, 15(37), 37.
[http://dx.doi.org/10.1186/s13020-020-00318-w] [PMID: 32351616]
[38]
Fan, H.N.; Zhu, M.Y.; Peng, S.Q.; Zhu, J.S.; Zhang, J.; Qu, G.Q. Dihydroartemisinin inhibits the growth and invasion of gastric cancer cells by regulating cyclin D1-CDK4-Rb signaling. Pathol. Res. Pract., 2020, 216(2), 152795.
[http://dx.doi.org/10.1016/j.prp.2019.152795] [PMID: 31879047]
[39]
Chen, H.; Sun, B.; Wang, S.; Pan, S.; Gao, Y.; Bai, X.; Xue, D. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: Involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. J. Cancer Res. Clin. Oncol., 2010, 136(6), 897-903.
[http://dx.doi.org/10.1007/s00432-009-0731-0] [PMID: 19941148]
[40]
Lu, J.J.; Meng, L.H.; Shankavaram, U.T.; Zhu, C.H.; Tong, L.J.; Chen, G.; Lin, L.P.; Weinstein, J.N.; Ding, J. Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells. Biochem. Pharmacol., 2010, 80(1), 22-30.
[http://dx.doi.org/10.1016/j.bcp.2010.02.016] [PMID: 20206143]
[41]
Ontikatze, T.; Handrick, R.; Grimm, F.; Henke, G.; Daniel, P.T.; Belka, C.; Jendrossek, V. Dihydroartemisinin is a hypoxia active anticancer drug. EJC supplements, 2010, 8(5), 83-154.
[42]
He, Q.; Shi, J.; Shen, X.L.; An, J.; Sun, H.; Wang, L.; Hu, Y.J.; Sun, Q.; Fu, L.C.; Sheikh, M.S.; Huang, Y. Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol. Ther., 2010, 9(10), 819-824.
[http://dx.doi.org/10.4161/cbt.9.10.11552] [PMID: 20224297]
[43]
Ji, Y.; Zhang, Y.C.; Pei, L.B.; Shi, L.L.; Yan, J.L.; Ma, X.H. Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol. Cell. Biochem., 2011, 351(1-2), 99-108.
[http://dx.doi.org/10.1007/s11010-011-0716-6] [PMID: 21234653]
[44]
Gao, X.; Luo, Z.; Xiang, T.; Wang, K.; Li, J.; Wang, P. Dihydroartemisinin induces endoplasmic reticulum stress-mediated apoptosis in HepG2 human hepatoma cells. Tumori J., 2011, 97(6), 771-780.
[http://dx.doi.org/10.1177/030089161109700615] [PMID: 22322845]
[45]
Cabello, C.M.; Lamore, S.D.; Bair, W.B., III; Qiao, S.; Azimian, S.; Lesson, J.L.; Wondrak, G.T. The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest. New Drugs, 2012, 30(4), 1289-1301.
[http://dx.doi.org/10.1007/s10637-011-9676-7] [PMID: 21547369]
[46]
Du, X.X.; Li, Y.J.; Wu, C.L.; Zhou, J.H.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Huang, P.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Jia, D.X.; Bai, Y.X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424.
[http://dx.doi.org/10.1016/j.biopha.2013.01.013] [PMID: 23582790]
[47]
Sun, H.; Meng, X.; Han, J.; Zhang, Z.; Wang, B.; Bai, X.; Zhang, X. Anti-cancer activity of DHA on gastric cancer--an in vitro and in vivo study. Tumour Biol., 2013, 34(6), 3791-3800.
[http://dx.doi.org/10.1007/s13277-013-0963-0] [PMID: 23907579]
[48]
Liao, K.; Li, J.; Wang, Z. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8684-8691.
[PMID: 25674233]
[49]
Cao, L.; Duanmu, W.; Yin, Y.; Zhou, Z.; Ge, H.; Chen, T.; Tan, L.; Yu, A.; Hu, R.; Fei, L.; Feng, H. Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3. Pharmazie, 2014, 69(10), 752-758.
[PMID: 25985565]
[50]
Hu, C.J.; Zhou, L.; Cai, Y. Dihydroartemisinin induces apoptosis of cervical cancer cells via upregulation of RKIP and downregulation of bcl-2. Cancer Biol. Ther., 2014, 15(3), 279-288.
[http://dx.doi.org/10.4161/cbt.27223] [PMID: 24335512]
[51]
Zhao, X.; Zhong, H.; Wang, R.; Liu, D.; Waxman, S.; Zhao, L.; Jing, Y. Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety. Oncotarget, 2015, 6(8), 5582-5596.
[http://dx.doi.org/10.18632/oncotarget.3336] [PMID: 25714024]
[52]
Qi, L.; Yang, Y.; Liu, Y.C.; Zhu, T.X.; Jin, S.; Zang, L.; Zhang, Y.Y.; Ren, K. The inhibitory effect of dihydroartemisinin on the growth of neuroblastoma cells. Asian Pac. J. Trop. Biomed., 2016, 6(4), 279-282.
[http://dx.doi.org/10.1016/j.apjtb.2016.01.013]
[53]
Jia, L.F.; Song, Q.; Zhou, C.Y.; Li, X.M.; Pi, L.H.; Ma, X.R.; Li, H.; Lu, X.Y.; Shen, Y.P. Dihydroartemisinin as a putative STAT3 inhibitor, suppresses the growth of head and neck squamous cell carcinoma by targeting Jak2/STAT3 signaling. PLoS One, 2016, 11(1), e0147157.
[http://dx.doi.org/10.1371/journal.pone.0147157]
[54]
Zhang, S.; Shi, L.; Ma, H.; Li, H.; Li, Y.; Lu, Y.; Wang, Q.; Li, W. Dihydroartemisinin induces apoptosis in human gastric cancer cell line BGC-823 through activation of JNK1/2 and p38 MAPK signaling pathways. J. Recept. Signal Transduct. Res., 2017, 37(2), 174-180.
[http://dx.doi.org/10.1080/10799893.2016.1203942] [PMID: 27401020]
[55]
Xu, G.; Zou, W.Q.; Du, S.J.; Wu, M.J.; Xiang, T.X.; Luo, Z.G. Mechanism of dihydroartemisinin-induced apoptosis in prostate cancer PC3 cells: An iTRAQ-based proteomic analysis. Life Sci., 2016, 157, 1-11.
[http://dx.doi.org/10.1016/j.lfs.2016.05.033] [PMID: 27234895]
[56]
Zhu, W.H.; Zhang, W.; Xu, N.; Li, Y.W.; Xu, J.J.; Zhang, H.; Li, Y.; Lv, S.J.; Liu, W.S.; Wang, H.Y. Dihydroartemisinin induces apoptosis and downregulates glucose metabolism in JF-305 pancreatic cancer cells. RSC Advances, 2018, 8(37), 20692-20700.
[http://dx.doi.org/10.1039/C8RA00565F]
[57]
Wang, D.; Zhong, B.; Li, Y.; Liu, X. Dihydroartemisinin increases apoptosis of colon cancer cells through targeting Janus kinase 2/signal transducer and activator of transcription 3 signaling. Oncol. Lett., 2018, 15(2), 1949-1954.
[PMID: 29434895]
[58]
Kong, J.; Li, S.S.; Ma, Q.; Liu, L.; Zheng, L.J. Effects of dihydroartemisinin on HSP70 expression in human prostate cancer PC‐3 cells. Andrologia, 2019, 51(6), 1-8.
[http://dx.doi.org/10.1111/and.13280]
[59]
Wu, R.; Gao, Y.; Wu, J.; Wang, C.; Yang, L. Semi-synthetic product dihydroartemisinin inhibited fibronectin-1 and integrin-β1 and interfered with the migration of HCCLM6 cells via PI3K-AKT pathway. Biotechnol. Lett., 2020, 42(6), 917-926.
[http://dx.doi.org/10.1007/s10529-020-02839-8] [PMID: 32072334]
[60]
Yu, R.; Jin, L.; Li, F.; Fujimoto, M.; Wei, Q.; Lin, Z.; Ren, X.; Jin, Q.; Li, H.; Meng, F.; Jin, G. Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner. J. Dermatol. Sci., 2020, 99(3), 193-202.
[http://dx.doi.org/10.1016/j.jdermsci.2020.08.001] [PMID: 32859456]
[61]
Wang, Z.; Hu, W.; Zhang, J.L.; Wu, X.H.; Zhou, H.J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio, 2012, 2(1), 103-112.
[http://dx.doi.org/10.1016/j.fob.2012.05.002] [PMID: 23650588]
[62]
Jia, G.; Kong, R.; Ma, Z.B.; Han, B.; Wang, Y.W.; Pan, S.H.; Li, Y.H.; Sun, B. The activation of c-Jun NH₂-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2014, 33(8), 8.
[http://dx.doi.org/10.1186/1756-9966-33-8] [PMID: 24438216]
[63]
Hu, W.; Chen, S.S.; Zhang, J.L.; Lou, X.E.; Zhou, H.J. Dihydroartemisinin induces autophagy by suppressing NF-κB activation. Cancer Lett., 2014, 343(2), 239-248.
[http://dx.doi.org/10.1016/j.canlet.2013.09.035] [PMID: 24099910]
[64]
Shi, X.; Wang, L.; Li, X.; Bai, J.; Li, J.; Li, S.; Wang, Z.; Zhou, M. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress. Oncotarget, 2017, 8(28), 45981-45993.
[http://dx.doi.org/10.18632/oncotarget.17520] [PMID: 28526807]
[65]
Liu, X.; Wu, J.; Fan, M.; Shen, C.; Dai, W.; Bao, Y.; Liu, J.H.; Yu, B.Y. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis., 2018, 9(11), 1048.
[http://dx.doi.org/10.1038/s41419-018-1006-y] [PMID: 30323180]
[66]
Wang, L.; Li, J.; Shi, X.; Li, S.; Tang, P.M.; Li, Z.; Li, H.; Wei, C. Antimalarial Dihydroartemisinin triggers autophagy within HeLa cells of human cervical cancer through Bcl-2 phosphorylation at Ser70. Phytomedicine, 2019, 52, 147-156.
[http://dx.doi.org/10.1016/j.phymed.2018.09.221] [PMID: 30599894]
[67]
Feng, T.S.; Guantai, E.M.; Nell, M.J.; van Rensburg, C.E.J.; Hoppe, H.C.; Chibale, K. Antiplasmodial and antitumor activity of dihydroartemisinin analogs derived via the aza-Michael addition reaction. Bioorg. Med. Chem. Lett., 2011, 21(10), 2882-2886.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.090] [PMID: 21489789]
[68]
Chan, H.W.; Singh, N.P.; Lai, H.C. Cytotoxicity of dihydroartemisinin toward Molt-4 cells attenuated by N-tert-butyl-alpha-phenylnitrone and deferoxamine. Anticancer Res., 2013, 33(10), 4389-4393.
[PMID: 24123007]
[69]
Stockwin, L.H.; Han, B.; Yu, S.X.; Hollingshead, M.G.; ElSohly, M.A.; Gul, W.; Slade, D.; Galal, A.M.; Newton, D.L.; Bumke, M.A. Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int. J. Cancer, 2009, 125(6), 1266-1275.
[http://dx.doi.org/10.1002/ijc.24496] [PMID: 19533749]
[70]
Elhassanny, A.E.M.; Soliman, E.; Marie, M.; McGuire, P.; Gul, W.; ElSohly, M.A.; Van Dross, R. Heme-dependent ER stress apoptosis: A mechanism for the selective toxicity of the dihydroartemisinin, NSC735847, in colorectal cancer cells. Front. Oncol, 2020, 10, 965.1-16.
[71]
Shi, Z.Z.; Fan, Z.W.; Chen, Y.X.; Xie, X.F.; Jiang, W.; Wang, W.J.; Qiu, Y.T.; Bai, J. Ferroptosis in carcinoma: Regulatory mechanisms and new method for cancer therapy. OncoTargets Ther., 2019, 12, 11291-11304.
[http://dx.doi.org/10.2147/OTT.S232852] [PMID: 31908494]
[72]
Lu, J.J.; Chen, S.M.; Zhang, X.W.; Ding, J.; Meng, L.H. The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest. New Drugs, 2011, 29(6), 1276-1283.
[http://dx.doi.org/10.1007/s10637-010-9481-8] [PMID: 20607588]
[73]
Ba, Q.; Zhou, N.; Duan, J.; Chen, T.; Hao, M.; Yang, X.; Li, J.; Yin, J.; Chu, R.; Wang, H. Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1. PLoS One, 2012, 7(8), e42703.
[http://dx.doi.org/10.1371/journal.pone.0042703] [PMID: 22900042]
[74]
Chen, Y.; Mi, Y.; Zhang, X.; Ma, Q.; Song, Y.; Zhang, L.; Wang, D.; Xing, J.; Hou, B.; Li, H.; Jin, H.; Du, W.; Zou, Z. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 402.
[http://dx.doi.org/10.1186/s13046-019-1413-7] [PMID: 31519193]
[75]
Yuan, B.; Liao, F.; Shi, Z.Z.; Ren, Y.; Deng, X.L.; Yang, T.T.; Li, D.Y.; Li, R.F.; Pu, D.D.; Wang, Y.J.; Tan, Y.; Yang, Z.; Zhang, Y.H. Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of lung cancer cells by inhibiting PRIM2/SLC7A11 axis. OncoTargets Ther., 2020, 13, 10829-10840.
[http://dx.doi.org/10.2147/OTT.S248492] [PMID: 33149601]
[76]
Hwang, Y.P.; Yun, H.J.; Kim, H.G.; Han, E.H.; Lee, G.W.; Jeong, H.G. Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms. Biochem. Pharmacol., 2010, 79(12), 1714-1726.
[http://dx.doi.org/10.1016/j.bcp.2010.02.003] [PMID: 20152819]
[77]
Han, P.; Luan, Y.; Liu, Y.; Yu, Z.; Li, J.; Sun, Z.; Chen, G.; Cui, B. Small interfering RNA targeting Rac1 sensitizes colon cancer to dihydroartemisinin-induced cell cycle arrest and inhibited cell migration by suppressing NFκB activity. Mol. Cell. Biochem., 2013, 379(1-2), 171-180.
[http://dx.doi.org/10.1007/s11010-013-1639-1] [PMID: 23559092]
[78]
Odaka, Y.; Xu, B.; Luo, Y.; Shen, T.; Shang, C.; Wu, Y.; Zhou, H.; Huang, S. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis, 2014, 35(1), 192-200.
[http://dx.doi.org/10.1093/carcin/bgt277] [PMID: 23929438]
[79]
Li, Y.J.; Zhou, J.H.; Du, X.X.; Jia, X.; Wu, C.L.; Huang, P.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Liu, T.; Jiang, C.L.; Wang, L.Y.; Bai, Y.X. Dihydroartemisinin accentuates the anti-tumor effects of photodynamic therapy via inactivation of NF-κB in Eca109 and Ec9706 esophageal cancer cells. Cell. Physiol. Biochem., 2014, 33(5), 1527-1536.
[http://dx.doi.org/10.1159/000358716] [PMID: 24854841]
[80]
Jiang, C.; Li, S.; Li, Y.; Bai, Y. Anticancer effects of dihydroartemisinin on human esophageal cancer cells in vivo. Anal. Cell. Pathol. (Amst.), 2018, 2018, 8759745.
[http://dx.doi.org/10.1155/2018/8759745] [PMID: 29888170]
[81]
Chen, J.; Chen, X.; Wang, F.; Gao, H.; Hu, W. Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathway. Neurol. Sci., 2015, 36(3), 435-440.
[http://dx.doi.org/10.1007/s10072-014-1963-6] [PMID: 25301262]
[82]
Que, Z.Y.; Wang, P.; Hu, Y.; Xue, Y.X.; Liu, X.B.; Qu, C.B.; Ma, J.; Liu, Y.H. Dihydroartemisin inhibits glioma invasiveness via a ROS to P53 to β-catenin signaling 2016, 119, 72-88.
[83]
Chen, R.; Lu, X.; Li, Z.; Sun, Y.; He, Z.; Li, X. Dihydroartemisinin prevents progression and metastasis of head and neck squamous cell carcinoma by inhibiting polarization of macrophages in tumor microenvironment. OncoTargets Ther., 2020, 13, 3375-3387.
[http://dx.doi.org/10.2147/OTT.S249046] [PMID: 32425545]
[84]
Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med., 2000, 6(4), 389-395.
[http://dx.doi.org/10.1038/74651] [PMID: 10742145]
[85]
Aoudjit, F.; Vuori, K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: A role for c-flip and implications for anoikis. J. Cell Biol., 2001, 152(3), 633-643.
[http://dx.doi.org/10.1083/jcb.152.3.633] [PMID: 11157988]
[86]
Wang, S.J.; Sun, B.; Cheng, Z.X.; Zhou, H.X.; Gao, Y.; Kong, R.; Chen, H.; Jiang, H.C.; Pan, S.H.; Xue, D.B.; Bai, X.W. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother. Pharmacol., 2011, 68(6), 1421-1430.
[http://dx.doi.org/10.1007/s00280-011-1643-7] [PMID: 21479633]
[87]
Zhou, H.J.; Zhang, J.L.; Li, A.; Wang, Z.; Lou, X.E. Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitro. Cancer Chemother. Pharmacol., 2010, 66(1), 21-29.
[http://dx.doi.org/10.1007/s00280-009-1129-z] [PMID: 19756601]
[88]
D’Alessandro, S.; Basilico, N.; Corbett, Y.; Scaccabarozzi, D.; Omodeo-Salè, F.; Saresella, M.; Marventano, I.; Vaillant, M.; Olliaro, P.; Taramelli, D. Hypoxia modulates the effect of dihydroartemisinin on endothelial cells. Biochem. Pharmacol., 2011, 82(5), 476-484.
[http://dx.doi.org/10.1016/j.bcp.2011.06.002] [PMID: 21684264]
[89]
Soomro, S.; Langenberg, T.; Mahringer, A.; Konkimalla, V.B.; Horwedel, C.; Holenya, P.; Brand, A.; Cetin, C.; Fricker, G.; Dewerchin, M.; Carmeliet, P.; Conway, E.M.; Jansen, H.; Efferth, T. Design of novel artemisinin-like derivatives with cytotoxic and anti-angiogenic properties. J. Cell. Mol. Med., 2011, 15(5), 1122-1135.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01120.x] [PMID: 20629994]
[90]
Wu, B.; Hu, K.; Li, S.; Zhu, J.; Gu, L.; Shen, H.; Hambly, B.D.; Bao, S.; Di, W. Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol. Rep., 2012, 27(1), 101-108.
[PMID: 22025319]
[91]
Ba, Q.; Duan, J.; Tian, J.Q.; Wang, Z.L.; Chen, T.; Li, X.G.; Chen, P.Z.; Wu, S.J.; Xiang, L.; Li, J.Q.; Chu, R.A.; Wang, H.; Wang, H. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish. Acta Pharmacol. Sin., 2013, 34(8), 1101-1107.
[http://dx.doi.org/10.1038/aps.2013.48] [PMID: 23708556]
[92]
Dong, F.; Zhou, X.; Li, C.; Yan, S.; Deng, X.; Cao, Z.; Li, L.; Tang, B.; Allen, T.D.; Liu, J. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol. Ther., 2014, 15(11), 1479-1488.
[http://dx.doi.org/10.4161/15384047.2014.955728] [PMID: 25482945]
[93]
Guo, L.; Dong, F.; Hou, Y.; Cai, W.; Zhou, X.; Huang, A.L.; Yang, M.; Allen, T.D.; Liu, J. Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway. Exp. Ther. Med., 2014, 8(6), 1707-1712.
[http://dx.doi.org/10.3892/etm.2014.1997] [PMID: 25371719]
[94]
Dong, F.; Tian, H.; Yan, S.; Li, L.; Dong, X.; Wang, F.; Li, J.; Li, C.; Cao, Z.; Liu, X.; Liu, J. Dihydroartemisinin inhibits endothelial cell proliferation through the suppression of the ERK signaling pathway. Int. J. Mol. Med., 2015, 35(5), 1381-1387.
[http://dx.doi.org/10.3892/ijmm.2015] [PMID: 25778668]
[95]
Li, Y.; Wang, Y.; Kong, R.; Xue, D.; Pan, S.; Chen, H.; Sun, B. Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network. Oncotarget, 2016, 7(38), 62460-62473.
[http://dx.doi.org/10.18632/oncotarget.11517] [PMID: 27613829]
[96]
Zhang, J.; Guo, L.; Zhou, X.; Dong, F.; Li, L.; Cheng, Z.; Xu, Y.; Liang, J.; Xie, Q.; Liu, J. Dihydroartemisinin induces endothelial cell anoikis through the activation of the JNK signaling pathway. Oncol. Lett., 2016, 12(3), 1896-1900.
[http://dx.doi.org/10.3892/ol.2016.4870] [PMID: 27602117]
[97]
Li, X.; Ba, Q.; Liu, Y.; Yue, Q.; Chen, P.; Li, J.; Zhang, H.; Ying, H.; Ding, Q.; Song, H.; Liu, H.; Zhang, R.; Wang, H. Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov., 2017, 3(1), 17042.
[http://dx.doi.org/10.1038/celldisc.2017.42] [PMID: 29387451]
[98]
Li, L.; Chen, X.; Dong, F.; Liu, Q.; Zhang, C.; Xu, D.; Allen, T.D.; Liu, J. Dihydroartemisinin up-regulates VE-cadherin expression in human renal glomerular endothelial cells. J. Cell. Mol. Med., 2018, 22(3), 2028-2032.
[http://dx.doi.org/10.1111/jcmm.13448] [PMID: 29193726]
[99]
Cheng, Z.; Qi, R.; Li, L.; Liu, Q.; Zhang, W.; Zhou, X.; Xu, D.; Allen, T.D.; Pan, S.; Liu, J. Dihydroartemisinin ameliorates sepsis-induced hyperpermeability of glomerular endothelium via up-regulation of occludin expression. Biomed. Pharmacother., 2018, 99, 313-318.
[http://dx.doi.org/10.1016/j.biopha.2018.01.078] [PMID: 29353206]
[100]
Yu, H.; Liu, J.; Dong, Y.; Xu, M.; Xu, L.; Guan, H.; Xia, X.; Wang, L. Anti-hypoxic effect of dihydroartemisinin on pulmonary artery endothelial cells. Biochem. Biophys. Res. Commun., 2018, 506(4), 840-846.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.176] [PMID: 30391003]
[101]
Niu, N.; Yu, C.; Li, L.; Liu, Q.; Zhang, W.; Liang, K.; Zhu, Y.; Li, J.; Zhou, X.; Tang, J.; Liu, J. Dihydroartemisinin enhances VEGFR1 expression through up-regulation of ETS-1 transcription factor. J. Cancer, 2018, 9(18), 3366-3372.
[http://dx.doi.org/10.7150/jca.25082] [PMID: 30271498]
[102]
Liu, Y.; Gao, S.; Zhu, J.; Zheng, Y.; Zhang, H.; Sun, H. Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway. Cancer Med., 2018, 7(11), 5704-5715.
[http://dx.doi.org/10.1002/cam4.1827] [PMID: 30338663]
[103]
Li, B.; Bu, S.; Sun, J.; Guo, Y.; Lai, D. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(12), 1227-1235.
[http://dx.doi.org/10.1093/abbs/gmy125] [PMID: 30395153]
[104]
Yin, J.; Xia, W.; Zhang, Y.; Ding, G.; Chen, L.; Yang, G.; Huang, S.; Jia, Z.; Zhang, A. Role of dihydroartemisinin in regulating prostaglandin E2 synthesis cascade and inflammation in endothelial cells. Heart Vessels, 2018, 33(11), 1411-1422.
[http://dx.doi.org/10.1007/s00380-018-1190-9] [PMID: 29796776]
[105]
Gao, P.; Wang, L.L.; Liu, J.; Dong, F.; Song, W.; Liao, L.; Wang, B.; Zhang, W.; Zhou, X.; Xie, Q.; Sun, R.; Liu, J. Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway. Life Sci., 2020, 242, 117221.
[http://dx.doi.org/10.1016/j.lfs.2019.117221] [PMID: 31881224]
[106]
Gao, Y.; Cui, M.; Zhong, S.; Feng, C.; Nwobodo, A.K.; Chen, B.; Song, Y.; Wang, Y. Dihydroartemisinin ameliorates LPS-induced neuroinflammation by inhibiting the PI3K/AKT pathway. Metab. Brain Dis., 2020, 35(4), 661-672.
[http://dx.doi.org/10.1007/s11011-020-00533-2] [PMID: 32152798]
[107]
Paccez, J.D.; Duncan, K.; Sekar, D.; Correa, R.G.; Wang, Y.; Gu, X.; Bashin, M.; Chibale, K.; Libermann, T.A.; Zerbini, L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis, 2019, 8(3), 14.
[http://dx.doi.org/10.1038/s41389-019-0122-6] [PMID: 30783079]
[108]
Luo, Y.; Guo, Q.; Zhang, L.; Zhuan, Q.; Meng, L.; Fu, X.; Hou, Y. Dihydroartemisinin exposure impairs porcine ovarian granulosa cells by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Toxicol. Appl. Pharmacol., 2020, 403, 115159.
[http://dx.doi.org/10.1016/j.taap.2020.115159] [PMID: 32721431]
[109]
Feng, M.X.; Hong, J.X.; Wang, Q.; Fan, Y.Y.; Yuan, C.T.; Lei, X.H.; Zhu, M.; Qin, A.; Chen, H.X.; Hong, D. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast cancer cells and osteoclasts. Sci. Rep., 2016, 6(1), 19074.
[http://dx.doi.org/10.1038/srep19074] [PMID: 26743690]
[110]
Zhang, F.; Ma, Q.; Xu, Z.; Liang, H.; Li, H.; Ye, Y.; Xiang, S.; Zhang, Y.; Jiang, L.; Hu, Y.; Wang, Z.; Wang, X.; Zhang, Y.; Gong, W.; Liu, Y. Dihydroartemisinin inhibits TCTP-dependent metastasis in gallbladder cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 68.
[http://dx.doi.org/10.1186/s13046-017-0531-3] [PMID: 28506239]
[111]
Liang, R.; Chen, W.; Fan, H.; Chen, X.; Zhang, J.; Zhu, J.S. Dihydroartemisinin prevents dextran sodium sulphate-induced colitis through inhibition of the activation of NLRP3 inflammasome and p38 MAPK signaling. Int. Immunopharmacol., 2020, 88, 106949.
[http://dx.doi.org/10.1016/j.intimp.2020.106949] [PMID: 32892075]
[112]
Wang, S.J.; Gao, Y.; Chen, H.; Kong, R.; Jiang, H.C.; Pan, S.H.; Xue, D.B.; Bai, X.W.; Sun, B. Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett., 2010, 293(1), 99-108.
[http://dx.doi.org/10.1016/j.canlet.2010.01.001] [PMID: 20137856]
[113]
Kong, R.; Jia, G.; Cheng, Z.X.; Wang, Y.W.; Mu, M.; Wang, S.J.; Pan, S.H.; Gao, Y.; Jiang, H.C.; Dong, D.L.; Sun, B. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5. PLoS One, 2012, 7(5), e37222.
[http://dx.doi.org/10.1371/journal.pone.0037222] [PMID: 22666346]
[114]
Wu, G.S.; Lu, J.J.; Guo, J.J.; Huang, M.Q.; Gan, L.; Chen, X.P.; Wang, Y.T. Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol. Rep., 2013, 65(2), 453-459.
[http://dx.doi.org/10.1016/S1734-1140(13)71021-1] [PMID: 23744430]
[115]
Yang, Y.; Zhang, X.; Wang, X.; Zhao, X.; Ren, T.; Wang, F.; Yu, B. Enhanced delivery of artemisinin and its analogues to cancer cells by their adducts with human serum transferrin. Int. J. Pharm., 2014, 467(1-2), 113-122.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.044] [PMID: 24661944]
[116]
Wang, Q.; Wu, S.; Zhao, X.; Zhao, C.; Zhao, H.; Huo, L. Mechanisms of dihydroartemisinin and dihydroartemisinin/holotransferrin cytotoxicity in T-cell lymphoma cells. PLoS One, 2015, 10(10), e0137331.
[http://dx.doi.org/10.1371/journal.pone.0137331] [PMID: 26502166]
[117]
Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol., 2017, 46, 65-83.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.009] [PMID: 28254675]
[118]
Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci., 2016, 73(11-12), 2195-2209.
[http://dx.doi.org/10.1007/s00018-016-2194-1] [PMID: 27048822]
[119]
Feng, X.; Li, L.; Jiang, H.; Jiang, K.; Jin, Y.; Zheng, J. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: Involvement of apoptosis and autophagy. Biochem. Biophys. Res. Commun., 2014, 444(3), 376-381.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.053] [PMID: 24462866]
[120]
Wickerath, M.; Singh, N.P. Additive cytotoxic effects of dihydroartemisinin and sodium salicylate on cancer cells. Anticancer Res., 2014, 34(7), 3399-3401.
[PMID: 24982346]
[121]
Dai, L.; Wang, L.; Deng, L.; Liu, J.; Lei, J.; Li, D.; He, J. Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung cancer. Sci. Rep., 2014, 4(1), 5871.
[http://dx.doi.org/10.1038/srep05871] [PMID: 25070490]
[122]
Chen, S.S.; Hu, W.; Wang, Z.; Lou, X.E.; Zhou, H.J. p8 attenuates the apoptosis induced by dihydroartemisinin in cancer cells through promoting autophagy. Cancer Biol. Ther., 2015, 16(5), 770-779.
[http://dx.doi.org/10.1080/15384047.2015.1026477] [PMID: 25891535]
[123]
Zhang, Z.S.; Wang, J.; Shen, Y.B.; Guo, C.C.; Sai, K.E.; Chen, F.R.; Mei, X.; Han, F.U.; Chen, Z.P. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncol. Lett., 2015, 10(1), 379-383.
[http://dx.doi.org/10.3892/ol.2015.3183] [PMID: 26171034]
[124]
Lucibello, M.; Adanti, S.; Antelmi, E.; Dezi, D.; Ciafrè, S.; Carcangiu, M.L.; Zonfrillo, M.; Nicotera, G.; Sica, L.; De Braud, F.; Pierimarchi, P. Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget, 2015, 6(7), 5275-5291.
[http://dx.doi.org/10.18632/oncotarget.2971] [PMID: 25779659]
[125]
Gerhardt, T.; Jones, R.; Park, J.; Lu, R.; Chan, H.W.; Fang, Q.; Singh, N.; Lai, H. Effects of antioxidants and pro-oxidants on cytotoxicity of dihydroartemisinin to Molt-4 human leukemia cells. Anticancer Res., 2015, 35(4), 1867-1871.
[PMID: 25862840]
[126]
Drenberg, C.D.; Buaboonnam, J.; Orwick, S.J.; Hu, S.; Li, L.; Fan, Y.; Shelat, A.A.; Guy, R.K.; Rubnitz, J.; Baker, S.D. Evaluation of artemisinins for the treatment of acute myeloid leukemia. Cancer Chemother. Pharmacol., 2016, 77(6), 1231-1243.
[http://dx.doi.org/10.1007/s00280-016-3038-2] [PMID: 27125973]
[127]
Tai, X.; Cai, X.B.; Zhang, Z.; Wei, R. In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism. Oncol. Lett., 2016, 12(5), 3701-3706.
[http://dx.doi.org/10.3892/ol.2016.5187] [PMID: 27900057]
[128]
Shen, R.; Li, J.; Ye, D.; Wang, Q.; Fei, J. Combination of onconase and dihydroartemisinin synergistically suppresses growth and angiogenesis of non-small-cell lung carcinoma and malignant mesothelioma. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(10), 894-901.
[http://dx.doi.org/10.1093/abbs/gmw082] [PMID: 27590062]
[129]
Jin, H.; Jiang, A.Y.; Wang, H.; Cao, Y.; Wu, Y.; Jiang, X.F. Dihydroartemisinin and gefitinib synergistically inhibit NSCLC cell growth and promote apoptosis via the Akt/mTOR/STAT3 pathway. Mol. Med. Rep., 2017, 16(3), 3475-3481.
[http://dx.doi.org/10.3892/mmr.2017.6989] [PMID: 28713965]
[130]
Zhang, B.; Zhang, Z.; Wang, J.; Yang, B.; Zhao, Y.; Rao, Z.; Gao, J. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation. Oncol. Lett., 2018, 15(5), 7531-7536.
[http://dx.doi.org/10.3892/ol.2018.8276] [PMID: 29740482]
[131]
Gao, J.; Ma, F.; Wang, X.; Li, G. Combination of dihydroartemisinin and resveratrol effectively inhibits cancer cell migration via regulation of the DLC1/TCTP/Cdc42 pathway. Food Funct., 2020, 11(11), 9573-9584.
[http://dx.doi.org/10.1039/D0FO00996B] [PMID: 33150340]
[132]
D’Amico, S.; Krasnowska, E.K.; Manni, I.; Toietta, G.; Baldari, S.; Piaggio, G.; Ranalli, M.; Gambacurta, A.; Vernieri, C.; Di Giacinto, F.; Bernassola, F.; de Braud, F.; Lucibello, M. DHA affects microtubule dynamics through reduction of phospho-TCTP levels and enhances the antiproliferative effect of T-DM1 in trastuzumab-resistant HER2-positive breast cancer cell lines. Cells, 2020, 9(5), 1260.
[http://dx.doi.org/10.3390/cells9051260] [PMID: 32438775]
[133]
Wong, H.N.; Lewies, A.; Haigh, M.; Viljoen, J.M.; Wentzel, J.F.; Haynes, R.K.; du Plessis, L.H. Anti-Melanoma activities of artemisone and prenylated amino-artemisinins in combination with known anticancer drugs. Front. Pharmacol., 2020, 11, 558894.
[http://dx.doi.org/10.3389/fphar.2020.558894] [PMID: 33117161]
[134]
Tan, B.; Piwnica-Worms, D.; Ratner, L. Multidrug resistance transporters and modulation. Curr. Opin. Oncol., 2000, 12(5), 450-458.
[http://dx.doi.org/10.1097/00001622-200009000-00011] [PMID: 10975553]
[135]
Lu, J.J.; Chen, S.M.; Ding, J.; Meng, L.H. Characterization of dihydroartemisinin-resistant colon carcinoma HCT116/R cell line. Mol. Cell. Biochem., 2012, 360(1-2), 329-337.
[http://dx.doi.org/10.1007/s11010-011-1072-2] [PMID: 21959972]
[136]
Zhu, H.; Liao, S.D.; Shi, J.J.; Chang, L.L.; Tong, Y.G.; Cao, J.; Fu, Y.Y.; Chen, X.P.; Ying, M.D.; Yang, B.; He, Q.J.; Lu, J.J. DJ-1 mediates the resistance of cancer cells to dihydroartemisinin through reactive oxygen species removal. Free Radic. Biol. Med., 2014, 71, 121-132.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.026] [PMID: 24681255]
[137]
Zborovskii, Y.L.; Orysyk, V.V.; Golovynska, I.; Dzhus, O.I.; Garmanchuk, L.V.; Stepanov, Y.V.; Khranovska, N.; Nehelia, A.O.; Golovynskyi, S.; Ohulchanskyy, T.Y.; Qu, J.; Orysyk, S.I.; Pekhnyo, V.I.; Vovk, M.V. Novel hybrid compound 4-[(E)-2-phenylethenesulfonamido]-N-hydroxybutanamide with antimetastatic and cytotoxic action: Synthesis and anticancer screening. Anticancer. Agents Med. Chem., 2018, 18(10), 1495-1504.
[http://dx.doi.org/10.2174/1871520618666180313151503] [PMID: 29532761]
[138]
Reiter, C.; Fröhlich, T.; Gruber, L.; Hutterer, C.; Marschall, M.; Voigtländer, C.; Friedrich, O.; Kappes, B.; Efferth, T.; Tsogoeva, S.B. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg. Med. Chem., 2015, 23(17), 5452-5458.
[http://dx.doi.org/10.1016/j.bmc.2015.07.048] [PMID: 26260339]
[139]
Li, X.; Zhou, Y.; Liu, Y.; Zhang, X.; Chen, T.; Chen, K.; Ba, Q.; Li, J.; Liu, H.; Wang, H. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer. EBioMedicine, 2016, 14, 44-54.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.026] [PMID: 27939426]
[140]
Tian, Y.; Liang, Z.; Xu, H.; Mou, Y.; Guo, C. Design, synthesis and cytotoxicity of novel dihydroartemisinin-coumarin hybrids via click chemistry. Molecules, 2016, 21(6), 758.
[http://dx.doi.org/10.3390/molecules21060758] [PMID: 27294901]
[141]
Fröhlich, T.; Reiter, C.; Saeed, M.E.M.; Hutterer, C.; Hahn, F.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Marschall, M.; Efferth, T.; Tsogoeva, S.B. Synthesis of thymoquinone-artemisinin hybrids: New potent antileukemia, antiviral, and antimalarial agents. ACS Med. Chem. Lett., 2017, 9(6), 534-539.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00412] [PMID: 29937978]
[142]
Luan, S.; Zhong, H.; Zhao, X.; Yang, J.; Jing, Y.; Liu, D.; Zhao, L. Synthesis, anticancer evaluation and pharmacokinetic study of novel 10-O-phenyl ethers of dihydroartemisinin. Eur. J. Med. Chem., 2017, 141, 584-595.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.023] [PMID: 29102180]
[143]
Marchesi, E.; Chinaglia, N.; Capobianco, M.L.; Marchetti, P.; Huang, T.E.; Weng, H.C.; Guh, J.H.; Hsu, L.C.; Perrone, D.; Navacchia, M.L. Dihydroartemisinin-bile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. ChemMedChem, 2019, 14(7), 779-787.
[http://dx.doi.org/10.1002/cmdc.201800756] [PMID: 30724466]
[144]
Wang, L.L.; Kong, L.; Liu, H.; Zhang, Y.; Zhang, L.; Liu, X.; Yuan, F.; Li, Y.; Zuo, Z. Design and synthesis of novel artemisinin derivatives with potent activities against colorectal cancer in vitro and in vivo. Eur. J. Med. Chem., 2019, 182, 111665.
[http://dx.doi.org/10.1016/j.ejmech.2019.111665] [PMID: 31494469]
[145]
Botta, L.; Cesarini, S.; Zippilli, C.; Filippi, S.; Bizzarri, B.M.; Baratto, M.C.; Pogni, R.; Saladino, R. Stereoselective access to antimelanoma agents by hybridization and dimerization of dihydroartemisinin and artesunic acid. ChemMedChem, 2021, 16(14), 2270-2277.
[http://dx.doi.org/10.1002/cmdc.202100196] [PMID: 33792170]
[146]
Kumar, R.; Singh, M.; Meena, J.; Singhvi, P.; Thiyagarajan, D.; Saneja, A.; Panda, A.K. Hyaluronic acid - dihydroartemisinin conjugate: Synthesis, characterization and in vitro evaluation in lung cancer cells. Int. J. Biol. Macromol., 2019, 133, 495-502.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.124] [PMID: 31004634]
[147]
Li, Z.; Zhu, J.; Wang, Y.; Zhou, M.; Li, D.; Zheng, S.; Yin, L.; Luo, C.; Zhang, H.; Zhong, L.; Li, W.; Wang, J.; Gui, S.; Cai, B.; Wang, Y.; Sun, J. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J. Pharm. Sci., 2020, 15(4), 482-491.
[http://dx.doi.org/10.1016/j.ajps.2019.05.002] [PMID: 32952671]
[148]
Liu, K.; Dai, L.; Li, C.; Liu, J.; Wang, L.; Lei, J. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol-dihydroartemisinin conjugate. Sci. Rep., 2016, 6(1), 29461.
[http://dx.doi.org/10.1038/srep29461] [PMID: 27377918]
[149]
Sun, Q.; Teong, B.; Chen, F.; Chang, S.J.; Gao, J.; Kuo, S.M. Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(3), 455-462.
[PMID: 24039154]
[150]
Ma, W.; Xu, A.; Ying, J.; Li, B.; Jin, Y. Biodegradable core-shell copolymer-phospholipid nanoparticles for combination chemotherapy: An in vitro study. J. Biomed. Nanotechnol., 2015, 11(7), 1193-1200.
[http://dx.doi.org/10.1166/jbn.2015.2059] [PMID: 26307842]
[151]
Lu, Y.; Wen, Q.; Luo, J.; Xiong, K.; Wu, Z.; Wang, B.; Chen, Y.; Yang, B.; Fu, S. Self-assembled dihydroartemisinin nanoparticles as a platform for cervical cancer chemotherapy. Drug Deliv., 2020, 27(1), 876-887.
[http://dx.doi.org/10.1080/10717544.2020.1775725] [PMID: 32516033]
[152]
Tao, J.; Tan, Z.; Diao, L.; Ji, Z.; Zhu, J.; Chen, W.; Hu, Y. Codelivery of dihydroartemisinin and docetaxel in pH-sensitive nanoparticles for treating metastatic breast cancer via the NF-κB/MMP-2 signal pathway. RSC Advances, 2018, 8(39), 21735-21744.
[http://dx.doi.org/10.1039/C8RA02833H]
[153]
Tao, J.; Diao, L.; Chen, F.; Shen, A.; Wang, S.; Jin, H.; Cai, D.; Hu, Y. pH-Sensitive nanoparticles codelivering docetaxel and dihydroartemisinin effectively treat breast cancer by enhancing reactive oxidative species-mediated mitochondrial apoptosis. Mol. Pharm., 2021, 18(1), 74-86.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00432] [PMID: 33084332]
[154]
Wang, S.; Wang, H.; Liang, W.; Huang, Y. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs. Nanoscale Res. Lett., 2012, 7(1), 219.
[http://dx.doi.org/10.1186/1556-276X-7-219] [PMID: 22502598]
[155]
Righeschi, C.; Coronnello, M.; Mastrantoni, A.; Isacchi, B.; Bergonzi, M.C.; Mini, E.; Bilia, A.R. Strategy to provide a useful solution to effective delivery of dihydroartemisinin: Development, characterization and in vitro studies of liposomal formulations. Colloids Surf. B Biointerfaces, 2014, 116, 121-127.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.019] [PMID: 24462780]
[156]
Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin., 2017, 38(6), 885-896.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[157]
Wang, Z.; Duan, X.; Lv, Y.; Zhao, Y. Low density lipoprotein receptor (LDLR)-targeted lipid nanoparticles for the delivery of sorafenib and Dihydroartemisinin in liver cancers. Life Sci., 2019, 239, 117013.
[http://dx.doi.org/10.1016/j.lfs.2019.117013] [PMID: 31678287]
[158]
Li, H.; Li, X.; Shi, X.; Li, Z.; Sun, Y. Effects of magnetic dihydroartemisinin nano-liposome in inhibiting the proliferation of head and neck squamous cell carcinomas. Phytomedicine, 2019, 56, 215-228.
[http://dx.doi.org/10.1016/j.phymed.2018.11.007] [PMID: 30668343]
[159]
Liu, L.; Wei, Y.; Zhai, S.; Chen, Q.; Xing, D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials, 2015, 62, 35-46.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.036] [PMID: 26022978]
[160]
Han, C.; Xu, X.; Zhang, C.; Yan, D.; Liao, S.; Zhang, C.; Kong, L. Cytochrome c light-up graphene oxide nanosensor for the targeted self-monitoring of mitochondria-mediated tumor cell death. Biosens. Bioelectron., 2020, 173, 112791.
[http://dx.doi.org/10.1016/j.bios.2020.112791] [PMID: 33190048]
[161]
Li, Y.; Shi, N.; Zhang, W.; Zhang, H.; Song, Y.; Zhu, W.; Feng, X. Supramolecular hybrids of carbon dots and dihydroartemisinin for enhanced anticancer activity and mechanism analysis. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(42), 9777-9784.
[http://dx.doi.org/10.1039/D0TB01826K] [PMID: 33026041]
[162]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Xia, G.; Zhou, S.; Liu, Z.; Zhang, N.; Wang, H.; Guo, Z.; Chen, Q. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.039] [PMID: 27614161]
[163]
Guo, S.; Yao, X.; Jiang, Q.; Wang, K.; Zhang, Y.; Peng, H.; Tang, J.; Yang, W. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy. Front. Pharmacol., 2020, 11, 226.
[http://dx.doi.org/10.3389/fphar.2020.00226] [PMID: 32210814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy