Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Potential Mechanisms of Melatonin in Osteosarcoma and Bone-Related Neoplasms: Updated Review

Author(s): Parisa Maleki Dana, Fatemeh Sadoughi, Russel J. Reiter, Bahman Yousefi* and Zatollah Asemi*

Volume 23, Issue 3, 2023

Published on: 15 September, 2022

Page: [290 - 297] Pages: 8

DOI: 10.2174/1389557522666220619232941

Price: $65

conference banner
Abstract

Melatonin (N-acetyl-5-methoxytryptamine) is a secretory product of the pineal gland. A great number of studies have been investigating the functions of this indoleamine in various diseases. Excessive proliferation, reduction in apoptosis, increased angiogenesis, invasion, and metastasis are all processes associated with cancerous tissues. In several cancer types, melatonin is reported to significantly impact these processes. Although bone cancer is relatively rare, it is a serious disease that often becomes metastatic, leading to an unsatisfactory prognosis. In recent decades, significant advances have been made in the therapeutic strategies for bone cancer. Nevertheless, few changes have occurred to patients’ outcomes or therapeutic methods. Currently used therapeutic strategies including chemotherapy and radiotherapy often show serious side effects. Moreover, therapeutic options are not sufficient in certain cases, such as metastatic forms of the disease. Therefore, there is a need for a more precise definition of the molecular pathways and cellular functions associated with bone cancer to find novel therapeutic approaches. With such advances, the development of new effective therapies for patients with advanced stage or metastatic forms of the disease will be achieved, resulting in an improved prognosis. This review summarizes what is known about the functions of melatonin in osteosarcoma and Ewing’s sarcoma. We explain the underlying mechanisms of action by which melatonin serves as an antitumor agent in bone cancer as well as provide an insight into its synergistic effects with other chemotherapeutic drugs.

Keywords: melatonin, bone cancer, osteosarcoma, Ewing’s sarcoma

Graphical Abstract

[1]
Reiter, R.J.; Tan, D.X.; Fuentes-Broto, L. Melatonin: A multitasking molecule Prog. Brain Res; , 2010, 181, p. 127-151.
[http://dx.doi.org/10.1016/S0079-6123(08)81008-4] [PMID: 20478436]
[2]
Gobbo, M.G.; Dizeyi, N.; Abrahamsson, P.A.; Bertilsson, P.A.; Masitéli, V.S.; Pytlowanciv, E.Z.; Taboga, S.R.; Góes, R.M. Influence of melatonin on the proliferative and apoptotic responses of the prostate under normal and hyperglycemic conditions. J. Diabetes Res., 2015, 2015, 538529.
[http://dx.doi.org/10.1155/2015/538529] [PMID: 26295055]
[3]
Tan, D.X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906.
[http://dx.doi.org/10.3390/molecules201018886] [PMID: 26501252]
[4]
Manchester, L.C.; Coto-Montes, A.; Boga, J.A.; Andersen, L.P.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res., 2015, 59(4), 403-419.
[http://dx.doi.org/10.1111/jpi.12267] [PMID: 26272235]
[5]
Pechanova, O.; Paulis, L.; Simko, F. Peripheral and central effects of melatonin on blood pressure regulation. Int. J. Mol. Sci., 2014, 15(10), 17920-17937.
[http://dx.doi.org/10.3390/ijms151017920] [PMID: 25299692]
[6]
Yu, X.; Li, Z.; Zheng, H.; Ho, J.; Chan, M.T.; Wu, W.K. Protective roles of melatonin in central nervous system diseases by regulation of neural stem cells. Cell Prolif., 2017, 50(2), e12323.
[http://dx.doi.org/10.1111/cpr.12323] [PMID: 27943459]
[7]
Calvo, J.R.; González-Yanes, C.; Maldonado, M.D. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res., 2013, 55(2), 103-120.
[http://dx.doi.org/10.1111/jpi.12075] [PMID: 23889107]
[8]
Mozaffari, S.; Abdollahi, M. Melatonin, a promising supplement in inflammatory bowel disease: A comprehensive review of evidences. Curr. Pharm. Des., 2011, 17(38), 4372-4378.
[http://dx.doi.org/10.2174/138161211798999357] [PMID: 22204435]
[9]
Hardeland, R. Melatonin in aging and disease -multiple consequences of reduced secretion, options and limits of treatment. Aging Dis., 2012, 3(2), 194-225.
[PMID: 22724080]
[10]
Karamitri, A.; Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol., 2019, 15(2), 105-125.
[http://dx.doi.org/10.1038/s41574-018-0130-1] [PMID: 30531911]
[11]
Lin, G.J.; Huang, S.H.; Chen, S.J.; Wang, C.H.; Chang, D.M.; Sytwu, H.K. Modulation by melatonin of the pathogenesis of inflammatory autoimmune diseases. Int. J. Mol. Sci., 2013, 14(6), 11742-11766.
[http://dx.doi.org/10.3390/ijms140611742] [PMID: 23727938]
[12]
Lissoni, P.; Rovelli, F.; Malugani, F.; Bucovec, R.; Conti, A.; Maestroni, G.J. Anti-angiogenic activity of melatonin in advanced cancer patients. Neuroendocrinol. Lett., 2001, 22(1), 45-47.
[PMID: 11335879]
[13]
Plaimee, P.; Weerapreeyakul, N.; Thumanu, K.; Tanthanuch, W.; Barusrux, S. Melatonin induces apoptosis through biomolecular changes, in SK-LU-1 human lung adenocarcinoma cells. Cell Prolif., 2014, 47(6), 564-577.
[http://dx.doi.org/10.1111/cpr.12140] [PMID: 25345555]
[14]
Liu, R.; Wang, H.L.; Deng, M.J.; Wen, X.J.; Mo, Y.Y.; Chen, F.M.; Zou, C.L.; Duan, W.F.; Li, L.; Nie, X. Melatonin inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer. Oxid. Med. Cell. Longev., 2018, 2018, 3510970.
[http://dx.doi.org/10.1155/2018/3510970] [PMID: 29725496]
[15]
Zhou, Q.; Gui, S.; Zhou, Q.; Wang, Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One, 2014, 9(7), e101132.
[http://dx.doi.org/10.1371/journal.pone.0101132] [PMID: 24992189]
[16]
Najafi, M.; Salehi, E.; Farhood, B.; Nashtaei, M.S.; Hashemi Goradel, N.; Khanlarkhani, N.; Namjoo, Z.; Mortezaee, K. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J. Cell. Physiol., 2019, 234(3), 2356-2372.
[http://dx.doi.org/10.1002/jcp.27259] [PMID: 30192001]
[17]
Musa, A.E.; Shabeeb, D.; Alhilfi, H.S.Q. Protective effect of melatonin against radiotherapy-induced small intestinal oxidative stress: Biochemical evaluation. Medicina (Kaunas), 2019, 55(6), E308.
[http://dx.doi.org/10.3390/medicina55060308] [PMID: 31242652]
[18]
Kubatka, P.; Zubor, P.; Busselberg, D.; Kwon, T.K.; Adamek, M.; Petrovic, D.; Opatrilova, R.; Gazdikova, K.; Caprnda, M.; Rodrigo, L.; Danko, J.; Kruzliak, P. Melatonin and breast cancer: Evidences from preclinical and human studies. Crit. Rev. Oncol. Hematol., 2018, 122, 133-143.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.018] [PMID: 29458781]
[19]
Pourhanifeh, M.H.; Sharifi, M.; Reiter, R.J.; Davoodabadi, A.; Asemi, Z. Melatonin and non-small cell lung cancer: New insights into signaling pathways. Cancer Cell Int., 2019, 19(1), 131.
[http://dx.doi.org/10.1186/s12935-019-0853-7] [PMID: 31123430]
[20]
Asghari, M.H.; Moloudizargari, M.; Ghobadi, E.; Fallah, M.; Abdollahi, M. Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer. Life Sci., 2017, 185, 38-45.
[http://dx.doi.org/10.1016/j.lfs.2017.07.020] [PMID: 28739305]
[21]
Chuffa, L.G.A.; Reiter, R.J.; Lupi, L.A. Melatonin as a promising agent to treat ovarian cancer: Molecular mechanisms. Carcinogenesis, 2017, 38(10), 945-952.
[http://dx.doi.org/10.1093/carcin/bgx054] [PMID: 28575150]
[22]
Cortini, M.; Baldini, N.; Avnet, S. New advances in the study of bone tumors: A lesson from the 3D environment. Front. Physiol., 2019, 10, 814.
[http://dx.doi.org/10.3389/fphys.2019.00814] [PMID: 31316395]
[23]
Adjei, I.M.; Temples, M.N.; Brown, S.B.; Sharma, B. Targeted nanomedicine to treat bone metastasis. Pharmaceutics, 2018, 10(4), E205.
[http://dx.doi.org/10.3390/pharmaceutics10040205] [PMID: 30366428]
[24]
Conti, A.; Conconi, S.; Hertens, E.; Skwarlo-Sonta, K.; Markowska, M.; Maestroni, J.M. Evidence for melatonin synthesis in mouse and human bone marrow cells. J. Pineal Res., 2000, 28(4), 193-202.
[http://dx.doi.org/10.1034/j.1600-079X.2000.280401.x] [PMID: 10831154]
[25]
Chu, Z.M.; Li, H.B.; Sun, S.X.; Jiang, Y.C.; Wang, B.; Dong, Y.F. Melatonin promotes osteoblast differentiation of bone marrow mesenchymal stem cells in aged rats. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(19), 4446-4456.
[PMID: 29077147]
[26]
Kim, H.J.; Kim, H.J.; Bae, M.K.; Kim, Y.D. Suppression of osteoclastogenesis by melatonin: A melatonin receptor-independent action. Int. J. Mol. Sci., 2017, 18(6), E1142.
[http://dx.doi.org/10.3390/ijms18061142] [PMID: 28587149]
[27]
Sánchez-Barceló, E.J.; Mediavilla, M.D.; Tan, D.X.; Reiter, R.J. Scientific basis for the potential use of melatonin in bone diseases: Osteoporosis and adolescent idiopathic scoliosis. J. Osteoporos., 2010, 2010, 830231.
[http://dx.doi.org/10.4061/2010/830231] [PMID: 20981336]
[28]
Roth, J.A.; Kim, B.G.; Lin, W.L.; Cho, M.I. Melatonin promotes osteoblast differentiation and bone formation. J. Biol. Chem., 1999, 274(31), 22041-22047.
[http://dx.doi.org/10.1074/jbc.274.31.22041] [PMID: 10419530]
[29]
Wang, F.W.; Wang, Z.; Zhang, Y.M.; Du, Z.X.; Zhang, X.L.; Liu, Q.; Guo, Y.J.; Li, X.G.; Hao, A.J. Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. J. Cell. Biochem., 2013, 114(10), 2346-2355.
[http://dx.doi.org/10.1002/jcb.24582] [PMID: 23824714]
[30]
Maria, S.; Samsonraj, R.M.; Munmun, F.; Glas, J.; Silvestros, M.; Kotlarczyk, M.P.; Rylands, R.; Dudakovic, A.; van Wijnen, A.J.; Enderby, L.T.; Lassila, H.; Dodda, B.; Davis, V.L.; Balk, J.; Burow, M.; Bunnell, B.A.; Witt-Enderby, P.A. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J. Pineal Res., 2018, 64(3), e12465.
[http://dx.doi.org/10.1111/jpi.12465] [PMID: 29285799]
[31]
Cho, H.; Lim, S.J.; Won, K.Y.; Bae, G.E.; Kim, G.Y.; Min, J.W.; Noh, B.J. Eosinophils in colorectal neoplasms associated with expression of CCL11 and CCL24. J. Pathol. Transl. Med., 2016, 50(1), 45-51.
[http://dx.doi.org/10.4132/jptm.2015.10.16] [PMID: 26657310]
[32]
Jin, L.; Liu, W.R.; Tian, M.X.; Jiang, X.F.; Wang, H.; Zhou, P.Y.; Ding, Z.B.; Peng, Y.F.; Dai, Z.; Qiu, S.J.; Zhou, J.; Fan, J.; Shi, Y.H. CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget, 2017, 8(3), 5135-5148.
[http://dx.doi.org/10.18632/oncotarget.14095] [PMID: 28042950]
[33]
Lu, K.H.; Su, S.C.; Lin, C.W.; Hsieh, Y.H.; Lin, Y.C.; Chien, M.H.; Reiter, R.J.; Yang, S.F. Melatonin attenuates osteosarcoma cell invasion by suppression of C-C motif chemokine ligand 24 through inhibition of the c-Jun N-terminal kinase pathway. J. Pineal Res., 2018, 65(3), e12507.
[http://dx.doi.org/10.1111/jpi.12507] [PMID: 29766567]
[34]
Rodríguez-Berriguete, G.; Fraile, B.; Martínez-Onsurbe, P.; Olmedilla, G.; Paniagua, R.; Royuela, M. MAP kinases and prostate cancer. J. Signal Transduct., 2012, 2012, 169170.
[http://dx.doi.org/10.1155/2012/169170] [PMID: 22046506]
[35]
Liu, L.; Xu, Y.; Reiter, R.J.; Pan, Y.; Chen, D.; Liu, Y.; Pu, X.; Jiang, L.; Li, Z. Inhibition of ERK1/2 signaling pathway is involved in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cell. Physiol. Biochem., 2016, 39(6), 2297-2307.
[http://dx.doi.org/10.1159/000447922] [PMID: 27832629]
[36]
Talib, W.H. Melatonin and cancer hallmarks. Molecules, 2018, 23(3), E518.
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[37]
Nigg, E.A. Cyclin-dependent protein kinases: Key regulators of the eukaryotic cell cycle. BioEssays, 1995, 17(6), 471-480.
[http://dx.doi.org/10.1002/bies.950170603] [PMID: 7575488]
[38]
Knoblich, J.A.; Sauer, K.; Jones, L.; Richardson, H.; Saint, R.; Lehner, C.F. Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell, 1994, 77(1), 107-120.
[http://dx.doi.org/10.1016/0092-8674(94)90239-9] [PMID: 8156587]
[39]
Ohtsubo, M.; Roberts, J.M. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science, 1993, 259(5103), 1908-1912.
[http://dx.doi.org/10.1126/science.8384376] [PMID: 8384376]
[40]
Girard, F.; Strausfeld, U.; Fernandez, A.; Lamb, N.J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell, 1991, 67(6), 1169-1179.
[http://dx.doi.org/10.1016/0092-8674(91)90293-8] [PMID: 1836977]
[41]
Pagano, M.; Pepperkok, R.; Verde, F.; Ansorge, W.; Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J., 1992, 11(3), 961-971.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05135.x] [PMID: 1312467]
[42]
Knoblich, J.A.; Lehner, C.F. Synergistic action of Drosophila cyclins A and B during the G2-M transition. EMBO J., 1993, 12(1), 65-74.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05632.x] [PMID: 8428595]
[43]
Liu, L.; Xu, Y.; Reiter, R.J. Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone, 2013, 55(2), 432-438.
[http://dx.doi.org/10.1016/j.bone.2013.02.021] [PMID: 23470834]
[44]
Chen, Y.; Zhang, T.; Liu, X.; Li, Z.; Zhou, D.; Xu, W. Melatonin suppresses epithelial to mesenchymal transition in the MG 63 cell line. Mol. Med. Rep., 2020, 21(3), 1356-1364.
[PMID: 31894324]
[45]
Carrasco-Garcia, E.; Lopez, L.; Aldaz, P.; Arevalo, S.; Aldaregia, J.; Egaña, L.; Bujanda, L.; Cheung, M.; Sampron, N.; Garcia, I.; Matheu, A. SOX9-regulated cell plasticity in colorectal metastasis is attenuated by rapamycin. Sci. Rep., 2016, 6(1), 32350.
[http://dx.doi.org/10.1038/srep32350] [PMID: 27571710]
[46]
Voronkova, M.A.; Luanpitpong, S.; Rojanasakul, L.W.; Castranova, V.; Dinu, C.Z.; Riedel, H.; Rojanasakul, Y. SOX9 regulates cancer stem-like properties and metastatic potential of single-walled carbon nanotube-exposed cells. Sci. Rep., 2017, 7(1), 11653.
[http://dx.doi.org/10.1038/s41598-017-12037-8] [PMID: 28912540]
[47]
Zhu, H.; Tang, J.; Tang, M.; Cai, H. Upregulation of SOX9 in osteosarcoma and its association with tumor progression and patients’ prognosis. Diagn. Pathol., 2013, 8(1), 183.
[http://dx.doi.org/10.1186/1746-1596-8-183] [PMID: 24188461]
[48]
Qu, H.; Xue, Y.; Lian, W.; Wang, C.; He, J.; Fu, Q.; Zhong, L.; Lin, N.; Lai, L.; Ye, Z.; Wang, Q. Melatonin inhibits osteosarcoma stem cells by suppressing SOX9-mediated signaling. Life Sci., 2018, 207, 253-264.
[http://dx.doi.org/10.1016/j.lfs.2018.04.030] [PMID: 29689273]
[49]
Inoue, T.; Hiratsuka, M.; Osaki, M.; Oshimura, M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle, 2007, 6(9), 1011-1018.
[http://dx.doi.org/10.4161/cc.6.9.4219] [PMID: 17457050]
[50]
Knight, J.R.; Milner, J. SIRT1, metabolism and cancer. Curr. Opin. Oncol., 2012, 24(1), 68-75.
[http://dx.doi.org/10.1097/CCO.0b013e32834d813b] [PMID: 22080944]
[51]
Lin, Z.; Fang, D. The roles of SIRT1 in cancer. Genes Cancer, 2013, 4(3-4), 97-104.
[http://dx.doi.org/10.1177/1947601912475079] [PMID: 24020000]
[52]
Zhang, N.; Xie, T.; Xian, M.; Wang, Y.J.; Li, H.Y.; Ying, M.D.; Ye, Z.M. SIRT1 promotes metastasis of human osteosarcoma cells. Oncotarget, 2016, 7(48), 79654-79669.
[http://dx.doi.org/10.18632/oncotarget.12916] [PMID: 27793039]
[53]
Cheng, Y.; Cai, L.; Jiang, P.; Wang, J.; Gao, C.; Feng, H.; Wang, C.; Pan, H.; Yang, Y. SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur. J. Pharmacol., 2013, 715(1-3), 219-229.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.017] [PMID: 23726949]
[54]
Vimalraj, S.; Saravanan, S.; Raghunandhakumar, S.; Anuradha, D. Melatonin regulates tumor angiogenesis via miR-424-5p/VEGFA signaling pathway in osteosarcoma. Life Sci., 2020, 256, 118011.
[http://dx.doi.org/10.1016/j.lfs.2020.118011] [PMID: 32592723]
[55]
Li, Y.; Zou, J.; Li, B.; Du, J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J. Cell. Mol. Med., 2021, 25(20), 9543-9556.
[http://dx.doi.org/10.1111/jcmm.16894] [PMID: 34547170]
[56]
Gold, J.M.; Raja, A. Cisplatin; StatPearls Publishing: Treasure Island, FL, 2022. https://www.ncbi.nlm.nih.gov/books/NBK547695/
[57]
Hannoodee, M.; Mittal, M. Methotrexate; StatPearls Publishing: Treasure Island, FL, 2022. https://www.ncbi.nlm.nih.gov/books/NBK556114/
[58]
Yu, D.; Zhang, S.; Feng, A.; Xu, D.; Zhu, Q.; Mao, Y.; Zhao, Y.; Lv, Y.; Han, C.; Liu, R.; Tian, Y. Methotrexate, doxorubicin, and cisplatinum regimen is still the preferred option for osteosarcoma chemotherapy: A meta-analysis and clinical observation. Medicine (Baltimore), 2019, 98(19), e15582.
[http://dx.doi.org/10.1097/MD.0000000000015582] [PMID: 31083238]
[59]
Wang, Y.P.; Yang, Z.P. Effects of melatonin combined with Cis-platinum or methotrexate on the proliferation of osteosarcoma cell line SaOS-2. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2015, 37(2), 215-220.
[PMID: 25936711]
[60]
McClements, D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol. Adv., 2020, 38, 107287.
[http://dx.doi.org/10.1016/j.biotechadv.2018.08.004] [PMID: 30086329]
[61]
Merisko-Liversidge, E.M.; Liversidge, G.G. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicol. Pathol., 2008, 36(1), 43-48.
[http://dx.doi.org/10.1177/0192623307310946] [PMID: 18337220]
[62]
Aryal, S.; Park, H.; Leary, J.F.; Key, J. Top-down fabrication-based nano/microparticles for molecular imaging and drug delivery. Int. J. Nanomedicine, 2019, 14, 6631-6644.
[http://dx.doi.org/10.2147/IJN.S212037] [PMID: 31695361]
[63]
Waldhauser, F.; Waldhauser, M.; Lieberman, H.R.; Deng, M.H.; Lynch, H.J.; Wurtman, R.J. Bioavailability of oral melatonin in humans. Neuroendocrinology, 1984, 39(4), 307-313.
[http://dx.doi.org/10.1159/000123997] [PMID: 6493445]
[64]
Sabzichi, M.; Samadi, N.; Mohammadian, J.; Hamishehkar, H.; Akbarzadeh, M.; Molavi, O. Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids Surf. B Biointerfaces, 2016, 145, 64-71.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.042] [PMID: 27137804]
[65]
Altındal, D.C.; Gümüşderelioğlu, M. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J. Microencapsul., 2016, 33(1), 53-63.
[http://dx.doi.org/10.3109/02652048.2015.1115901] [PMID: 26605784]
[66]
Johns, J. An intravenous injection of melatonin: Formulation, stability, pharmacokinetics and pharmacodynamics. JAASP, 2012, 1, 32-43.
[67]
Bongiorno, D.; Ceraulo, L.; Mele, A.; Panzeri, W.; Selva, A.; Turco Liveri, V. Structural and physicochemical characterization of the inclusion complexes of cyclomaltooligosaccharides (cyclodextrins) with melatonin. Carbohydr. Res., 2002, 337(8), 743-754.
[http://dx.doi.org/10.1016/S0008-6215(02)00049-6] [PMID: 11950470]
[68]
Gould, S.; Scott, R.C. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): A toxicology review. Food Chem. Toxicol., 2005, 43(10), 1451-1459.
[http://dx.doi.org/10.1016/j.fct.2005.03.007] [PMID: 16018907]
[69]
Topal, B. Çetin Altındal, D.; Gümüşderelioğlu, M. Melatonin/HPβCD complex: Microwave synthesis, integration with chitosan scaffolds and inhibitory effects on MG-63CELLS. Int. J. Pharm., 2015, 496(2), 801-811.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.028] [PMID: 26602292]
[70]
Niu, G.; Yousefi, B.; Qujeq, D.; Marjani, A.; Asadi, J.; Wang, Z.; Mir, S.M. Melatonin and doxorubicin co-delivered via a functionalized graphene-dendrimeric system enhances apoptosis of osteosarcoma cells. Mater. Sci. Eng. C, 2021, 119, 111554.
[http://dx.doi.org/10.1016/j.msec.2020.111554] [PMID: 33321618]
[71]
Zhang, W.; Zhao, W.; Li, Q.; Zhao, D.; Qu, J.; Yuan, Z.; Cheng, Z.; Zhu, X.; Zhuang, X.; Zhang, Z. 3D-printing magnesium-polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structures. J. Nanobiotechnology, 2021, 19(1), 263.
[http://dx.doi.org/10.1186/s12951-021-01012-1] [PMID: 34481503]
[72]
García-Santos, G.; Martin, V.; Rodríguez-Blanco, J.; Herrera, F.; Casado-Zapico, S.; Sánchez-Sánchez, A.M.; Antolín, I.; Rodríguez, C. Fas/Fas ligand regulation mediates cell death in human Ewing’s sarcoma cells treated with melatonin. Br. J. Cancer, 2012, 106(7), 1288-1296.
[http://dx.doi.org/10.1038/bjc.2012.66] [PMID: 22382690]
[73]
Gius, D.; Botero, A.; Shah, S.; Curry, H.A. Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol. Lett., 1999, 106(2-3), 93-106.
[http://dx.doi.org/10.1016/S0378-4274(99)00024-7] [PMID: 10403653]
[74]
Liu, F. Bardhan, K.; Yang, D.; Thangaraju, M.; Ganapathy, V.; Waller, J.L.; Liles, G.B.; Lee, J.R.; Liu, K. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J. Biol. Chem., 2012, 287(30), 25530-25540.
[http://dx.doi.org/10.1074/jbc.M112.356279] [PMID: 22669972]
[75]
Grier, H.E.; Krailo, M.D.; Tarbell, N.J.; Link, M.P.; Fryer, C.J.; Pritchard, D.J.; Gebhardt, M.C.; Dickman, P.S.; Perlman, E.J.; Meyers, P.A.; Donaldson, S.S.; Moore, S.; Rausen, A.R.; Vietti, T.J.; Miser, J.S. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N. Engl. J. Med., 2003, 348(8), 694-701.
[http://dx.doi.org/10.1056/NEJMoa020890] [PMID: 12594313]
[76]
Johnson, I.S.; Armstrong, J.G.; Gorman, M.; Burnett, J.P., Jr The vinca alkaloids: A new class of oncolytic agents. Cancer Res., 1963, 23, 1390-1427.
[PMID: 14070392]
[77]
Juergens, C.; Weston, C.; Lewis, I.; Whelan, J.; Paulussen, M.; Oberlin, O.; Michon, J.; Zoubek, A.; Juergens, H.; Craft, A. Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr. Blood Cancer, 2006, 47(1), 22-29.
[http://dx.doi.org/10.1002/pbc.20820] [PMID: 16572419]
[78]
Zalupski, M.; Baker, L.H. Ifosfamide. J. Natl. Cancer Inst., 1988, 80(8), 556-566.
[http://dx.doi.org/10.1093/jnci/80.8.556] [PMID: 3286879]
[79]
Casado-Zapico, S.; Rodriguez-Blanco, J.; García-Santos, G.; Martín, V.; Sánchez-Sánchez, A.M.; Antolín, I.; Rodriguez, C. Synergistic antitumor effect of melatonin with several chemotherapeutic drugs on human Ewing sarcoma cancer cells: Potentiation of the extrinsic apoptotic pathway. J. Pineal Res., 2010, 48(1), 72-80.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00727.x] [PMID: 20025643]
[80]
Sanchez-Sanchez, A.M.; Antolin, I.; Puente-Moncada, N.; Suarez, S.; Gomez-Lobo, M.; Rodriguez, C.; Martin, V. Melatonin cytotoxicity is associated to warburg effect inhibition in ewing sarcoma cells. PLoS One, 2015, 10(8), e0135420.
[http://dx.doi.org/10.1371/journal.pone.0135420] [PMID: 26252771]
[81]
Reiter, R.J.; Sharma, R.; Rodriguez, C.; Martin, V.; Rosales-Corral, S.; Zuccari, D.A.P.C.; Chuffa, L.G.A. Part-time cancers and role of melatonin in determining their metabolic phenotype. Life Sci., 2021, 278, 119597.
[http://dx.doi.org/10.1016/j.lfs.2021.119597] [PMID: 33974932]
[82]
Chen, X.; Hao, B.; Li, D.; Reiter, R.J.; Bai, Y.; Abay, B.; Chen, G.; Lin, S.; Zheng, T.; Ren, Y.; Xu, X.; Li, M.; Fan, L. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. J. Pineal Res., 2021, 71(2), e12755.
[http://dx.doi.org/10.1111/jpi.12755] [PMID: 34214200]
[83]
Foley, H.M.; Steel, A.E. Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence. Complement. Ther. Med., 2019, 42, 65-81.
[http://dx.doi.org/10.1016/j.ctim.2018.11.003] [PMID: 30670284]
[84]
Besag, F.M.C.; Vasey, M.J.; Lao, K.S.J.; Wong, I.C.K. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: A systematic review. CNS Drugs, 2019, 33(12), 1167-1186.
[http://dx.doi.org/10.1007/s40263-019-00680-w] [PMID: 31722088]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy