Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Selection of Suitable Protein Structure from Protein Data Bank: An Important Step in Structure-based Drug Design Studies

Author(s): Prashant R. Murumkar, Mayank Kumar Sharma, Pradeep Gupta, Niyati M. Patel and Mange Ram Yadav*

Volume 23, Issue 3, 2023

Published on: 13 September, 2022

Page: [246 - 264] Pages: 19

DOI: 10.2174/1389557522666220512151454

Price: $65

Abstract

The selection of a protein structure is an important step for the success of the drug discovery process using structure-based design. Selection of the right crystal structure is critical as multiple crystal structures are available for the same protein in the Protein Data Bank (PDB). In this communication, we have discussed a systematic approach for selecting the right type of protein structure. Selecting crystal structures of TACE, 11β-HSD1, DprE1, and SARS-CoV-2 Mpro enzymes for some case studies have been discussed for illustration.

Keywords: Protein data bank (PDB), Structure-based drug design (SBDD), TNF-α converting enzyme (TACE), Swine Flu, 11 Beta hydroxysteroid dehydrogenase type 1 (11β-HSD1), DprE1, SARS-CoV-2 Mpro

Graphical Abstract

[1]
Schenone, M. Dančík, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol., 2013, 9(4), 232-240.
[http://dx.doi.org/10.1038/nchembio.1199] [PMID: 23508189]
[2]
Cohen, N.C. Guidebook on Molecular Modeling in Drug Design, 1st ed; Academic Press: Boston, 1996.
[3]
Lin, S.K. Pharmacophore perception, development and use in drug design. Molecules, 2000, 5(7), pp. 987-989.
[4]
Tollenaere, J.P. The role of structure-based ligand design and molecular modelling in drug discovery. Pharm. World Sci., 1996, 18(2), 56-62.
[http://dx.doi.org/10.1007/BF00579706] [PMID: 8739258]
[5]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Research, 2000, 28, 235-242 doi:10.1093/nar/28.
[http://dx.doi.org/10.1007/1-4020-4407-0]
[6]
RCSB PDB: Home.. Available from: www.rcsb.org (Accessed on August 10, 2021).
[7]
Kirchmair, J.; Markt, P.; Distinto, S.; Schuster, D.; Spitzer, G.M.; Liedl, K.R.; Langer, T.; Wolber, G. The Protein Data Bank (PDB), its related services and software tools as key components for in silico guided drug discovery. J. Med. Chem., 2008, 51(22), 7021-7040.
[http://dx.doi.org/10.1021/jm8005977] [PMID: 18975926]
[8]
Zardecki, C.; Dutta, S.; Goodsell, D.S.; Lowe, R.; Voigt, M.; Burley, S.K. PDB-101: Educational resources supporting molecular explorations through biology and medicine. Protein Science, 2022, 31, 129-140 doi:10.1002/pro.4200.
[http://dx.doi.org/10.1038/nature04321] [PMID: 16319884]
[9]
Andrec, M.; Snyder, D.A.; Zhou, Z.; Young, J.; Montelione, G.T.; Levy, R.M. A large data set comparison of protein structures determined by crystallography and NMR: Statistical test for structural differences and the effect of crystal packing. Proteins, 2007, 69(3), 449-465.
[http://dx.doi.org/10.1002/prot.21507] [PMID: 17623851]
[10]
Kleywegt, G.J.; Jones, T.A. Model building and refinement practice. Methods Enzymol., 1997, 277, 208-230.
[http://dx.doi.org/10.1016/S0076-6879(97)77013-7] [PMID: 18488311]
[11]
Brünger, A.T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature, 1992, 355(6359), 472-475.
[http://dx.doi.org/10.1038/355472a0] [PMID: 18481394]
[12]
Brünger, A.T. Free R value: Cross-validation in crystallography. Methods Enzymol., 1997, 277, 366-396.
[http://dx.doi.org/10.1016/S0076-6879(97)77021-6] [PMID: 18488318]
[13]
Read, R.J.; Adams, P.D.; Arendall, W.B., III; Brunger, A.T.; Emsley, P.; Joosten, R.P.; Kleywegt, G.J.; Krissinel, E.B.; Lutteke, T.; Otwinowski, Z.; Perrakis, A.; Richardson, J.S.; Sheffler, W.H.; Smith, J.L.; Tickle, I.; Vriend, G.; Zwart, P.H. A new generation of crystallographic validation tools for theprotein data bank Strucutre, 2011, 19(10), 1395-1412.
[14]
Noguchi, T.; Onizuka, K.; Akiyama, Y.; Saito, M. PDB-REPRDB: A database of representative protein chains in PDB (Protein Data Bank). Proc. Int. Conf. Intell. Syst. Mol. Biol., 1997, 5, 214-217.
[PMID: 9322039]
[15]
Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Sali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29(1), 291-325.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.291] [PMID: 10940251]
[16]
Chothia, C.; Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J., 1986, 5(4), 823-826.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04288.x] [PMID: 3709526]
[17]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics, 2006.
[http://dx.doi.org/10.1002/0471250953.bi0506s15]
[18]
Yadav, M.R.; Murumkar, P.R. Textbook of Drug Design and Development, 1st ed; Vallabh Prakashan: Delhi, 2020.
[19]
Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815.
[http://dx.doi.org/10.1006/jmbi.1993.1626] [PMID: 8254673]
[20]
Fiser, A.; Do, R.K.; Sali, A. Modeling of loops in protein structures. Protein Sci., 2000, 9(9), 1753-1773.
[http://dx.doi.org/10.1110/ps.9.9.1753] [PMID: 11045621]
[21]
Levitt, M. Accurate modeling of protein conformation by automatic segment matching. J. Mol. Biol., 1992, 226(2), 507-533.
[http://dx.doi.org/10.1016/0022-2836(92)90964-L] [PMID: 1640463]
[22]
Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 2003, 31(13), 3381-3385.
[http://dx.doi.org/10.1093/nar/gkg520] [PMID: 12824332]
[23]
Bates, P.A.; Kelley, L.A.; MacCallum, R.M.; Sternberg, M.J. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins, 2001, 5(S5)(Suppl. 5), 39-46.
[http://dx.doi.org/10.1002/prot.1168] [PMID: 11835480]
[24]
Koehl, P.; Delarue, M. Mean-field minimization methods for biological macromolecules. Curr. Opin. Struct. Biol., 1996, 6(2), 222-226.
[http://dx.doi.org/10.1016/S0959-440X(96)80078-9] [PMID: 8728655]
[25]
Le, L.; Lee, E.; Schulten, K.; Truong, T.N. Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza. PLoS Curr., 2009, 1, RRN1015.
[PMID: 20029609]
[26]
Murumkar, P.R.; Le, L.; Truong, T.N.; Yadav, M.R. Determination of structural requirements of influenza neuraminidase type A inhibitors and binding interaction analysis with the active site of A/H1N1 by 3D-QSAR CoMFA and CoMSIA modeling. MedChemComm, 2011, 2(8), 710-719.
[http://dx.doi.org/10.1039/c1md00050k]
[27]
Barmade, M.A.; Murumkar, P.R.; Sharma, M.K.; Shingala, K.P.; Giridhar, R.R.; Yadav, M.R. Discovery of anti-malarial agents through application of in silico studies. Comb. Chem. High Throughput Screen., 2015, 18(2), 151-187.
[http://dx.doi.org/10.2174/1386207318666141229125852] [PMID: 25543680]
[28]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thorton, M. PROCHECK: A program to check the stereochemical quality of protein structure. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[29]
Vriend, G. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 1990, 8(1), 52-56, 29.
[http://dx.doi.org/10.1016/0263-7855(90)80070-V] [PMID: 2268628]
[30]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[31]
Bowie, J.U.; Lüthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science, 1991, 253(5016), 164-170.
[http://dx.doi.org/10.1126/science.1853201] [PMID: 1853201]
[32]
Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356(6364), 83-85.
[http://dx.doi.org/10.1038/356083a0] [PMID: 1538787]
[33]
Pontius, J.; Richelle, J.; Wodak, S.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol., 1996, 264(1), 121-136.
[http://dx.doi.org/10.1006/jmbi.1996.0628] [PMID: 8950272]
[34]
DasGupta, S.; Murumkar, P.R.; Giridhar, R.; Yadav, M.R. Current perspective of TACE inhibitors: A review. Bioorg. Med. Chem., 2009, 17(2), 444-459.
[http://dx.doi.org/10.1016/j.bmc.2008.11.067] [PMID: 19095454]
[35]
DasGupta, S.; Murumkar, P.R.; Giridhar, R.; Yadav, M.R. Studies on novel 2-imidazolidinones and tetrahydropyrimidin-2(1H)-ones as potential TACE inhibitors: Design, synthesis, molecular modeling, and preliminary biological evaluation. Bioorg. Med. Chem., 2009, 17(10), 3604-3617.
[http://dx.doi.org/10.1016/j.bmc.2009.04.003] [PMID: 19394232]
[36]
Sengupta, P.; Puri, C.S.; Chokshi, H.A.; Sheth, C.K.; Midha, A.S.; Chitturi, T.R.; Thennati, R.; Murumkar, P.R.; Yadav, M.R. Synthesis, preliminary biological evaluation and molecular modeling of some new heterocyclic inhibitors of TACE. Eur. J. Med. Chem., 2011, 46(11), 5549-5555.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.018] [PMID: 21963348]
[37]
Murumkar, P.R.; Gupta, S.D.; Zambre, V.P.; Giridhar, R.; Yadav, M.R. Development of predictive 3D-QSAR CoMFA and CoMSIA models for beta-aminohydroxamic acid-derived tumor necrosis factor-alpha converting enzyme inhibitors. Chem. Biol. Drug Des., 2009, 73(1), 97-107.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00737.x] [PMID: 19152638]
[38]
Murumkar, P.R.; Zambre, V.P.; Yadav, M.R. Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J. Comput. Aided Mol. Des., 2010, 24(2), 143-156.
[http://dx.doi.org/10.1007/s10822-010-9322-z] [PMID: 20179991]
[39]
Murumkar, P.R.; DasGupta, S.; Chandani, S.R.; Giridhar, R.; Yadav, M.R. Novel TACE inhibitors in drug discovery: A review of patented compounds. Expert Opin. Ther. Pat., 2010, 20(1), 31-57.
[http://dx.doi.org/10.1517/13543770903465157] [PMID: 20021284]
[40]
Murumkar, P.R.; Giridhar, R.; Yadav, M.R. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme. Chem. Biol. Drug Des., 2008, 71(4), 363-373.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00639.x] [PMID: 18284555]
[41]
Murumkar, P.R.; Giridhar, R.; Yadav, M.R. Novel methods and strategies in the discovery of TACE inhibitors. Expert Opin. Drug Discov., 2013, 8(2), 157-181.
[http://dx.doi.org/10.1517/17460441.2013.744745] [PMID: 23231541]
[42]
Murumkar, P.R.; Sharma, M.K.; Shinde, A.C.; Bothara, K.G. Three-dimensional quantitative structure–activity relationship CoMFA/CoMSIA on pyrrolidine-based tartrate diamides as TACE inhibitors. Med. Chem. Res., 2013, 22(9), 4192-4201.
[http://dx.doi.org/10.1007/s00044-012-0409-z]
[43]
Murumkar, P.R.; Sharma, M.K.; Giridhar, R.; Yadav, M.R. Virtual screening-based identification of lead molecules as selective TACE inhibitors. Med. Chem. Res., 2015, 24(1), 226-244.
[http://dx.doi.org/10.1007/s00044-014-1097-7]
[44]
Sarkate, A.P.; Murumkar, P.R.; Lokwani, D.K.; Kandhare, A.D.; Bodhankar, S.L.; Shinde, D.B.; Bothara, K.G. Design of selective TACE inhibitors using molecular docking studies: Synthesis and preliminary evaluation of anti-inflammatory and TACE inhibitory activity. SAR QSAR Environ. Res., 2015, 26(11), 905-923.
[http://dx.doi.org/10.1080/1062936X.2015.1095240] [PMID: 26588187]
[45]
Dai, C.; Li, D.; Popovici-Muller, J.; Zhao, L.; Girijavallabhan, V.M.; Rosner, K.E.; Lavey, B.J.; Rizvi, R.; Shankar, B.B.; Wong, M.K.; Guo, Z.; Orth, P.; Strickland, C.O.; Sun, J.; Niu, X.; Chen, S.; Kozlowski, J.A.; Lundell, D.J.; Piwinski, J.J.; Shih, N.Y.; Siddiqui, M.A. 2-(2-Aminothiazol-4-yl)pyrrolidine-based tartrate diamides as potent, selective and orally bioavailable TACE inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(10), 3172-3176.
[46]
Li, D.; Popovici-Muller, J.; Belanger, D.B.; Caldwell, J.; Dai, C.; David, M.; Girijavallabhan, V.M.; Lavey, B.J.; Lee, J.F.; Liu, Z.; Mazzola, R.; Rizvi, R.; Rosner, K.E.; Shankar, B.; Spitler, J.; Ting, P.C.; Vaccaro, H.; Yu, W.; Zhou, G.; Zhu, Z.; Niu, X.; Sun, J.; Guo, Z.; Orth, P.; Chen, S.; Kozlowski, J.A.; Lundell, D.J.; Madison, V.; McKittrick, B.; Piwinski, J.J.; Shih, N.Y.; Shipps, G.W., Jr; Siddiqui, M.A.; Strickland, C.O. Structure and activity relationships of tartrate-based TACE inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(16), 4812-4815.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.104] [PMID: 20638281]
[47]
Rosner, K.E.; Guo, Z.; Orth, P.; Shipps, G.W., Jr; Belanger, D.B.; Chan, T.Y.; Curran, P.J.; Dai, C.; Deng, Y.; Girijavallabhan, V.M.; Hong, L.; Lavey, B.J.; Lee, J.F.; Li, D.; Liu, Z.; Popovici-Muller, J.; Ting, P.C.; Vaccaro, H.; Wang, L.; Wang, T.; Yu, W.; Zhou, G.; Niu, X.; Sun, J.; Kozlowski, J.A.; Lundell, D.J.; Madison, V.; McKittrick, B.; Piwinski, J.J.; Shih, N.Y.; Arshad Siddiqui, M.; Strickland, C.O. The discovery of novel tartrate-based TNF-alpha converting enzyme (TACE) inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(3), 1189-1193.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.004] [PMID: 20022498]
[48]
Yu, W.; Guo, Z.; Orth, P.; Madison, V.; Chen, L.; Dai, C.; Feltz, R.J.; Girijavallabhan, V.M.; Kim, S.H.; Kozlowski, J.A.; Lavey, B.J.; Li, D.; Lundell, D.; Niu, X.; Piwinski, J.J.; Popovici-Muller, J.; Rizvi, R.; Rosner, K.E.; Shankar, B.B.; Shih, N.Y.; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G. Discovery and SAR of hydantoin TACE inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(6), 1877-1880.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.148] [PMID: 20172725]
[49]
Yu, W.; Tong, L.; Kim, S.H.; Wong, M.K.; Chen, L.; Yang, D.Y.; Shankar, B.B.; Lavey, B.J.; Zhou, G.; Kosinski, A.; Rizvi, R.; Li, D.; Feltz, R.J.; Piwinski, J.J.; Rosner, K.E.; Shih, N.Y.; Siddiqui, M.A.; Guo, Z.; Orth, P.; Shah, H.; Sun, J.; Umland, S.; Lundell, D.J.; Niu, X.; Kozlowski, J.A. Biaryl substituted hydantoin compounds as TACE inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(17), 5286-5289.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.134] [PMID: 20663669]
[50]
Park, K.; Gopalsamy, A.; Aplasca, A.; Ellingboe, J.W.; Xu, W.; Zhang, Y.; Levin, J.I. Synthesis and activity of tryptophan sulfonamide derivatives as novel non-hydroxamate TNF-Alpha Converting Enzyme (TACE) inhibitors. Bioorg. Med. Chem., 2009, 17(11), 3857-3865.
[http://dx.doi.org/10.1016/j.bmc.2009.04.033] [PMID: 19410464]
[51]
Govinda Rao, B.; Bandarage, U.K.; Wang, T.; Come, J.H.; Perola, E.; Wei, Y.; Tian, S.K.; Saunders, J.O. Novel thiol-based TACE inhibitors: Rational design, synthesis, and SAR of thiol-containing aryl sulfonamides. Bioorg. Med. Chem. Lett., 2007, 17(8), 2250-2253.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.064] [PMID: 17289381]
[52]
Guo, Z.; Orth, P.; Wong, S.C.; Lavey, B.J.; Shih, N.Y.; Niu, X.; Lundell, D.J.; Madison, V.; Kozlowski, J.A. Discovery of novel spirocyclopropyl hydroxamate and carboxylate compounds as TACE inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(1), 54-57.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.034] [PMID: 19054672]
[53]
Levin, J.I.; Chen, J.M.; Laakso, L.M.; Du, M.; Schmid, J.; Xu, W.; Cummons, T.; Xu, J.; Jin, G.; Barone, D.; Skotnicki, J.S. Acetylenic TACE inhibitors. Part 3: Thiomorpholine sulfonamide hydroxamates. Bioorg. Med. Chem. Lett., 2006, 16(6), 1605-1609.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.020] [PMID: 16426848]
[54]
Mazzola, R.D., Jr; Zhu, Z.; Sinning, L.; McKittrick, B.; Lavey, B.; Spitler, J.; Kozlowski, J.; Neng-Yang, S.; Zhou, G.; Guo, Z.; Orth, P.; Madison, V.; Sun, J.; Lundell, D.; Niu, X. Discovery of novel hydroxamates as highly potent tumor necrosis factor-alpha converting enzyme inhibitors. Part II: Optimization of the S3′ pocket. Bioorg. Med. Chem. Lett., 2008, 18(21), 5809-5814.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.045] [PMID: 18835710]
[55]
Levin, J.I.; Chen, J.M.; Laakso, L.M.; Du, M.; Du, X.; Venkatesan, A.M.; Sandanayaka, V.; Zask, A.; Xu, J.; Xu, W.; Zhang, Y.; Skotnicki, J.S. Acetylenic TACE inhibitors. Part 2: SAR of sixmembered cyclic sulfonamide hydroxamates. Bioorg. Med. Chem. Lett., 2005, 15(19), 4345-4349.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.072] [PMID: 16084720]
[56]
Bandarage, U.K.; Wang, T.; Come, J.H.; Perola, E.; Wei, Y.; Rao, B.G. Novel thiol-based TACE inhibitors. Part 2: Rational design, synthesis, and SAR of thiol-containing aryl sulfones. Bioorg. Med. Chem. Lett., 2008, 18(1), 44-48.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.014] [PMID: 18054488]
[57]
Yang, H.; Dou, W.; Lou, J.; Leng, Y.; Shen, J. Discovery of novel inhibitors of 11β-hydroxysteroid dehydrogenase type 1 by docking and pharmacophore modeling. Bioorg. Med. Chem. Lett., 2008, 18(4), 1340-1345.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.020] [PMID: 18242087]
[58]
Sun, W.; Maletic, M.; Mundt, S.S.; Shah, K.; Zokian, H.; Lyons, K.; Waddell, S.T.; Balkovec, J. Substituted phenyl triazoles as selective inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1. Bioorg. Med. Chem. Lett., 2011, 21(7), 2141-2145.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.125] [PMID: 21334894]
[59]
Yang, H.; Shen, Y.; Chen, J.; Jiang, Q.; Leng, Y.; Shen, J. Structure-based virtual screening for identification of novel 11β-HSD1 inhibitors. Eur. J. Med. Chem., 2009, 44(3), 1167-1171.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.005] [PMID: 18653260]
[60]
Sun, D.; Wang, Z.; Di, Y.; Jaen, J.C.; Labelle, M.; Ma, J.; Miao, S.; Sudom, A.; Tang, L.; Tomooka, C.S.; Tu, H.; Ursu, S.; Walker, N.; Yan, X.; Ye, Q.; Powers, J.P. Discovery and initial SAR of arylsulfonylpiperazine inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Bioorg. Med. Chem. Lett., 2008, 18(12), 3513-3516.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.025] [PMID: 18511278]
[61]
Sorensen, B.; Winn, M.; Rohde, J.; Shuai, Q.; Wang, J.; Fung, S.; Monzon, K.; Chiou, W.; Stolarik, D.; Imade, H.; Pan, L.; Deng, X.; Chovan, L.; Longenecker, K.; Judge, R.; Qin, W.; Brune, M.; Camp, H.; Frevert, E.U.; Jacobson, P.; Link, J.T. Adamantane sulfone and sulfonamide 11-beta-HSD1 Inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(2), 527-532.
[62]
Webster, S.P.; Binnie, M.; McConnell, K.M.; Sooy, K.; Ward, P.; Greaney, M.F.; Vinter, A.; Pallin, T.D.; Dyke, H.J.; Gill, M.I.; Warner, I.; Seckl, J.R.; Walker, B.R. Modulation of 11β-hydroxysteroid dehydrogenase type 1 activity by 1,5-substituted 1H-tetrazoles. Bioorg. Med. Chem. Lett., 2010, 20(11), 3265-3271.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.055] [PMID: 20452767]
[63]
Julian, L.D.; Wang, Z.; Bostick, T.; Caille, S.; Choi, R.; DeGraffenreid, M.; Di, Y.; He, X.; Hungate, R.W.; Jaen, J.C.; Liu, J.; Monshouwer, M.; McMinn, D.; Rew, Y.; Sudom, A.; Sun, D.; Tu, H.; Ursu, S.; Walker, N.; Yan, X.; Ye, Q.; Powers, J.P. Discovery of novel, potent benzamide inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) exhibiting oral activity in an enzyme inhibition ex vivo model. J. Med. Chem., 2008, 51(13), 3953-3960.
[64]
McMinn, D.L.; Rew, Y.; Sudom, A.; Caille, S.; Degraffenreid, M.; He, X.; Hungate, R.; Jiang, B.; Jaen, J.; Julian, L.D.; Kaizerman, J.; Novak, P.; Sun, D.; Tu, H.; Ursu, S.; Walker, N.P.; Yan, X.; Ye, Q.; Wang, Z.; Powers, J.P. Optimization of novel di-substituted cyclohexylbenzamide derivatives as potent 11 beta-HSD1 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(5), 1446-1450.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.026] [PMID: 19185488]
[65]
Sun, D.; Wang, Z.; Caille, S.; DeGraffenreid, M.; Gonzalez-Lopez de Turiso, F.; Hungate, R.; Jaen, J.C.; Jiang, B.; Julian, L.D.; Kelly, R.; McMinn, D.L.; Kaizerman, J.; Rew, Y.; Sudom, A.; Tu, H.; Ursu, S.; Walker, N.; Willcockson, M.; Yan, X.; Ye, Q.; Powers, J.P. Synthesis and optimization of novel 4,4-disubstituted cyclohexylbenzamide derivatives as potent 11β-HSD1 inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(1), 405-410.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.129] [PMID: 21093258]
[66]
Rew, Y.; McMinn, D.L.; Wang, Z.; He, X.; Hungate, R.W.; Jaen, J.C.; Sudom, A.; Sun, D.; Tu, H.; Ursu, S.; Villemure, E.; Walker, N.P.; Yan, X.; Ye, Q.; Powers, J.P. Discovery and optimization of piperidyl benzamide derivatives as a novel class of 11beta-HSD1 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(6), 1797-1801.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.058] [PMID: 19217779]
[67]
Tu, H.; Powers, J.P.; Liu, J.; Ursu, S.; Sudom, A.; Yan, X.; Xu, H.; Meininger, D.; Degraffenreid, M.; He, X.; Jaen, J.C.; Sun, D.; Labelle, M.; Yamamoto, H.; Shan, B.; Walker, N.P.; Wang, Z. Distinctive molecular inhibition mechanisms for selective inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1. Bioorg. Med. Chem., 2008, 16(19), 8922-8931.
[http://dx.doi.org/10.1016/j.bmc.2008.08.065] [PMID: 18789704]
[68]
Chikhale, R.V.; Barmade, M.A.; Murumkar, P.R.; Yadav, M.R. Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis. J. Med. Chem., 2018, 61(19), 8563-8593.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00281] [PMID: 29851474]
[69]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci., 2012, 109(28), 11354-11359.
[http://dx.doi.org/10.1073/pnas.1205735109]
[70]
Shetye, G.S.; Franzblau, S.G.; Cho, S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl. Res., 2020, 220, 68-97.
[http://dx.doi.org/10.1016/j.trsl.2020.03.007] [PMID: 32275897]
[71]
Huszár, S.; Chibale, K.; Singh, V. The quest for the holy grail: New antitubercular chemical entities, targets and strategies. Drug Discov. Today, 2020, 25(4), 772-780.
[http://dx.doi.org/10.1016/j.drudis.2020.02.003] [PMID: 32062007]
[72]
Neres, J.; Hartkoorn, R.C.; Chiarelli, L.R.; Gadupudi, R.; Pasca, M.R.; Mori, G.; Venturelli, A.; Savina, S.; Makarov, V.; Kolly, G.S.; Molteni, E.; Binda, C.; Dhar, N.; Ferrari, S.; Brodin, P.; Delorme, V.; Landry, V.; de Jesus Lopes Ribeiro, A.L.; Farina, D.; Saxena, P.; Pojer, F.; Carta, A.; Luciani, R.; Porta, A.; Zanoni, G.; De Rossi, E.; Costi, M.P.; Riccardi, G.; Cole, S.T. 2-Carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chem. Biol., 2015, 10(3), 705-714.
[73]
Berry, J.D.; Jones, S.; Drebot, M.A.; Andonov, A.; Sabara, M.; Yuan, X.Y.; Weingartl, H.; Fernando, L.; Marszal, P.; Gren, J.; Nicolas, B.; Andonova, M.; Ranada, F.; Gubbins, M.J.; Ball, T.B.; Kitching, P.; Li, Y.; Kabani, A.; Plummer, F. Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. J. Virol. Methods, 2004, 120(1), 87-96.
[http://dx.doi.org/10.1016/j.jviromet.2004.04.009] [PMID: 15234813]
[74]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[75]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[76]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[77]
Knoops, K.; Kikkert, M.; Worm, S.H.; Zevenhoven-Dobbe, J.C.; van der Meer, Y.; Koster, A.J.; Mommaas, A.M.; Snijder, E.J. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol., 2008, 6(9), e226.
[http://dx.doi.org/10.1371/journal.pbio.0060226] [PMID: 18798692]
[78]
Eskier, D.; Karakülah, G.; Suner, A.; Oktay, Y. RdRp mutations are associated with SARS-CoV-2 genome evolution. PeerJ, 2020, 8, e9587.
[http://dx.doi.org/10.7717/peerj.9587] [PMID: 32742818]
[79]
Krumm, Z.A.; Lloyd, G.M.; Francis, C.P.; Nasif, L.H.; Mitchell, D.A.; Golde, T.E.; Giasson, B.I.; Xia, Y. Precision therapeutic targets for COVID-19. Virol. J., 2021, 18(1), 66.
[http://dx.doi.org/10.1186/s12985-021-01526-y] [PMID: 33781287]
[80]
Szeto, C.; Chatzileontiadou, D.S.M.; Nguyen, A.T.; Sloane, H.; Lobos, C.A.; Jayasinghe, D.; Halim, H.; Smith, C.; Riboldi-Tunnicliffe, A.; Grant, E.J.; Gras, S. The presentation of SARS-CoV-2 peptides by the common HLA-A*02:01 molecule. iScience, 2021, 24(2), 102096.
[http://dx.doi.org/10.1016/j.isci.2021.102096] [PMID: 33521593]
[81]
Nguyen, A.T.; Szeto, C.; Jayasinghe, D.; Lobos, C.A.; Halim, H.; Chatzileontiadou, D.S.M.; Grant, E.J.; Gras, S. SARS-CoV-2 spike-derived peptides presented by HLA molecules. Biophysica, 2021, 1(2), 194-203.
[http://dx.doi.org/10.3390/biophysica1020015]
[82]
Murumkar, P.R.; Ghuge, R.B.; Chauhan, M.; Barot, R.R.; Sorathiya, S.; Choudhary, K.M.; Joshi, K.D.; Yadav, M.R. Recent developments and strategies for the discovery of TACE inhibitors. Expert Opin. Drug Discov., 2020, 15(7), 779-801.
[http://dx.doi.org/10.1080/17460441.2020.1744559] [PMID: 32281878]
[83]
Murumkar, P.R.; Shinde, A.C.; Sharma, M.K.; Yamaguchi, H.; Miniyar, P.B.; Yadav, M.R. Development of a credible 3D-QSAR CoMSIA model and docking studies for a series of triazoles and tetrazoles containing 11β-HSD1 inhibitors. SAR QSAR Environ. Res., 2016, 27(4), 265-292.
[http://dx.doi.org/10.1080/1062936X.2016.1167774] [PMID: 27094303]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy