Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

An Insight into the Recent Synthetic Approaches of Benzimidazole Motifs Based on Divergent Substrate Scope

Author(s): G. Kavya, Ajil R. Nair and Akhil Sivan*

Volume 20, Issue 4, 2023

Published on: 19 August, 2022

Page: [333 - 357] Pages: 25

DOI: 10.2174/1570193X19666220420134233

Price: $65

Abstract

Simple heterocyclic moieties are quite famous in synthetic organic chemistry due to their bioavailability, ease of laboratory synthesis, and variety of applications in multidisciplinary fields. Benzimidazole is an N-containing benzo-fused chemical compound with the formula C7H6N2 and belongs to the family of heterocyclic aromatic organic compounds. It is a potent bioactive molecule with prominent therapeutic activities and has been found to have prior importance in medicinal chemistry. Several advanced investigations also proved benzimidazole and its derivatives have significant antimicrobial, antiparasitic, antifungal, and anti-carcinogenic activities. It has also gained popularity in material science as well. Because of its versatile applications, numerous research groups paid considerable attention to synthesizing benzimidazoles. o-Phenylenediamine (OPD) is considered the traditional substrate for benzimidazole synthesis. This review discussed the synthetic approaches of benzimidazoles from OPD as a primary reactant with diverse substrates like aldehydes, alcohols, carboxylic acids/ esters, etc. We have also briefed up reactions using primary substrates such as o-nitroanilines and o-dinitrobenzenes. This review report covers research findings published since 2016 and describes numerous practical and greener synthesis methods. It also narrates innovative biocatalysts, photocatalysts, and nanocatalysts, which are used for the synthesis of benzimidazoles.

Keywords: Anticancer agent, benzimidazole, N-heterocycle, medicinal chemistry, o-phenylenediamine, organic synthesis.

Graphical Abstract

[1]
Woolley, D.W. Some biological effects produced by benzimidazole and their reversal by purines. J. Biol. Chem., 1944, 152(2), 225-232.
[http://dx.doi.org/10.1016/S0021-9258(18)72045-0]
[2]
Brink, N.G.; Folkers, K. Vitamin B12. VI. 5, 6-dimethylbenzimidazole, a degradation product of vitamin B12. J. Am. Chem. Soc., 1949, 71(8), 2951.
[http://dx.doi.org/10.1021/ja01176a532]
[3]
Epstein, S.S. Effect of some benzimidazoles on a vitamin B12-requiring alga. Nature, 1960, 188(4745), 143-144.
[http://dx.doi.org/10.1038/188143a0] [PMID: 13697028]
[4]
Emerson, G.; Brink, N.G.; Holly, F.W.; Koniuszy, F.; Heyl, D.; Folker, K. Vitamin B12. VIII. Vitamin B12-like activity of 5, 6-dimethylbenzimidazole and tests on related compounds. J. Am. Chem. Soc., 1950, 72(7), 3084-3085.
[http://dx.doi.org/10.1021/ja01163a078]
[5]
(a) Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208];
(b) Manna, S.K.; Das, T.; Samanta, S. Polycyclic benzimidazole: Synthesis and photophysical properties. ChemistrySelect, 2019, 4(30), 8781-8790.
[http://dx.doi.org/10.1002/slct.201901941]
[6]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[7]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21(3), 269-283.
[http://dx.doi.org/10.1007/s00044-010-9533-9]
[8]
Minoura, H.; Takeshita, S.; Ita, M.; Hirosumi, J.; Mabuchi, M.; Kawamura, I.; Nakajima, S.; Nakayama, O.; Kayakiri, H.; Oku, T.; Ohkubo-Suzuki, A.; Fukagawa, M.; Kojo, H.; Hanioka, K.; Yamasaki, N.; Imoto, T.; Kobayashi, Y.; Mutoh, S. Pharmacological characteristics of a novel nonthiazolidinedione insulin sensitizer, FK614. Eur. J. Pharmacol., 2004, 494(2-3), 273-281.
[http://dx.doi.org/10.1016/j.ejphar.2004.04.038] [PMID: 15212984]
[9]
Hoebrecker, F. Ueber reductionsprodukte der nitracetamidverbindungen. Ber. Dtsch. Chem. Ges., 1872, 5(2), 920-924.
[http://dx.doi.org/10.1002/cber.18720050295]
[10]
(a) Preston, P.N. Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev., 1974, 74(3), 279-314.
[http://dx.doi.org/10.1021/cr60289a001];
b) Singh, V.K.; Parle, A. The intriguing benzimidazole: A review. Int. J. Pharm. Sci. Res., 2019, 10(4), 1540-1552.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(4).1540-52]
[11]
Bahrami, K.; Khodaei, M.M.; Kavianinia, I.A. Simple and efficient one-pot synthesis of 2-substituted benzimidazoles. Synthesis, 2007, 12(4), 783-784.
[http://dx.doi.org/10.1055/s-2007-965878]
[12]
Ma, H.; Han, X.; Wang, Y.; Wang, K.A. Simple and efficient method for synthesis of benzimidazoles using FeBr3 or Fe(NO3)3•9H2O as catalyst. ChemInform, 2007, 38(49), 1821-1825.
[http://dx.doi.org/10.1002/chin.200749146]
[13]
Du, L-H.; Wang, Y-G. A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. Synthesis, 2007, 5(5), 675-678.
[http://dx.doi.org/10.1055/s-2007-965922]
[14]
Heravi, M.M.; Derikvand, F.; Ranjbar, L. Sulfamic acid-catalyzed, three-component, one-pot synthesis of [1, 2, 4]triazolo/benzimidazolo quinazolinone derivatives. Synth. Commun., 2010, 40(5), 677-685.
[http://dx.doi.org/10.1080/00397910903009489]
[15]
Venkateswarlu, Y.; Kumar, S.R.; Leelavathi, P. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride. Org. Med. Chem. Lett., 2013, 3(1), 7.
[http://dx.doi.org/10.1186/2191-2858-3-7] [PMID: 23919542]
[16]
Liyan, F.; Wen, C.; Lulu, K. Highly chemoselective synthesis of benzimidazoles in Sc(OTf)3-catalyzed system. Heterocycles, 2015, 91(12), 2306-2314.
[http://dx.doi.org/10.3987/COM-15-13326]
[17]
Alaqeel, S.I. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. J. Saudi Chem. Soc., 2017, 21(2), 229-237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001]
[18]
Yadav, P.; Kakati, P.; Singh, P.; Awasthi, S.K. Application of sulfonic acid fabricated cobalt ferrite nanoparticles as effective magnetic nanocatalyst for green and facile synthesis of benzimidazoles. Appl. Catal. A Gen., 2021, 612, 118005.
[http://dx.doi.org/10.1016/j.apcata.2021.118005]
[19]
Nikpassand, M.; Pirdelzendeh, D. Green synthesis of novel azo-linked 2-phenyl benzimidazoles using ionic liquid. [BDBDMIm] Br. Dyes Pigments, 2016, 130, 314-318.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.038]
[20]
Kovvuri, J.; Nagaraju, B.; Kamal, A.; Srivastava, A.K. An efficient synthesis of 2-substituted benzimidazoles via photocatalytic condensation of o-phenylenediamines and aldehydes. ACS Comb. Sci., 2016, 18(10), 644-650.
[http://dx.doi.org/10.1021/acscombsci.6b00107] [PMID: 27631587]
[21]
Wang, Z.; Song, T.; Yang, Y. Additive- and oxidant-free expedient synthesis of benzimidazoles catalyzed by cobalt nanocomposites on N-doped carbon. Synlett, 2019, 30(3), 319-324.
[http://dx.doi.org/10.1055/s-0037-1610353]
[22]
Sarkar, A.; Jana, S.; Nayek, H.P. A pentanuclear Er(III) coordination cluster as a catalyst for selective synthesis of 1, 2-disubstituted benzimidazoles. Appl. Organomet. Chem., 2021, 35(6), 1-9.
[http://dx.doi.org/10.1002/aoc.6200]
[23]
Smitha, G.; Sreekumar, K. Highly functionalized heterogeneous dendrigraft catalysts with peripheral copper moieties for the facile synthesis of 2-substituted benzimidazoles and 2, 2-disubstituted benzimidazoles. RSC Advances, 2016, 6(22), 18141-18155.
[http://dx.doi.org/10.1039/C5RA28046J]
[24]
Skolia, E.; Apostolopoulou, M.K.; Nikitas, N.F.; Kokotos, C.G. Photochemical synthesis of benzimidazoles from diamines and aldehydes. Eur. J. Org. Chem., 2021, 2021(3), 422-428.
[http://dx.doi.org/10.1002/ejoc.202001357]
[25]
Karthik, M.; Suresh, P. Brønsted acidic reduced graphene oxide as a sustainable carbocatalyst: A selective method for the synthesis of C-2-substituted benzimidazole. New J. Chem., 2018, 42(22), 17931-17938.
[http://dx.doi.org/10.1039/C8NJ03257B]
[26]
Kagne, R.; Niwadange, S.; Kalalawe, V.; Gutte, R.; Munde, D. Sulfated tin oxide: An immensely potent and reusable catalyst for the synthesis of benzimidazole derivatives. Macromol. Symp., 2019, 387(1), 1-5.
[http://dx.doi.org/10.1002/masy.201800238]
[27]
Vallés-García, C.; Cabrero-Antonino, M.; Navalón, S.; Álvaro, M.; Dhakshinamoorthy, A.; García, H. Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. J. Colloid Interface Sci., 2020, 560, 885-893.
[http://dx.doi.org/10.1016/j.jcis.2019.10.093] [PMID: 31718791]
[28]
Singh, K.S.; Joy, F.; Devi, P. Ruthenium (II)-catalyzed synthesis of 2-arylbenzimidazole and 2-arylbenzothiazole in water. Trans. Met. Chem. (Weinh.), 2021, 46(3), 181-190.
[http://dx.doi.org/10.1007/s11243-020-00435-3]
[29]
Gulati, S.; Singh, R.; Sangwan, S.; Rana, S. Synthesis of novel benzimidazoles at room temperature, under solvent-free condition and their biological studies. J. Iran. Chem. Soc., 2021, 18(1), 167-179.
[http://dx.doi.org/10.1007/s13738-020-02019-5]
[30]
Hakimi, F.; Fallah-Mehrjardi, M.; Golrasan, E. Yttrium aluminum garnet (YAG: Al5Y3O12) as an efficient catalyst for the synthesis of benzimidazole and benzoxazole derivatives. Chemmethod, 2020, 2020, 234-244.
[http://dx.doi.org/10.33945/SAMI/CHEMM.2020.3.2]
[31]
Di Gioia, M.L.; Cassano, R.; Costanzo, P.; Herrera Cano, N.; Maiuolo, L.; Nardi, M.; Nicoletta, F.P.; Oliverio, M.; Procopio, A. Green synthesis of privileged benzimidazole scaffolds using active deep eutectic solvent. Molecules, 2019, 24(16), 2885.
[http://dx.doi.org/10.3390/molecules24162885] [PMID: 31398916]
[32]
An, W-K.; Zheng, S.J.; Zhang, H.X.; Shang, T.T.; Wang, H.R.; Xu, X.J.; Jin, Q.; Qin, Y.; Ren, Y.; Jiang, S.; Xu, C.L.; Hou, M.S.; Pan, Z. S-Tetrazine-functionalized hyper-crosslinked polymers for efficient photocatalytic synthesis of benzimidazoles. Green Chem., 2021, 23(3), 1292-1299.
[http://dx.doi.org/10.1039/D0GC03719B]
[33]
Elumalai, V.; Hansen, J.H. A green, scalable, one-minute synthesis of benzimidazoles. Synlett, 2020, 31(6), 547-552.
[http://dx.doi.org/10.1055/s-0039-1690797]
[34]
Jiang, Y.; Sun, J.; Yang, X.; Shen, J.; Fu, Y.; Fan, Y.; Xu, J.; Wang, L. Cd-MOF@PVDF Mixed-matrix membrane with good catalytic activity and recyclability for the production of benzimidazole and amino acid derivatives. Inorg. Chem., 2021, 60(3), 2087-2096.
[http://dx.doi.org/10.1021/acs.inorgchem.1c00084] [PMID: 33470793]
[35]
Ziarati, A.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R.; Badiei, A. Sonication method synergism with rare earth based nanocatalyst: Preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths, 2017, 35(4), 374-381.
[http://dx.doi.org/10.1016/S1002-0721(17)60922-0]
[36]
Pashavan, C.T.; Gondaliya, M.B.; Shah, M.K. Synthesis of benzimidazole using reusable nanocatalyst zirconia and sulfated zirconia. World Sci. News, 2019, 117, 235-242.
[37]
Rostami, E.; Haghayeghi, S.M. Trifluoroacetate-bonded polyethylene graphene oxide composite as a novel and efficient catalyst for the synthesis of benzimidazoles under solvent-free conditions. Iran. J. Catal., 2021, 11, 37-48.
[38]
Mirfarjood, S.A.; Mamaghani, M.; Sheykhan, M. Copper-incorporated fluorapatite encapsulated iron oxide nanocatalyst for synthesis of benzimidazoles. J. Nanostructure Chem., 2017, 7(4), 359-366.
[http://dx.doi.org/10.1007/s40097-017-0245-2]
[39]
Kaliyan, P.; Selvaraj, L.; Muthu, S.P. Water extract of onion catalyst: An economical green route for the synthesis of 2-substituted and 1, 2-disubstituted benzimidazole derivatives with high selectivity. J. Heterocycl. Chem., 2021, 58(1), 340-349.
[http://dx.doi.org/10.1002/jhet.4177]
[40]
Bhenki, C.; Karhale, S.; Helavi, V. 5-Sulfosalicylic acid as an efficient organocatalyst for environmentally benign synthesis of 2-substituted benzimidazoles. Iran. J. Catal., 2016, 6, 409-413.
[41]
Karhale, S.; Patil, K.; Bhenki, C.; Rashinkar, G.; Helavi, V. Zirconocene catalyzed synthesis of 2-substituted benzimidazole derivatives. Res. Chem. Intermed., 2016, 42(10), 7257-7268.
[http://dx.doi.org/10.1007/s11164-016-2534-7]
[42]
Martins, G.M.; Puccinelli, T.; Gariani, R.A.; Xavier, F.R.; Silveira, C.C.; Mendes, S.R. Facile and efficient aerobic one-pot synthesis of benzimidazoles using Ce(NO3)3·6H2O as promoter. Tetrahedron Lett., 2017, 58(20), 1969-1972.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.020]
[43]
Samanta, S.; Mahato, S.; Chatterjee, R.; Santra, S.; Zyryanov, G.V.; Majee, A. Nano indium oxide-catalyzed domino reaction for the synthesis of N-alkoxylated benzimidazoles. Tetrahedron Lett., 2020, 61(32), 152177.
[http://dx.doi.org/10.1016/j.tetlet.2020.152177]
[44]
John, S.; Kavya, G.; Aparna, M.M.; Krishnan, R.A.; Parvathy, R.; Sreenath, T.S.; Sivan, A. Organic base catalysed synthesis of benzimidazole. IOP Conf. Ser. Mater. Sci. Eng., 2020.
[http://dx.doi.org/10.1088/1757-899X/872/1/012142]
[45]
Sahiba, N.; Agarwal, D.K.; Manhas, A.; Sethiya, A.; Soni, J.; Jha, P.C.; Agarwal, S. Mechanochemical approach for the selective synthesis of 1,2-disubstituted benzimidazoles and their molecular docking studies. Polycycl. Aromat. Compd., 2020, 1-19.
[http://dx.doi.org/10.1080/10406638.2020.1768565]
[46]
Hu, Z.; Zhao, T.; Wang, M.; Wu, J.; Yu, W.; Chang, J. 2-Mediated intramolecular C-H amidation for the synthesis of N-substituted benzimidazoles. J. Org. Chem., 2017, 82(6), 3152-3158.
[http://dx.doi.org/10.1021/acs.joc.7b00142] [PMID: 28233495]
[47]
Patel, J.J.; Patel, A.P.; Chikhalia, K.H. An efficient Pd-catalyzed intramolecular cyclization reaction followed by formation of benzimidazole derivatives: Synthesis of novel quinolin-fused benzo[d] Azeto [1,2-a]benzimidazole analogues. Synth. Commun., 2021, 51(1), 81-93.
[http://dx.doi.org/10.1080/00397911.2020.1819325]
[48]
Azeez, S.; Sureshbabu, P.; Chaudhary, P.; Sabiah, S.; Kandasamy, J. Tert-Butyl nitrite catalyzed synthesis of benzimidazoles from o-phenylenediamine and aldehydes at room temperature. Tetrahedron Lett., 2020, 61(14), 151735.
[http://dx.doi.org/10.1016/j.tetlet.2020.151735]
[49]
Huynh, T.K.C.; Nguyen, T.H.A.; Tran, N.H.S.; Nguyen, T.D.; Hoang, T.K.D. A facile and efficient synthesis of benzimidazole as potential anticancer agents. J. Chem. Sci., 2020, 132(1), 84.
[http://dx.doi.org/10.1007/s12039-020-01783-4]
[50]
Bonacci, S.; Iriti, G.; Mancuso, S.; Novelli, P.; Paonessa, R.; Tallarico, S.; Nardi, M. Montmorillonite K10: An efficient organo-heterogeneous catalyst for synthesis of benzimidazole derivatives. Catalysts, 2020, 10(8), 845.
[http://dx.doi.org/10.3390/catal10080845]
[51]
Mogharabi-Manzari, M.; Kiani, M.; Aryanejad, S.; Imanparast, S.; Amini, M.; Faramarzi, M.A. A magnetic heterogeneous biocatalyst composed of immobilized laccase and 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) for green one-pot cascade synthesis of 2-substituted benzimidazole and benzoxazole derivatives under mild reaction conditions. Adv. Synth. Catal., 2018, 360(18), 3563-3571.
[http://dx.doi.org/10.1002/adsc.201800459]
[52]
Maphupha, M.; Juma, W.P.; De Koning, C.B.; Brady, D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Advances, 2018, 8(69), 39496-39510.
[http://dx.doi.org/10.1039/C8RA07377E]
[53]
Dadwal, S.; Kumar, M.; Bhalla, V. “Metal-free” nanoassemblies of AIEE-ICT-active pyrazine derivative: Efficient photoredox system for the synthesis of benzimidazoles. J. Org. Chem., 2020, 85(21), 13906-13919.
[http://dx.doi.org/10.1021/acs.joc.0c01965] [PMID: 33085479]
[54]
Kaur, N.; Kaur, S.; Kaur, G.; Bhalla, A.; Srinivasan, S.; Chaudhary, G.R. Metallovesicles as smart nanoreactors for green catalytic synthesis of benzimidazole derivatives in water. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(29), 17306-17314.
[http://dx.doi.org/10.1039/C9TA05441C]
[55]
Zhang, S.; Yi, D.; Li, G.; Li, L.; Zhao, G.; Tang, Z. Biomimetic alloxan-catalyzed intramolecular redox reaction with O2: One-pot atom-economic synthesis of sulfinyl-functionalized benzimidazoles. Tetrahedron Lett., 2021, 62, 152688.
[http://dx.doi.org/10.1016/j.tetlet.2020.152688]
[56]
Bharathi, M.; Indira, S.; Vinoth, G.; Mahalakshmi, T.; Induja, E.; Shanmuga Bharathi, K. Green synthesis of benzimidazole derivatives under ultrasound irradiation using Cu-schiff base complexes embedded over MCM-41 as efficient and reusable catalysts. J. Coord. Chem., 2020, 73(4), 653-670.
[http://dx.doi.org/10.1080/00958972.2020.1730335]
[57]
Ghodke, S.S.; Khandare, P.M.; Ingle, R.D.; Tekale, S.U.; Pawar, R.P. Synthesis of benzimidazoles using pomegranate peel powder as a natural and efficient catalyst. Lett. Appl. NanoBioScience, 2021, 10(3), 2501-2505.
[http://dx.doi.org/10.33263/LIANBS103.25012505]
[58]
Das, K.; Mondal, A.; Srimani, D. Selective synthesis of 2-substituted and 1, 2-disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese(I) complex. J. Org. Chem., 2018, 83(16), 9553-9560.
[http://dx.doi.org/10.1021/acs.joc.8b01316] [PMID: 29993244]
[59]
Chen, R.; Jalili, Z.; Tayebee, R. UV-Visible light-induced photochemical synthesis of benzimidazoles by coomassie brilliant blue coated on W-ZnO@NH2 nanoparticles. RSC Advances, 2021, 11(27), 16359-16375.
[http://dx.doi.org/10.1039/D0RA10843J]
[60]
Tateyama, K.; Wada, K.; Miura, H.; Hosokawa, S.; Abe, R.; Inoue, M. Dehydrogenative synthesis of benzimidazoles under mild conditions with supported iridium catalysts. Catal. Sci. Technol., 2016, 6(6), 1677-1684.
[http://dx.doi.org/10.1039/C5CY01601K]
[61]
Wada, K.; Yu, H.; Feng, Q. Titania-supported iridium catalysts for dehydrogenative synthesis of benzimidazoles. Chin. Chem. Lett., 2020, 31(3), 605-608.
[http://dx.doi.org/10.1016/j.cclet.2019.05.054]
[62]
Zuo, M.; Guo, W.; Pang, Y.; Guo, R.; Hou, C.; Sun, S.; Wu, H.; Sun, Z.; Chu, W. Direct synthesis of 2-substituted benzimidazoles via dehydrogenative coupling of aromatic-diamine and primary alcohol catalyzed by a Co complex. New J. Chem., 2020, 44(34), 14490-14495.
[http://dx.doi.org/10.1039/D0NJ03619F]
[63]
Daw, P.; Ben-David, Y.; Milstein, D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catal., 2017, 7(11), 7456-7460.
[http://dx.doi.org/10.1021/acscatal.7b02777]
[64]
Bera, A.; Sk, M.; Singh, K.; Banerjee, D. Nickel-catalysed dehydrogenative coupling of aromatic diamines with alcohols: Selective synthesis of substituted benzimidazoles and quinoxalines. Chem. Commun. (Camb.), 2019, 55(42), 5958-5961.
[http://dx.doi.org/10.1039/C9CC02319D] [PMID: 31050346]
[65]
Qin, Y.; Hao, M.; Xu, C.; Li, Z. Visible light initiated oxidative coupling of alcohols and o-phenylenediamines to synthesize benzimidazoles over MIL-101(Fe) promoted by plasmonic Au. Green Chem., 2021, 23(11), 4161-4169.
[http://dx.doi.org/10.1039/D1GC01047F]
[66]
Sharma, S.; Sharma, A. Yamini; Das, P. Supported rhodium (Rh@PS) catalyzed benzimidazoles synthesis using ethanol/methanol as C2H3/CH source. Adv. Synth. Catal., 2019, 361(1), 67-72.
[http://dx.doi.org/10.1002/adsc.201801040]
[67]
Putta, R.R.; Chun, S.; Lee, S.B.; Oh, D.C.; Hong, S. Iron-catalyzed acceptorless dehydrogenative coupling of alcohols with aromatic diamines: Selective synthesis of 1, 2-disubstituted benzimidazoles. Front Chem., 2020, 8, 429.
[http://dx.doi.org/10.3389/fchem.2020.00429] [PMID: 32637390]
[68]
Li, Z.; Ye, Z.; Chen, L.; Cui, J.; Chen, J. Hierarchically nanoporous titanium-based coordination polymers for photocatalytic synthesis of benzimidazole. ACS Appl. Nano Mater., 2020, 3(11), 10720-10731.
[http://dx.doi.org/10.1021/acsanm.0c01953]
[69]
Nasseri, M.A.; Rezazadeh, Z.; Kazemnejadi, M.; Allahresani, A. Cu-Mn Bimetallic complex immobilized on magnetic NPs as an efficient catalyst for domino one-pot preparation of benzimidazole and biginelli reactions from alcohols. Catal. Lett., 2021, 151(4), 1049-1067.
[http://dx.doi.org/10.1007/s10562-020-03371-0]
[70]
Niwadange, S.N.; Govindrao, S.; Arts, M.; Mahurkar, S.S.; Kagne, R.P. Synthesis of benzimidazole derivatives in an aqueous media and reflux conditions catalysed L-proline at pH-4.2. IJRAR, 2019, 6, 485-491.
[71]
El-Sayed, T.H.; Aboelnaga, A.; Hagar, M. Ball milling assisted solvent and catalyst free synthesis of benzimidazoles and their derivatives. Molecules, 2016, 21(9), E1111.
[http://dx.doi.org/10.3390/molecules21091111] [PMID: 27563861]
[72]
Devkate, C.G.; Warad, K.D.; Bhalerao, M.B.; Digambar, D. Green and efficient synthesis of benzimidazole derivatives and their antibacterial screening. J. Chem. Pharm. Res., 2017, 9, 209-213.
[73]
Kadhim, A.J.; Kazim, A.C. Synthesis and characterization of benzimidazole by using o-phenylenediamine with different aldehydes and carboxylic acids in the presence of p-TsOH as a catalyst. Orient. J. Chem., 2018, 34(4), 2131-2136.
[http://dx.doi.org/10.13005/ojc/3404054]
[74]
Deb, B.; Chakraborty, A.; Hossain, J.; Majumdar, S. A Task-specific ionic-liquid-mediated solvent-free protocol for direct access to dimethyl acetal protected benzimidazole 2-carboxaldehydes. SynOpen, 2020, 4(4), 89-95.
[http://dx.doi.org/10.1055/s-0040-1706391]
[75]
Basuri, P.; Gonzalez, L.E.; Morato, N.M.; Pradeep, T.; Cooks, R.G. Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids. Chem. Sci. (Camb.), 2020, 11(47), 12686-12694.
[http://dx.doi.org/10.1039/D0SC02467H] [PMID: 34094463]
[76]
Raja, D.; Philips, A.; Palani, P.; Lin, W.Y.; Devikala, S.; Senadi, G.C. Metal-free synthesis of benzimidazoles via oxidative cyclization of D-glucose with o-phenylenediamines in water. J. Org. Chem., 2020, 85(17), 11531-11540.
[http://dx.doi.org/10.1021/acs.joc.0c01053] [PMID: 32786645]
[77]
Chen, Y.; Xu, F.; Sun, Z. Synthesis of 1,2-disubstituted benzimidazoles using an aza-wittig-equivalent process. RSC Advances, 2017, 7(70), 44421-44425.
[http://dx.doi.org/10.1039/C7RA09010B]
[78]
Zhang, R.; Qin, Y.; Zhang, L.; Luo, S. Oxidative synthesis of benzimidazoles, quinoxalines, and benzoxazoles from primary amines by o-quinone catalysis. Org. Lett., 2017, 19(20), 5629-5632.
[http://dx.doi.org/10.1021/acs.orglett.7b02786] [PMID: 28968131]
[79]
Zhu, J.; Zhang, Z.; Miao, C.; Liu, W.; Sun, W. Synthesis of benzimidazoles from o-phenylenediamines and DMF derivatives in the presence of PhSiH3. Tetrahedron, 2017, 73(25), 3458-3462.
[http://dx.doi.org/10.1016/j.tet.2017.05.018]
[80]
Nale, D.B.; Bhanage, B.M. N-Substituted formamides as C1-sources for the synthesis of benzimidazole and benzothiazole derivatives by using zinc catalysts. Synlett, 2015, 26(20), 2835-2842.
[http://dx.doi.org/10.1055/s-0035-1560319]
[81]
Kantharaju, K.; Hiremath, P.B. One-pot, green approach synthesis of 2-aryl substituted benzimidazole derivatives catalyzed by water extract of papaya bark ash. Asian J. Chem., 2018, 30(7), 1634-1638.
[http://dx.doi.org/10.14233/ajchem.2018.21296]
[82]
Khatun, R.; Biswas, S.; Biswas, I.H.; Riyajuddin, S.; Haque, N.; Ghosh, K.; Islam, S.M. Cu-NPs@COF: A potential heterogeneous catalyst for CO2 fixation to produce 2-oxazolidinones as well as benzimidazoles under moderate reaction conditions. J. CO2 Util, 2020, 40, 101180.
[http://dx.doi.org/10.1016/j.jcou.2020.101180]
[83]
Thapa, P.; Palacios, P.M.; Tran, T.; Pierce, B.S.; Foss, F.W., Jr 1,2-Disubstituted benzimidazoles by the iron catalyzed cross-dehydrogenative coupling of isomeric o-phenylenediamine substrates. J. Org. Chem., 2020, 85(4), 1991-2009.
[http://dx.doi.org/10.1021/acs.joc.9b02714] [PMID: 31928002]
[84]
Phatake, V.V.; Bhanage, B.M. Highly efficient one pot synthesis of benzimidazoles from 2-nitroaniline and PhSiH3 as reducing agent catalyzed by Pd/C as a heterogeneous catalyst. Tetrahedron Lett., 2021, 68, 152940.
[http://dx.doi.org/10.1016/j.tetlet.2021.152940]
[85]
Montini, T.; Gombac, V.; Delgado, J.J.; Venezia, A.M.; Adami, G.; Fornasiero, P. Sustainable photocatalytic synthesis of benzimidazoles. Inorg. Chim. Acta, 2021, 520, 120289.
[http://dx.doi.org/10.1016/j.ica.2021.120289]
[86]
Lin, C.; Wan, W.; Wei, X.; Chen, J. 2 Activation with Co nanoparticles encapsulated in N-doped carbon nanotubes for green synthesis of benzimidazoles. ChemSusChem, 2021, 14(2), 709-720.
[http://dx.doi.org/10.1002/cssc.202002344] [PMID: 33226188]
[87]
Boddapati, S.N.M.; Tamminana, R.; Gollapudi, R.K.; Nurbasha, S.; Assal, M.E.; Alduhaish, O.; Siddiqui, M.R.H.; Bollikolla, H.B.; Adil, S.F. Copper-promoted one-pot approach: Synthesis of benzimidazoles. Molecules, 2020, 25(8), 1-13.
[http://dx.doi.org/10.3390/molecules25081788] [PMID: 32295143]
[88]
Li, G.; He, R.; Liu, Q.; Wang, Z.; Liu, Y.; Wang, Q. Formation of amidinyl radicals via visible-light-promoted reduction of N-phenyl amidoxime esters and application to the synthesis of 2-substituted benzimidazoles. J. Org. Chem., 2019, 84(13), 8646-8660.
[http://dx.doi.org/10.1021/acs.joc.9b01158] [PMID: 31198038]
[89]
Saha, M.; Das, A.R.I. 2/TBHP promoted oxidative C–N bond formation at room temperature: Divergent access of 2-substituted benzimidazoles involving ring distortion. Tetrahedron Lett., 2018, 59(26), 2520-2525.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.028]
[90]
Das, S.; Mallick, S.; De Sarkar, S. Cobalt-catalyzed sustainable synthesis of benzimidazoles by redox-economical coupling of o-nitroanilines and alcohols. J. Org. Chem., 2019, 84(18), 12111-12119.
[http://dx.doi.org/10.1021/acs.joc.9b02090] [PMID: 31429563]
[91]
Sagirli, A. A new approach for the synthesis of fluorescent pyrido[1,2-a]benzimidazoles. Synth. Commun., 2020, 50(21), 3298-3307.
[http://dx.doi.org/10.1080/00397911.2020.1800742]
[92]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(II)-catalyzed oxidative cross-coupling of anilines, primary alkyl amines, and sodium azide using TBHP: A route to 2-substituted benzimidazoles. J. Org. Chem., 2016, 81(8), 3227-3234.
[http://dx.doi.org/10.1021/acs.joc.6b00186] [PMID: 26991254]
[93]
Hati, S.; Kumar Dutta, P.; Dutta, S.; Munshi, P.; Sen, S. Accessing benzimidazoles via a ring distortion strategy: An oxone mediated tandem reaction of 2-aminobenzylamines. Org. Lett., 2016, 18(13), 3090-3093.
[http://dx.doi.org/10.1021/acs.orglett.6b01217] [PMID: 27331245]
[94]
Arnold, E.P.; Mondal, P.K.; Schmitt, D.C. Oxidative cyclization approach to benzimidazoles. ACS Comb. Sci., 2020, 22(1), 1-5.
[http://dx.doi.org/10.1021/acscombsci.9b00189] [PMID: 31860283]
[95]
Duan, Z.; Zhang, L.; Zhang, W.; Lu, L.; Zeng, L.; Shi, R.; Lei, A. Palladium-catalyzed electro-oxidative C-H amination toward the synthesis of pyrido[1,2- a]benzimidazoles with hydrogen evolution. ACS Catal., 2020, 10(6), 3828-3831.
[http://dx.doi.org/10.1021/acscatal.0c00103]
[96]
Zhao, H.B.; Zhuang, J.L.; Xu, H.C. Electrochemical synthesis of benzimidazoles via dehydrogenative cyclization of amidines. ChemSusChem, 2021, 14(7), 1692-1695.
[http://dx.doi.org/10.1002/cssc.202100254] [PMID: 33605037]
[97]
Dasgupta, H.R.; Mukherjee, S.; Ghosh, P. One pot reductive synthesis of benzimidazole derivatives from 2-nitro aniline and aromatic aldehydes using Zn/NaHSO3 in water medium. Prog. Chem. Biochem. Res., 2021, 4, 57-67.
[http://dx.doi.org/10.22034/pcbr.2020.245413.1126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy