Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Review on Synthetic Strategies for Useful Oxadiazole Derivatives in Psychological Disorders

Author(s): Shivani Saxena, Rajnish Kumar*, Avijit Mazumder, Sunita Kumari, Divya Sharma, Sagar Joshi and Vikas Sharma

Volume 20, Issue 4, 2023

Published on: 15 July, 2022

Page: [324 - 332] Pages: 9

DOI: 10.2174/1570193X19666220411134810

Price: $65

Abstract

Oxadiazole is a five-membered aromatic heterocyclic ring having two nitrogen and one oxygen atom. Various isomeric forms have been reported for oxadiazole, such as 1,3,4-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, etc. Currently, a considerable population worldwide is facing several mental problems due to a competitive lifestyle. The present status of available medicines do not promise complete cure without any adverse effects. Therefore, these disorders are continuously challenging the researchers to come up with new molecules with superior efficacy and minimum side effects. All the isomeric forms of oxadiazole have numerous potential in treating various mental problems such as Parkinsonism, Alzheimer’s, schizophrenia, and epileptic disorders. In this review article, we summarize several recently reported synthetic strategies for preparing different oxadiazole and its derivatives which were found effective in psychological disorders. The researchers will be able to obtain the necessary information (synthesis strategies) through this article for their future research on new molecules containing the oxadiazole moiety. Furthermore, this review article will help the researchers in the fight against mental disorders and highlights possible molecules for the treatment of mentally challenged people.

Keywords: Aromatic heterocyclic ring, isomeric forms, oxadiazole, epileptic disorders, synthetic strategies, hybrid molecules.

Graphical Abstract

[1]
Petasis, N.A. Expanding roles for organoboron compounds–Versatile and valuable molecules for synthetic, biological and medicinal chemistry. Aust. J. Chem., 2007, 60(11), 795-798.
[http://dx.doi.org/10.1071/CH07360]
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2013, (1), 12-15.
[3]
Saha, R.; Tanwar, O.; Marella, A.; Alam, M.M.; Akhter, M. Recent updates on biological activities of oxadiazoles. Mini Rev. Med. Chem., 2013, 13(7), 1027-1046.
[http://dx.doi.org/10.2174/1389557511313070007] [PMID: 22512577]
[4]
Patel, N.B.; Patel, J.C. Synthesis and antimicrobial activity of 3-(1,3,4-Oxadiazol-2-yl)quinazolin-4(3H)-ones. Sci. Pharm., 2010, 78(2), 171-193.
[http://dx.doi.org/10.3797/scipharm.0912-16] [PMID: 21179342]
[5]
James, N.D.; Growcott, J.W. Zibotentan endothelin ETA receptor antagonist oncolytic. Drugs Future, 2009, 34(8), 624-633.
[6]
Kumar Singh, A.; Lohani, M.; Parthsarthy, R. Synthesis, characterization and anti-inflammatory activity of some 1, 3,4 -oxadiazole derivatives. Iran. J. Pharm. Res., 2013, 12(2), 319-323.
[PMID: 24250606]
[7]
Amir, M.; Shikha, K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur. J. Med. Chem., 2004, 39(6), 535-545.
[http://dx.doi.org/10.1016/j.ejmech.2004.02.008] [PMID: 15183912]
[8]
Kumar, H.; Javed, S.A.; Khan, S.A.; Amir, M. 1,3,4-Oxadiazole/thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-yloxy acetic acid: synthesis and preliminary evaluation of biological properties. Eur. J. Med. Chem., 2008, 43(12), 2688-2698.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.039] [PMID: 18395299]
[9]
Kashaw, S.K.; Gupta, V.; Kashaw, V.; Mishra, P.; Stables, J.P.; Jain, N.K. Anticonvulsant and sedative-hypnotic activity of some novel 3-[5-(4-substituted) phenyl-1, 3, 4-oxadiazole-2yl]-2-styrylquinazoline-4 (3 H)-ones. Med. Chem. Res., 2010, 19(3), 250-261.
[http://dx.doi.org/10.1007/s00044-009-9188-6]
[10]
Bommera, R.K.; Kethireddy, S.; Govindapur, R.R.; Eppakayala, L. Synthesis, biological evaluation and docking studies of 1,2,4-oxadiazole linked 5-fluorouracil derivatives as anticancer agents. BMC Chem., 2021, 15(1), 30.
[http://dx.doi.org/10.1186/s13065-021-00757-y] [PMID: 33947440]
[11]
Khan, M.S.; Khan, R.M.; Drabu, S. Anticonvulsant and antibacterial activity of some new 1, 3, 4-oxadiazole derivatives. Indian J. Heterocycl. Chem., 2001, 11(2), 119-122.
[12]
Maslat, A.O.; Abussaud, M.; Tashtoush, H.; Al-Talib, M. Synthesis, antibacterial, antifungal and genotoxic activity of bis-1,3,4-oxadiazole derivatives. Pol. J. Pharmacol., 2002, 54(1), 55-59.
[PMID: 12020044]
[13]
Kushwah, P.; Mehta, D.; Gupta, G.K.; Das, R.; Kaur, K. A brief review on oxadiazole as a potent anticancer agent. Inventi Rapid: Med. Chem., 2013.
[14]
Manzo, E.; Pagano, D.; Carbone, M.; Ciavatta, M.L.; Gavagnin, M. Synthesis of phidianidine B, a highly cytotoxic 1, 2, 4-oxadiazole marine metabolite. ARKIVOC, 2012, 9(9), 220-228.
[http://dx.doi.org/10.3998/ark.5550190.0013.919]
[15]
Khan, H.; Zafar, M.; Patel, S.; Shah, S.M.; Bishayee, A. Pharmacophore studies of 1, 3, 4-oxadiazole nucleus: Lead compounds as α-glucosidase inhibitors. Food Chem. Toxicol., 2019, 130, 207-218.
[http://dx.doi.org/10.1016/j.fct.2019.05.006] [PMID: 31128218]
[16]
Denhart, D.J.; Deskus, J.A.; Ditta, J.L.; Gao, Q.; Dalton King, H.; Kozlowski, E.S.; Meng, Z.; LaPaglia, M.A.; Mattson, G.K.; Molski, T.F.; Taber, M.T.; Lodge, N.J.; Mattson, R.J.; Macor, J.E. Conformationally restricted homotryptamines. Part 5: 3-(trans-2-aminomethylcyclopentyl)indoles as potent selective serotonin reuptake inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4031-4033.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.026] [PMID: 19560923]
[17]
Brogan, J.T.; Stoops, S.L.; Lindsley, C.W. Total synthesis and biological evaluation of phidianidines A and B uncovers unique pharmacological profiles at CNS targets. ACS Chem. Neurosci., 2012, 3(9), 658-664.
[http://dx.doi.org/10.1021/cn300064r] [PMID: 23019492]
[18]
Moazzam, M.; Moazzam, N.; Osmany, H.B. First record of occurrence of the opisthobranch kalinga ornata alder and hancock 1864 from the coast of Pakistan. Int. J. Biochem. Cell Biol., 13(4), 613-615.
[19]
Okoro, C.A.; Stoodt, G.; Rohrer, J.E.; Strine, T.W.; Li, C.; Balluz, L.S. Physical activity patterns among U.S. adults with and without serious psychological distress. Public Health Rep., 2014, 129(1), 30-38.
[http://dx.doi.org/10.1177/003335491412900106] [PMID: 24381357]
[20]
Thiry, A.; Rolin, S.; Vullo, D.; Frankart, A.; Scozzafava, A.; Dogné, J.M.; Wouters, J.; Supuran, C.T.; Masereel, B. Indanesulfonamides as carbonic anhydrase inhibitors and anticonvulsant agents: structure-activity relationship and pharmacological evaluation. Eur. J. Med. Chem., 2008, 43(12), 2853-2860.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.018] [PMID: 18406497]
[21]
Rajak, H.; Singour, P.; Kharya, M.D.; Mishra, P. A novel series of 2,5-disubstituted 1,3,4-oxadiazoles: synthesis and SAR study for their anticonvulsant activity. Chem. Biol. Drug Des., 2011, 77(2), 152-158.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01066.x] [PMID: 21266018]
[22]
Asif, M. A mini review on pharmacological activities of oxadiazole and thiadiazole compounds. Moroccan J. Chemistry., 2014, 2(2), 2.
[23]
Almasirad, A.; Vousooghi, N.; Tabatabai, S.A.; Kebriaeezadeh, A.; Shafiee, A. Synthesis, anticonvulsant and muscle relaxant activities of substituted 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole and 1, 2, 4-triazole. Acta Chim. Slov., 2007, 54, 317-324.
[24]
Zarghi, A.; Hamedi, S.; Tootooni, F.; Amini, B.; Sharifi, B.; Faizi, M.; Tabatabai, S.A.; Shafiee, A. Synthesis and pharmacological evaluation of new 2-substituted-5-{2-[(2-halobenzyl) thio) phenyl}-1, 3, 4-oxadiazoles as anticonvulsant agents. Sci. Pharm., 2008, 76(2), 185-202.
[http://dx.doi.org/10.3797/scipharm.0803-10]
[25]
Rotbart, H.A.; Webster, A.D. Pleconaril Treatment Registry Group. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin. Infect. Dis., 2001, 32(2), 228-235.
[http://dx.doi.org/10.1086/318452] [PMID: 11170912]
[26]
Greco, M.; Varriale, G.; Coppola, G.; Operto, F.; Verrotti, A.; Iezzi, M.L. Investigational small molecules in phase II clinical trials for the treatment of epilepsy. Expert Opin. Investig. Drugs, 2018, 27(12), 971-979.
[http://dx.doi.org/10.1080/13543784.2018.1543398] [PMID: 30408428]
[27]
Galanopoulou, A.S.; Buckmaster, P.S.; Staley, K.J.; Moshé, S.L.; Perucca, E.; Engel, J., Jr; Löscher, W.; Noebels, J.L.; Pitkänen, A.; Stables, J.; White, H.S.; O’Brien, T.J.; Simonato, M. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia, 2012, 53(3), 571-582.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03391.x] [PMID: 22292566]
[28]
Löscher, W.; Schmidt, D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res., 1994, 17(2), 95-134.
[http://dx.doi.org/10.1016/0920-1211(94)90012-4] [PMID: 8194514]
[29]
Walsh, S.P.; Kling, M.A. VNS and depression: current status and future directions. Expert Rev. Med. Devices, 2004, 1(1), 155-160.
[http://dx.doi.org/10.1586/17434440.1.1.155] [PMID: 16293018]
[30]
Kumar, R.; Abdullah, M.M. Synthesis and anticonvulsant potential of some new 4-[5-substituted-[1, 3, 4] oxadiazole-2-yl]-2-phenylquinolines. Indian J. Heterocycl. Chem., 2019, 29(1), 79-86.
[31]
Kumar, R.; Abdullah, M.M. Synthesis, characterization and anticonvulsant potential of 2,5-disubstituted -1,3,4-oxadiazole analogues. Asian J. Chem., 2019, 31(6), 1389-1397.
[http://dx.doi.org/10.14233/ajchem.2019.22061]
[32]
Harish, K.P.; Mohana, K.N.; Mallesha, L.; Prasanna Kumar, B.N. Synthesis of novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives and evaluation of their in vivo anticonvulsant activity. Eur. J. Med. Chem., 2013, 65, 276-283.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.054] [PMID: 23727537]
[33]
Wang, S.; Liu, H.; Wang, X.; Lei, K.; Li, G.; Li, J.; Liu, R.; Quan, Z. Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. Eur. J. Med. Chem., 2020, 206, 112672.
[http://dx.doi.org/10.1016/j.ejmech.2020.112672] [PMID: 32798790]
[34]
Muralikrishna, S.; Raveendrareddy, P.; Ravindranath, L.K. Synthesis of 1, 3, 4 Oxadiazole derivatives containing Indole moiety bearing–Thiazolidinone and Anti-inflamatory activity of Thiazolidinone. Int. J. Chemtech Res., 2014, 6(1), 183-194.
[35]
Bhat, M.A.; Siddiqui, N.; Khan, S.A. Synthesis of novel 3-(4-acetyl-5H/methyl-5-substituted phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2H-chromen-2-ones as potential anticonvulsant agents. Acta Pol. Pharm., 2008, 65(2), 235-239.
[PMID: 18666431]
[36]
Husain, A.; Ahmad, A.; Alam, M.M.; Ajmal, M.; Ahuja, P. Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(9), 3798-3804.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.009] [PMID: 19457595]
[37]
Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett., 2004, 14(24), 6057-6059.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.072] [PMID: 15546729]
[38]
Chen, Y.; Xu, X.; Liu, X.; Yu, M.; Liu, B.F.; Zhang, G. Synthesis and evaluation of a series of 2-substituted-5-thiopropylpiperazine (piperidine)-1,3,4-oxadiazoles derivatives as atypical antipsychotics. PLoS One, 2012, 7(4), e35186.
[http://dx.doi.org/10.1371/journal.pone.0035186] [PMID: 22558126]
[39]
Kaur, R.; Kaur, P. Synthesis and pharmacological activities of 1, 3, 4-oxadiazole derivatives: A review. European J. Biomedical., 2018, 5(6), 865-877.
[40]
Ubaradka, S.R.; Isloor, A.M.; Shetty, P.; Shetty, P.; Isloor, N.A. Synthesis, characterization and their anticonvulsant, anti-inflammatory studies of some novel chromeno oxadiazoles. Med. Chem. Res., 2013, 22(3), 1497-1503.
[http://dx.doi.org/10.1007/s00044-012-0103-1]
[41]
Rostamizadeh, S.; Ghaieni, H.R.; Aryan, R.; Amani, A.M. One-pot synthesis of 3, 5-disubstituted 1, 2, 4-oxadiazoles directly from nitrile and hydroxylamine hydrochloride under solvent-free conditions using potassium fluoride as catalyst and solid support. Synth. Commun., 2010, 40(20), 3084-3092.
[http://dx.doi.org/10.1080/00397910903370642]
[42]
Zhang, J.; Li, J.C.; Song, J.L.; Cheng, Z.Q.; Sun, J.Z.; Jiang, C.S. Synthesis and evaluation of coumarin/1, 2, 4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2019, 21(11), 1090-1103.
[PMID: 29991292]
[43]
Kaboudin, B.; Saadati, F. Magnesia-supported hydroxylamine hydrochloride in the presence of sodium carbonate as an efficient reagent for the synthesis of 1, 2, 4-oxadiazoles from nitriles. Tetrahedron Lett., 2007, 48(16), 2829-2832.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.105]
[44]
Rostamizadeh, S.; Housaini, S.G. Microwave assisted syntheses of 2, 5-disubstituted 1, 3, 4-oxadiazoles. Tetrahedron Lett., 2004, 45(47), 8753-8756.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.095]
[45]
Koparir, M.; Çetin, A.; Cansiz, A. 5-Furan-2yl[1,3,4]oxadiazole-2-thiol, 5-furan-2yl-4H [1,2,4] triazole-3-thiol and their thiol-thione tautomerism. Molecules, 2005, 10(2), 475-480.
[http://dx.doi.org/10.3390/10020475] [PMID: 18007318]
[46]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[47]
Li, Z.; Zhu, A.; Mao, X.; Sun, X.; Gong, X. Silica-supported dichlorophosphate: A recoverable cyclodehydrant for the eco-friendly synthesis of 2,5-disubstituted 1,3,4-oxadiazoles under solvent-free and microwave irradiation conditions. J. Braz. Chem. Soc., 2008, 19(8), 1622-1626.
[http://dx.doi.org/10.1590/S0103-50532008000800024]
[48]
Sharma, G.V.M.; Rakesh, B.A.; Krishna, P.R. Zirconium (IV) chloride mediated cyclodehydration of 1,2-diacylhydrazines: A convenient synthesis of 2,5-diaryl 1,3,4-oxadiazoles. Synth. Commun., 2004, 34(13), 2387-2391.
[http://dx.doi.org/10.1081/SCC-120039492]
[49]
Yang, Y-H.; Shi, M. Halogen effects in Robinson-Gabriel type reaction of cyclopropanecarboxylic acid N′-substituted-hydrazides with PPh3/CX4. Tetrahedron Lett., 2005, 46(37), 6285-6288.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.048]
[50]
Xu, C.; Jia, F.C.; Cai, Q.; Li, D.K.; Zhou, Z.W.; Wu, A.X. Intramolecular decarboxylative coupling as the key step in copper-catalyzed domino reaction: facile access to 2-(1,3,4-oxadiazol-2-yl)aniline derivatives. Chem. Commun. (Camb.), 2015, 51(30), 6629-6632.
[http://dx.doi.org/10.1039/C5CC01116G] [PMID: 25777136]
[51]
de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.; de Athayde-Filho, P.F.; Filgueiras, P. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231.
[http://dx.doi.org/10.3390/molecules170910192] [PMID: 22926303]
[52]
Stabile, P.; Lamonica, A.; Ribecai, A.; Castoldi, D.; Guercio, G.; Curcuruto, O. Mild and convenient one-pot synthesis of 1, 3, 4-oxadiazoles. Tetrahedron Lett., 2010, 51(37), 4801-4805.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.139]
[53]
Zarghi, A.; Tabatabai, S.A.; Faizi, M.; Ahadian, A.; Navabi, P.; Zanganeh, V.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg. Med. Chem. Lett., 2005, 15(7), 1863-1865.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.014] [PMID: 15780622]
[54]
Siddiqui, N.; Akhtar, M.J.; Yar, M.S.; Ahuja, P.; Ahsan, W.; Ahmed, S. Substituted phenyl containing 1, 3, 4-oxadiazole-2-yl-but-2-enamides: synthesis and preliminary evaluation as promising anticonvulsants. Med. Chem. Res., 2014, 23(11), 4915-4925.
[http://dx.doi.org/10.1007/s00044-014-1060-7]
[55]
Mishra, P.; Sharma, P.; Tripathi, P.N.; Gupta, S.K.; Srivastava, P.; Seth, A.; Tripathi, A.; Krishnamurthy, S.; Shrivastava, S.K. Design and development of 1,3,4-oxadiazole derivatives as potential inhibitors of acetylcholinesterase to ameliorate scopolamine-induced cognitive dysfunctions. Bioorg. Chem., 2019, 89, 103025.
[http://dx.doi.org/10.1016/j.bioorg.2019.103025] [PMID: 31176239]
[56]
Zheng, X.; Li, Z.; Wang, Y.; Chen, W.; Huang, Q.; Liu, C.; Song, G. Syntheses and insecticidal activities of novel 2, 5-disubstituted-1, 3, 4-oxadiazoles. J. Fluor. Chem., 1996, 67(2), 124-130.
[57]
Majji, G.; Rout, S.K.; Guin, S.; Gogoi, A.; Patel, B.K. Iodine-catalysed oxidative cyclisation of acylhydrazones to 2, 5-substituted 1, 3, 4-oxadiazoles. RSC Advances, 2014, 4(11), 5357-5362.
[http://dx.doi.org/10.1039/c3ra44897e]
[58]
Rauf, A.; Sharma, S.; Gangal, S. One-pot synthesis, antibacterial and antifungal activities of novel 2, 5-disubstituted-1, 3, 4-oxadiazoles. Chin. Chem. Lett., 2008, 19(1), 5-8.
[http://dx.doi.org/10.1016/j.cclet.2007.11.026]
[59]
Pouliot, M.F.; Angers, L.; Hamel, J.D.; Paquin, J.F. Synthesis of 1,3,4-oxadiazoles from 1,2-diacylhydrazines using [Et2NSF2]BF4 as a practical cyclodehydration agent. Org. Biomol. Chem., 2012, 10(5), 988-993.
[http://dx.doi.org/10.1039/C1OB06512B] [PMID: 22159592]
[60]
Gao, P.; Wei, Y. Efficient oxidative cyclization of N-acylhydrazones for the synthesis of 2, 5-disubstituted 1, 3, 4-oxadiazoles using t-BuOI under neutral conditions. Heterocycl. Commun., 2013, 19(2), 113-119.
[http://dx.doi.org/10.1515/hc-2012-0179]
[61]
Al-Ghorbani, M.; Gouda, M.A.; Baashen, M. A Review on Synthetic Routes of 5-Aryl-1, 3, 4-oxadiazoles. Indian J. Heterocycl. Chem., 2019, 29(01), 27-37.
[62]
Gurupadaswamy, H.D.; Girish, V.; Kavitha, C.V.; Raghavan, S.C.; Khanum, S.A. Synthesis and evaluation of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles as anti-cancer agents. Eur. J. Med. Chem., 2013, 63, 536-543.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.040] [PMID: 23535322]
[63]
Pidugu, V.R.; Yarla, N.S.; Pedada, S.R.; Kalle, A.M.; Satya, A.K. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity. Bioorg. Med. Chem., 2016, 24(21), 5611-5617.
[http://dx.doi.org/10.1016/j.bmc.2016.09.022] [PMID: 27665180]
[64]
Li, C.; Dickson, H.D. A mild, one-pot preparation of 1, 3, 4-oxadiazoles. Tetrahedron Lett., 2009, 50(47), 6435-6439.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.084]
[65]
Anouar, E.H.; Moustapha, M.E.; Taha, M.; Geesi, M.H.; Farag, Z.R.; Rahim, F.; Almandil, N.B.; Farooq, R.K.; Nawaz, M.; Mosaddik, A. Synthesis, molecular docking and β-glucuronidase inhibitory potential of indole base oxadiazole derivatives. Molecules, 2019, 24(5), 963.
[http://dx.doi.org/10.3390/molecules24050963] [PMID: 30857263]
[66]
Kangani, C.O.; Kelley, D.E.; Day, B.W. One pot direct synthesis of oxazolines, benzoxazoles, and oxadiazoles from carboxylic acids using the Deoxo-Fluor reagent. Tetrahedron Lett., 2006, 47(37), 6497-6499.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.032]
[67]
Sangshetti, J.N.; Dharmadhikari, P.P.; Chouthe, R.S.; Fatema, B.; Lad, V.; Karande, V.; Darandale, S.N.; Shinde, D.B. Microwave assisted nano (ZnO-TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents. Bioorg. Med. Chem. Lett., 2013, 23(7), 2250-2253.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.041] [PMID: 23434418]
[68]
Hwang, J.Y.; Choi, H.S.; Lee, D.H.; Gong, Y.D. Solid-phase synthesis of 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via selective, reagent-based cyclization of acyldithiocarbazate resins. J. Comb. Chem., 2005, 7(6), 816-819.
[http://dx.doi.org/10.1021/cc0500957] [PMID: 16283790]
[69]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1, 3, 4-oxadiazole derivatives. Synth. Commun., 2014, 44(13), 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[70]
Dabiri, M.; Salehi, P.; Baghbanzadeha, M.; Bahramnejad, M. A facile procedure for the one-pot synthesis of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles. Tetrahedron Lett., 2006, 47(39), 6983-6986.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.127]
[71]
Murakami, M.; Matsuda, T. Metal-catalysed cleavage of carbon-carbon bonds. Chem. Commun. (Camb.), 2011, 47(4), 1100-1105.
[http://dx.doi.org/10.1039/C0CC02566F] [PMID: 20953480]
[72]
Masarwa, A.; Marek, I. Selectivity in metal-catalyzed carbon-carbon bond cleavage of alkylidenecyclopropanes. Chemistry, 2010, 16(32), 9712-9721.
[http://dx.doi.org/10.1002/chem.201001246] [PMID: 20607773]
[73]
Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev., 2007, 107(7), 3117-3179.
[http://dx.doi.org/10.1021/cr050988l] [PMID: 17622181]
[74]
Wentzel, M.T.; Reddy, V.J.; Hyster, T.K.; Douglas, C.J. Chemoselectivity in catalytic C-C and C-H bond activation: Controlling intermolecular carboacylation and hydroarylation of alkenes. Angew. Chem. Int. Ed. Engl., 2009, 48(33), 6121-6123.
[http://dx.doi.org/10.1002/anie.200902215] [PMID: 19591181]
[75]
Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Novel and direct transformation of methyl ketones or carbinols to primary amides by employing aqueous ammonia. Org. Lett., 2009, 11(17), 3810-3813.
[http://dx.doi.org/10.1021/ol901250c] [PMID: 19663463]
[76]
Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q.; Barry, B.D.; Liao, P. Chemoselective oxidative C(CO)-C(methyl) bond cleavage of methyl ketones to aldehydes catalyzed by CuI with molecular oxygen. Angew. Chem. Int. Ed. Engl., 2013, 52(43), 11303-11307.
[http://dx.doi.org/10.1002/anie.201305010] [PMID: 24000196]
[77]
Tang, C.; Jiao, N. Copper-catalyzed aerobic oxidative C-C bond cleavage for C-N bond formation: From ketones to amides. Angew. Chem. Int. Ed. Engl., 2014, 53(25), 6528-6532.
[http://dx.doi.org/10.1002/anie.201403528] [PMID: 24828317]
[78]
Huang, X.; Li, X.; Zou, M.; Song, S.; Tang, C.; Yuan, Y.; Jiao, N. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: Aerobic oxidation and oxygenation with air. J. Am. Chem. Soc., 2014, 136(42), 14858-14865.
[http://dx.doi.org/10.1021/ja5073004] [PMID: 25251943]
[79]
Huang, X.; Li, X.; Zou, M.; Pan, J.; Jiao, N. TEMP and copper cocatalyzed oxygenation of ketones with molecular oxygen: Chemoselective synthesis of α-ketoesters. Org. Chem. Front., 2015, 2(4), 354-359.
[http://dx.doi.org/10.1039/C5QO00028A]
[80]
Morimoto, A.; Nishikawa, K. Takeda chemical industries ltd, assignee. Nitrogen containing heterocyclic compounds, their production and use U.S. patent US 5,304,565 1994.
[81]
Guin, S.; Ghosh, T.; Rout, S.K.; Banerjee, A.; Patel, B.K. Cu(II) catalyzed imine C-H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org. Lett., 2011, 13(22), 5976-5979.
[http://dx.doi.org/10.1021/ol202409r] [PMID: 22007797]
[82]
Suo, Z.; Chen, J.; Hou, X.; Hu, Z.; Xing, F.; Feng, L. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Advances, 2019, 9(29), 16479-16491.
[http://dx.doi.org/10.1039/C9RA01261C]
[83]
Andersen, T.L.; Caneschi, W.; Ayoub, A.; Lindhardt, A.T.; Couri, M.R.; Skrydstrup, T. 1, 2, 4‐and 1, 3, 4‐Oxadiazole synthesis by palladium‐catalyzed carbonylative assembly of aryl bromides with amidoximes or hydrazides. Adv. Synth. Catal., 2014, 356(14-15), 3074-3082.
[http://dx.doi.org/10.1002/adsc.201400487]
[84]
Nagarjuna Reddy, M.; Kumara Swamy, K.C. Dual catalysis by Cu(I): facile single step click and intramolecular C-O bond formation leading to triazole tethered dihydrobenzodioxines/benzoxazines/benzoxathiines/benzodioxepines. Org. Biomol. Chem., 2013, 11(42), 7350-7360.
[http://dx.doi.org/10.1039/c3ob41332b] [PMID: 24057008]
[85]
Boyd, M.J.; Crane, S.N.; Robichaud, J.; Scheigetz, J.; Black, W.C.; Chauret, N.; Wang, Q.; Massé, F.; Oballa, R.M. Investigation of ketone warheads as alternatives to the nitrile for preparation of potent and selective cathepsin K inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(3), 675-679.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.053] [PMID: 19117756]
[86]
Ohmoto, K.; Yamamoto, T.; Okuma, M.; Horiuchi, T.; Imanishi, H.; Odagaki, Y.; Kawabata, K.; Sekioka, T.; Hirota, Y.; Matsuoka, S.; Nakai, H.; Toda, M.; Cheronis, J.C.; Spruce, L.W.; Gyorkos, A.; Wieczorek, M. Development of orally active nonpeptidic inhibitors of human neutrophil elastase. J. Med. Chem., 2001, 44(8), 1268-1285.
[http://dx.doi.org/10.1021/jm000410y] [PMID: 11312926]
[87]
Rydzewski, R.M.; Burrill, L.; Mendonca, R.; Palmer, J.T.; Rice, M.; Tahilramani, R.; Bass, K.E.; Leung, L.; Gjerstad, E.; Janc, J.W.; Pan, L. Optimization of subsite binding to the β5 subunit of the human 20S proteasome using vinyl sulfones and 2-keto-1,3,4-oxadiazoles: syntheses and cellular properties of potent, selective proteasome inhibitors. J. Med. Chem., 2006, 49(10), 2953-2968.
[http://dx.doi.org/10.1021/jm058289o] [PMID: 16686537]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy