Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Antioxidant Activity of a Selenopeptide Modelling the Thioredoxin Reductase Active Site is Enhanced by NH···Se Hydrogen Bond in the Mixed Selenosulfide Intermediate

Author(s): Michio Iwaoka*, Hajime Oba, Kotoi Matsumura, Shuhei Yamanaka, Shingo Shimodaira, Shuichi Kusano and Tatsuya Asami

Volume 16, Issue 1, 2022

Published on: 13 June, 2022

Page: [44 - 53] Pages: 10

DOI: 10.2174/2212796816666220415142301

Price: $65

conference banner
Abstract

Background: Thioredoxin reductase (TrxR), one of the representative selenoenzymes, is an important antioxidant enzyme suppressing oxidative stress in living organisms. At the active site of human TrxR, the presence of a Sec···His···Glu catalytic triad was previously suggested.

Methods: In this study, a short selenopeptide mimicking this plausible triad, i.e., H-CUGHGE-OH (1), was designed, synthesized, and evaluated for the TrxR-like catalytic activity.

Results: The molecular simulation in advance by REMC/SAAP3D predicted the preferential formation of Sec···His···Glu hydrogen bonding networks in the aqueous solution. Indeed, significant antioxidant activity was observed for 1 in the activity assay using NADPH as a reductant and H2O2 as a substrate. Tracking the reaction between 1 and GSH by 77Se NMR revealed a reductive cleavage of the selenosulfide (Se-S) bond to generate the diselenide species. The observation suggested that in the transiently formed mixed Se-S intermediate, the NH···Se hydrogen bond between the Sec and His residues leads a nucleophilic attack of the second thiol molecule not to the intrinsically more electrophilic Se atom but to the less electrophilic S atom of the Se-S bond. Ab initio calculations for the complex between MeSeSMe and an imidazolium ion at the MP2/6-31++G(d,p) level demonstrated that NH···Se and NH···S hydrogen bonds are equally favorable as the interaction modes. Thus, the importance of the relative spatial arrangement of the Se-S bond with respect to the imidazole ring was suggested for the exertion of the TrxR-like catalytic activity.

Conclusion: The proposed umpolung effect of NH···Se hydrogen bond on the reactivity of a Se-S bond will be a useful tool for developing efficient TrxR models with high redox catalytic activity.

Keywords: Selenoenzyme mimics, selenocysteine, liquid-phase peptide synthesis, peroxidase activity, selenosulfide bond, umpolung effect, glutathione peroxidase.

Graphical Abstract

[1]
Gladyshev, V.N.; Jeang, K.T.; Stadtman, T.C. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Natl. Acad. Sci. USA, 1996, 93(12), 6146-6151.
[http://dx.doi.org/10.1073/pnas.93.12.6146] [PMID: 8650234]
[2]
Arnér, E.S.J.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[3]
Gromer, S.; Urig, S.; Becker, K. The thioredoxin system--from science to clinic. Med. Res. Rev., 2004, 24(1), 40-89.
[http://dx.doi.org/10.1002/med.10051] [PMID: 14595672]
[4]
Scalcon, V.; Bindoli, A.; Rigobello, M.P. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic. Biol. Med., 2018, 127, 62-79.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.043] [PMID: 29596885]
[5]
Lothrop, A.P.; Ruggles, E.L.; Hondal, R.J. No selenium required: Reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue. Biochemistry, 2009, 48(26), 6213-6223.
[http://dx.doi.org/10.1021/bi802146w] [PMID: 19366212]
[6]
Arnér, E.S.J.; Nordberg, J.; Holmgren, A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem. Biophys. Res. Commun., 1996, 225(1), 268-274.
[http://dx.doi.org/10.1006/bbrc.1996.1165] [PMID: 8769129]
[7]
May, J.M.; Morrow, J.D.; Burk, R.F. Thioredoxin reductase reduces lipid hydroperoxides and spares α-tocopherol. Biochem. Biophys. Res. Commun., 2002, 292(1), 45-49.
[http://dx.doi.org/10.1006/bbrc.2002.6617] [PMID: 11890669]
[8]
Cunniff, B.; Snider, G.W.; Fredette, N.; Stumpff, J.; Hondal, R.J.; Heintz, N.H. Resolution of oxidative stress by thioredoxin reductase: Cysteine versus selenocysteine. Redox Biol., 2014, 2(1), 475-484.
[http://dx.doi.org/10.1016/j.redox.2014.01.021] [PMID: 24624337]
[9]
Cheng, Q.; Sandalova, T.; Lindqvist, Y.; Arnér, E.S.J. Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J. Biol. Chem., 2009, 284(6), 3998-4008.
[http://dx.doi.org/10.1074/jbc.M807068200] [PMID: 19054767]
[10]
Kong, X.; Zhou, P-P.; Wang, Y. Chalcogen⋅⋅⋅π bonding catalysis. Angew. Chem., 2021, 133(17), 9481-9486.
[http://dx.doi.org/10.1002/ange.202101140]
[11]
Brandt, W.; Wessjohann, L.A. The functional role of selenocysteine (sec) in the catalysis mechanism of large thioredoxin reductases: Proposition of a swapping catalytic triad including a Sec-His-Glu state. ChemBioChem, 2005, 6(2), 386-394.
[http://dx.doi.org/10.1002/cbic.200400276] [PMID: 15651042]
[12]
Gromer, S.; Wessjohann, L.A.; Eubel, J.; Brandt, W. Mutational studies confirm the catalytic triad in the human selenoenzyme thioredoxin reductase predicted by molecular modeling. ChemBioChem, 2006, 7(11), 1649-1652.
[http://dx.doi.org/10.1002/cbic.200600080] [PMID: 16977661]
[13]
Arai, K.; Matsunaga, T.; Ueno, H.; Akahoshi, N.; Sato, Y.; Chakrabarty, G.; Mugesh, G.; Iwaoka, M. Modeling thioredoxin reductase-like activity with cyclic selenenyl sulfides: Participation of an NH⋅⋅⋅Se hydrogen bond through stabilization of the mixed Se-S intermediate. Chemistry, 2019, 25(55), 12751-12760.
[http://dx.doi.org/10.1002/chem.201902230] [PMID: 31390113]
[14]
Shimodaira, S.; Asano, Y.; Arai, K.; Iwaoka, M. Selenoglutathione diselenide: Unique redox reactions in the GPx-Like catalytic cycle and repairing of disulfide bonds in scrambled protein. Biochemistry, 2017, 56(42), 5644-5653.
[http://dx.doi.org/10.1021/acs.biochem.7b00751] [PMID: 29022711]
[15]
Shimodaira, S.; Iwaoka, M. Synthesis of selenocysteine-containing dipeptides modeling the active site of thioredoxin reductase. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(7), 750-752.
[http://dx.doi.org/10.1080/10426507.2019.1603721]
[16]
Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 2002, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065]
[17]
Iwaoka, M.; Suzuki, T.; Shoji, Y.; Dedachi, K.; Shimosato, T.; Minezaki, T.; Hojo, H.; Onuki, H.; Hirota, H. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide. J. Comput. Aided Mol. Des., 2017, 31(12), 1039-1052.
[http://dx.doi.org/10.1007/s10822-017-0084-8] [PMID: 29147837]
[18]
Iwaoka, M.; Yoshida, K.; Shimosato, T. Application of a distance-dependent sigmoidal dielectric constant to the REMC/SAAP3D simulations of chignolin, Trp-Cage, and the G10q mutant. Protein J., 2020, 39(5), 402-410.
[http://dx.doi.org/10.1007/s10930-020-09936-7] [PMID: 33108545]
[19]
Balabin, R.M. Enthalpy difference between conformations of normal alkanes: Intramolecular basis set superposition error (BSSE) in the case of n-butane and n-hexane. J. Chem. Phys., 2008, 129(16), 164101.
[http://dx.doi.org/10.1063/1.2997349] [PMID: 19045241]
[20]
Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys., 1996, 105(24), 11024-11031.
[http://dx.doi.org/10.1063/1.472902]
[21]
Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys., 2002, 117(1), 43-54.
[http://dx.doi.org/10.1063/1.1480445]
[22]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010.
[23]
Ruggles, E.L.; Deker, P.B.; Hondal, R.J. Conformational analysis of oxidized peptide fragments of the C-terminal redox center in thioredoxin reductases by NMR spectroscopy. J. Pept. Sci., 2014, 20(5), 349-360.
[http://dx.doi.org/10.1002/psc.2620] [PMID: 24599608]
[24]
Shimodaira, S.; Takei, T.; Hojo, H.; Iwaoka, M. Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem. Commun. (Camb.), 2018, 54(83), 11737-11740.
[http://dx.doi.org/10.1039/C8CC06805D] [PMID: 30276373]
[25]
Hassan, W.; Teixeira Rocha, J.B. Interaction profile of diphenyl diselenide with pharmacologically significant thiols. Mol., 2012, 17(10), 12287-12296.
[http://dx.doi.org/10.3390/molecules171012287]
[26]
Carroll, L.; Gardiner, K.; Ignasiak, M.; Holmehave, J.; Shimodaira, S.; Breitenbach, T.; Iwaoka, M.; Ogilby, P.R.; Pattison, D.I.; Davies, M.J. Interaction kinetics of selenium-containing compounds with oxidants. Free Radic. Biol. Med., 2020, 155, 58-68.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.05.007] [PMID: 32439383]
[27]
Bachrach, M.; Demoin, D.W.; Luk, M.; Miller, J.V. Nucleophilic attack at selenium in diselenides and selenosulfides. A computational study. J. Phys. Chem. A, 2004, 108(18), 4040-4046.
[http://dx.doi.org/10.1021/jp037972o]
[28]
Sarma, B.K.; Mugesh, G. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: Unexpected complications with thiol exchange reactions. J. Am. Chem. Soc., 2005, 127(32), 11477-11485.
[http://dx.doi.org/10.1021/ja052794t] [PMID: 16089478]
[29]
Bhabak, K.P.; Mugesh, G. Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry, 2007, 13(16), 4594-4601.
[http://dx.doi.org/10.1002/chem.200601584] [PMID: 17299817]
[30]
Steinmann, D.; Nauser, T.; Koppenol, W.H. Selenium and sulfur in exchange reactions: A comparative study. J. Org. Chem., 2010, 75(19), 6696-6699.
[http://dx.doi.org/10.1021/jo1011569] [PMID: 20806911]
[31]
Mó, O.; Lamsabhi, A.M.; Yáñez, M.; Heverly-Coulson, G.S.; Boyd, R.J. Dramatic substituent effects on the mechanisms of nucleophilic attack on Se-S bridges. J. Comput. Chem., 2013, 34(29), 2537-2547.
[http://dx.doi.org/10.1002/jcc.23417] [PMID: 24037744]
[32]
Iwaoka, M.; Tomoda, S. Nature of the intramolecular Se···N nonbonded interaction of 2-selenobenzylamine derivatives. An experimental evaluation by 1H, 77Se, and 15N NMR spectroscopy. J. Am. Chem. Soc., 1996, 118(34), 8077-8084.
[http://dx.doi.org/10.1021/ja953358h]
[33]
Mukherjee, A.J.; Zade, S.S.; Singh, H.B.; Sunoj, R.B. Organoselenium chemistry: Role of intramolecular interactions. Chem. Rev., 2010, 110(7), 4357-4416.
[http://dx.doi.org/10.1021/cr900352j] [PMID: 20384363]
[34]
Tripathi, A.; Daolio, A.; Pizzi, A.; Guo, Z.; Turner, D.R.; Baggioli, A.; Famulari, A.; Deacon, G.B.; Resnati, G.; Singh, H.B. Chalcogen bonds in selenocysteine seleninic acid, a functional GPx constituent, and in other seleninic or sulfinic acid derivatives. Chem. Asian J., 2021, 16(16), 2351-2360.
[http://dx.doi.org/10.1002/asia.202100545] [PMID: 34214252]
[35]
Iwaoka, M.; Tomoda, S. First observation of a C—H…Se “Hydrogen bond”. J. Am. Chem. Soc., 1994, 116(10), 4463-4464.
[http://dx.doi.org/10.1021/ja00089a040]
[36]
Chopra, P.; Chakraborty, S. Computational study of red- and blue-shifted CH⋯Se hydrogen bond in Q3CH⋯SeH2 (Q = Cl, F, H) complexes. Chem. Phys., 2018, 500, 54-61.
[http://dx.doi.org/10.1016/j.chemphys.2017.11.010]
[37]
Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c]
[38]
Santi, C.; Marini, F.; Lenardão, E.J. Looking beyond the traditional idea of glutathione peroxidase mimics as antioxidants.Organoselenium Compounds in Biology and Medicine: Synthesis, Biological, and Therapeutic Treatments; Jain, V.K., Ed.; , 2017, pp. 35-76.
[http://dx.doi.org/10.1039/9781788011907-00035]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy