Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Efficacy of Propyl Selenoethers Against Peroxyl Radical Induced Protein Damage: Effect of Functional Group Substitution

Author(s): Vishwa V. Gandhi, Ram P. Das, Beena G. Singh and Amit Kunwar*

Volume 16, Issue 1, 2022

Published on: 25 May, 2022

Page: [54 - 60] Pages: 7

DOI: 10.2174/2212796816666220330093744

Price: $65

Abstract

Background: Proteins are the critical bio-molecules for cellular function and are also considered to be highly susceptible to reactive oxygen species (ROS)-induced oxidative damages.

Methods: The present study aimed to evaluate some simple water-soluble aliphatic organoselenium compounds bearing different functional groups but of similar carbon chain (propyl) length for a protective effect against 2,2’-azobis-(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage using mitochondria as an in vitro model.

Results: The results indicated that APPH (20 mM) treatment of mitochondrial fraction induced protein carbonylation, leading to inactivation of redox enzymes and electron transport chain (ETC) and, ultimately the mitochondrial dysfunction. On the other hand, treatment with 0.5 mM of monoselenobutyric acid (SeBA) and monoselenopropyl alcohol (SePOH) significantly prevented APPH-induced protein carbonylation in mitochondrial fraction and restored activities of mitochondrial proteins. On the contrary, monoselenopropyl amine (SePAm) treatment at identical concentrations did not show significant protection to mitochondrial activity from AAPH-induced oxidative damages. The above results concur with the reported peroxyl radical scavenging activities of the above molecules.

Conclusion: In conclusion, SeBA and SePOH are potential candidate molecules to protect proteins from oxidative damage and, therefore, can be useful for managing oxidative stress in cellular models.

Keywords: Organoselenium, AAPH, reactive oxygen species, mitochondrial proteins, oxidative damage, SeBA, SePOH.

Graphical Abstract

[1]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[2]
Marchi, S.; Giorgi, C.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E. Mitochondria-Ros crosstalk in the control of cell death and aging. J. Signal Transduct., 2012, 2012(329635), 17.
[http://dx.doi.org/10.1155/2012/329635]
[3]
Mailloux, R.J. Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid. Med. Cell. Longev., 2018, 2018, 7857251.
[http://dx.doi.org/10.1155/2018/7857251] [PMID: 30057684]
[4]
Aseervatham, G.S.; Sivasudha, T.; Jeyadevi, R.; Arul Ananth, D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview. Environ. Sci. Pollut. Res. Int., 2013, 20(7), 4356-4369.
[http://dx.doi.org/10.1007/s11356-013-1748-0] [PMID: 23636598]
[5]
Zong, W.X.; Rabinowitz, J.D.; White, E. Mitochondria and cancer. Mol. Cell, 2016, 61(5), 667-676.
[http://dx.doi.org/10.1016/j.molcel.2016.02.011] [PMID: 26942671]
[6]
Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res., 2013, 8(21), 2003-2014.
[PMID: 25206509]
[7]
Kunwar, A.; Priyadarsini, K.I.; Jain, V.K. 3,3′- Diselenodipropionic acid (DSePA): A redox active multifunctional molecule of biological relevance, BBA General Subjects, 2021, 1865, 129768.
[8]
Singh, B.G.; Kunwar, A. Redox reactions of organoselenium compounds: Implication in their biological activity. Free Radic. Res., 2021, 55(6), 641-654.
[http://dx.doi.org/10.1080/10715762.2021.1882678] [PMID: 33555213]
[9]
Upadhyay, A.; Batabyal, M. Kanika; Kumar, S. Organoseleniums: Generated and exploited in oxidative reactions. Chem. Lett., 2020, 49(4), 395-408.
[http://dx.doi.org/10.1246/cl.200015]
[10]
Prabhu, P.; Bag, P.P.; Singh, B.G.; Hodage, A.; Jain, V.K.; Iwaoka, M.; Priyadarsini, K.I. Effect of functional groups on antioxidant properties of substituted selenoethers. Free Radic. Res., 2011, 45(4), 461-468.
[http://dx.doi.org/10.3109/10715762.2010.543678] [PMID: 21235282]
[11]
Kunwar, A.; Mishra, B.; Barik, A.; Kumbhare, L.B.; Pandey, R.; Jain, V.K.; Priyadarsini, K.I. 3,3′-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem. Res. Toxicol., 2007, 20(10), 1482-1487.
[http://dx.doi.org/10.1021/tx700137a] [PMID: 17900173]
[12]
Ansari, M.A.; Joshi, G.; Huang, Q.; Opii, W.O.; Abdul, H.M.; Sultana, R.; Butterfield, D.A.V. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic. Biol. Med., 2006, 41(11), 1694-1703.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.002] [PMID: 17145558]
[13]
Mishra, H.S.; Khairnar, N.P.; Barik, A.; Priyadarsini, K.I.; Mohan, H.; Apte, S.K. Pyrolloquinoline and quinone a reactive oxygen species scavenger in bacteria. FEBS Lett., 2004, 58(1-2), 26-30.
[http://dx.doi.org/10.1016/j.febslet.2004.10.061]
[14]
Gandhi, V.V.; Gandhi, K.A.; Kumbhare, L.B.; Goda, J.S.; Gota, V.; Priyadarsini, K.I.; Kunwar, A. 3,3′-Diselenodipropionic acid (DSePA) induces reductive stress in A549 cells triggering p53-independent apoptosis: A novel mechanism for diselenides. Free Radic. Biol. Med., 2021, 175, 1-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.08.017] [PMID: 34425189]
[15]
Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 1993, 303(2), 474-482.
[http://dx.doi.org/10.1006/abbi.1993.1311] [PMID: 8390225]
[16]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J., 2016, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[17]
Bhowmick, D.; Mugesh, G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org. Biomol. Chem., 2015, 13(41), 10262-10272.
[http://dx.doi.org/10.1039/C5OB01665G] [PMID: 26372527]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy