Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Acyclic Polyorganochalcogenoethers and their Functional Activities: Synthesis of Sterically Encumbered Hexakis(alkylchalcogenomethyl)benzenes [(RECH2)6C6] [E=S or Se] and their Potential as Selective Ionophores for Hg2+ Ions

Author(s): Nallamuthu Prabhu, Jyoti, Renu Kumari, Jai Deo Singh* and Raymond J. Butcher

Volume 16, Issue 1, 2022

Published on: 13 June, 2022

Page: [35 - 43] Pages: 9

DOI: 10.2174/2212796816666220509145236

Price: $65

Abstract

Introduction: An efficient synthesis of hexakis(alkylthio/selenomethyl)benzenes [(RSCH2)6C6 and (RSeCH2)6C6] (1-14) (where, R= nPr, iPr, nBu, iBu, sBu, tBu, nPent, iPent, and 2- Methyl-1-butyl) by the reaction of hexakis(bromomethyl)benzene with alkylthio or alkylseleno (RS- /RSe-) anions is demonstrated.

Methods: They have been characterized by physicochemical and spectroscopic methods, including single-crystal X-ray crystallography. The balances between multiple [C(sp3)-H…S] or [C(sp3)-H…Se] intramolecular interactions in these species appear to decide their stability. Preliminary spectroscopic (UV-vis. and fluorescence) data on the behavior of alkylchalcogeno substituted hexa-benzenes in solution revealed their potential as ion-sensing species and function as highly selective ionophores for Ag+ and Hg2+ ions recognition.

Results: In situ, (Hg-S) and (Hg-Se) bond formation on interaction with the chosen hexa-species (2 and 10) and Hg2+ cation revealed a unique ‘turn-off’ or ‘turn-on’ emissive behavior, and these functions act as reporting fluorescent tools for Hg2+ quantification without use of any external fluorophore.

Conclusion: The present study describes an efficient and simple route for the synthesis of sterically encumbered poly-alkylthio/seleno benzenes in high purity and good yields.

Keywords: Alkylthiolate, alkylselenolate, hexa-substitution, Hg2+ ion recognition, (Hg-S) (Hg-Se) bond, antimicrobial activity.

Graphical Abstract

[1]
MacNicol, D.D.; Downing, G.A. Comprehensive Supramolecular Chemistry; MacNicol, D.D.; Toda, F.; Bishop, R., Eds.; Elsevier Science: Oxford, 1996, 6, p. 421.
[2]
Weber, E. Comprehensive Supramolecular Chemistry; MacNicol, D.D.; Toda, F.; Bishop, R., Eds.; Elsevier Science: Oxford, 1996, 6, p. 535.
[3]
Newkome, G.R.; Moorefield, C.N.; Vögtle, F. In Dendritic Molecules: Concepts, Syntheses and Perspectives; VCH: New York, 1996.
[http://dx.doi.org/10.1002/9783527614875]
[4]
Toda, F. Inclusion Compounds; Atwood, J.L.; Davies, J.E.D.; MacNicol, D.D., Eds.; Oxford University Press: Oxford, 1991, 4, p. 126.
[5]
Fernandez-Castano, C.; Foces-Foces, C.; Cano, F.H. The structure conformation and molecular packing of pyrazolylfluorobenzenes and their inclusion compounds. New J. Chem., 1997, 21, 195-213.
[6]
Lambert, C. Hexaarylbenzenes--prospects for toroidal delocalization of charge and energy. Angew. Chem. Int. Ed., 2005, 44(45), 7337-7339.
[http://dx.doi.org/10.1002/anie.200502105] [PMID: 16206312]
[7]
Gingras, M.; Raimundo, J.M.; Chabre, Y.M. Persulfurated aromatic compounds. Angew. Chem. Int. Ed., 2006, 45(11), 1686-1712.
[http://dx.doi.org/10.1002/anie.200500032] [PMID: 16511821]
[8]
García-Lacuna, J.; Domínguez, G.; Blanco-Urgoiti, J.; Pérez-Castells, J. Cobalt octacarbonyl-catalyzed scalable alkyne cyclotrimerization and crossed [2 + 2 + 2]-cycloaddition reaction in a plug flow reactor. Org. Lett., 2018, 20(17), 5219-5223.
[http://dx.doi.org/10.1021/acs.orglett.8b02168] [PMID: 30125114]
[9]
Species, R.G.; Freer, B.A.A.; Macnicol, D.D.; Majlinson, P.R. Design and synthesis of rhombohedral clathrates. Tetrahedron Lett., 1992, 33(2), 261-264.
[http://dx.doi.org/10.1016/0040-4039(92)88066-E]
[10]
Mayor, M.; Lehn, J-M. Potassium cryptate of a macrobicyclic ligand featuring a reducible hexakis(phenylthio)benzene electron‐acceptor site. Helv. Chim. Acta, 1997, 80(8), 2277-2285.
[http://dx.doi.org/10.1002/hlca.19970800802]
[11]
Kobayashi, K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa, N. Self-assembly of a radially functionalized hexagonal molecule: Hexakis(4-hydroxyphenyl)benzene. Angew. Chem. Int. Ed. Engl., 1999, 38(23), 3483-3486.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3483:AID-ANIE3483>3.0.CO;2-A] [PMID: 10602215]
[12]
Wolff, J.J.; Zietsch, A.; Nuber, B.; Gredel, F.; Speiser, B.; Würde, M. Hexaaminobenzene derivatives: synthesis and unusual oxidation behavior. J. Org. Chem., 2001, 66(8), 2769-2777.
[http://dx.doi.org/10.1021/jo005744+] [PMID: 11304200]
[13]
Menger, F.M.; Azov, V.A. Synthesis and properties of water-soluble asterisk molecules. J. Am. Chem. Soc., 2002, 124(37), 11159-11166.
[http://dx.doi.org/10.1021/ja0206238] [PMID: 12224964]
[14]
Simaan, S.; Siegel, J.S.; Biali, S.E. Tris(arylmethyl) derivatives of 1,3,5-trimethoxy- and 1,3,5-triethylbenzene. J. Org. Chem., 2003, 68(9), 3699-3701.
[http://dx.doi.org/10.1021/jo034016u] [PMID: 12713382]
[15]
Csöregh, I.; Hirano, S.; Toyota, S.; Bombicz, P.; Toda, F. Versatility in stabilization of crystalline inclusion complexes of a bulky diol host by various closely related acidic and ester guests. CrystEngComm, 2004, 6(14), 60-69.
[http://dx.doi.org/10.1039/B316094G]
[16]
Kobayashi, K.; Kobayashi, N.; Ikuta, M.; Therrien, B.; Sakamoto, S.; Yamaguchi, K. Syntheses of hexakis(4-functionalized-phenyl) benzenes and hexakis[4-(4′-functionalized- phenylethynyl) phenyl]benzenes directed to host molecules for guest-inclusion networks. J. Org. Chem., 2005, 70(2), 749-752.
[http://dx.doi.org/10.1021/jo048521i] [PMID: 15651837]
[17]
Rathore, R.; Lindeman, S.V.; Kochi, J.K. Charge-transfer probes for molecular recognition via steric hindrance in donor-acceptor Pairs. J. Am. Chem. Soc., 1997, 119(40), 9393-9404.
[http://dx.doi.org/10.1021/ja9720319]
[18]
Nori-Shargh, D.; Tahmassebi, D.; Poukalhor, M.; Amini, M.M.; Jameh-Bozorghi, S.; Deyhimi, F.; Khanizadeh, M.; Malekhosseini, M. An Ab initio study and NBO analysis of the stability and conformational properties of hexakis(trimethylelementhyl)benzene (element = C, Si, Ge, and Sn). Phosphorus Sulfur Silicon Relat. Elem., 2006, 181(10), 2419-2434.
[http://dx.doi.org/10.1080/10426500600712883]
[19]
Chebny, V.J.; Dhar, D.; Lindeman, S.V.; Rathore, R. Simultaneous ejection of six electrons at a constant potential by hexakis(4-ferrocenylphenyl)benzene. Org. Lett., 2006, 8(22), 5041-5044.
[http://dx.doi.org/10.1021/ol061904d] [PMID: 17048838]
[20]
Shukla, R.; Lindeman, S.V.; Rathore, R. A polyaromatic receptor with an ethereal fence that directs K+ for effective cation-π interaction. J. Am. Chem. Soc., 2006, 128(16), 5328-5329.
[http://dx.doi.org/10.1021/ja060502y] [PMID: 16620089]
[21]
Chebny, V.J.; Shukla, R.; Rathore, R. Toroidal hopping of a single hole through the circularly-arrayed naphthyl groups in hexanaphthylbenzene cation radical. J. Phys. Chem. A, 2006, 110(48), 13003-13006.
[http://dx.doi.org/10.1021/jp063654o] [PMID: 17134159]
[22]
Gagnon, E.; Maris, T.; Maly, K.E.; Wuest, J.D. The potential of intermolecular N…O interactions of nitro groups in crystal engineering, as revealed by structures of hexakis(4-nitrophenyl)benzene. Tetrahedron, 2007, 63(28), 6603-6613.
[http://dx.doi.org/10.1016/j.tet.2007.03.101]
[23]
Rothenberger, A.; Ponikiewski, L. Hexakis(trimethylsiloxymethyl) benzene methanol disolvate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2007, 63(5), 2634-2635.
[http://dx.doi.org/10.1107/S1600536807017047]
[24]
Rothenberger, A.; Ponikiewski, L. Hexakis(hydroxymethyl) benzene. Acta Crystallogr. Sect. E Struct. Rep. Online, 2007, 63(5), 2636-2637.
[http://dx.doi.org/10.1107/S1600536807017035]
[25]
Gagnon, E.; Maly, K.E.; Maris, T.; Wuest, J.D. A new pseudopolymorph of hexakis-(4-cyanophenyl)benzene. Acta Crystallogr. C, 2007, 63(1), 4-6.
[http://dx.doi.org/10.1107/S0108270106046452]
[26]
Schulze, M.M.; Koch, N.; Seichter, W.; Mazik, M. Crystalline ammonium complexes of trimethyl‐ and triethylbenzene‐based tripodal compounds bearing pyrazole and indazole groups. Eur. J. Org. Chem., 2018, 2018(31), 4317-4330.
[http://dx.doi.org/10.1002/ejoc.201800480]
[27]
Cogolli, P.; Testaferri, L.; Tingoli, M.; Tiecco, M. Alkyl thioether activation of the nitro displacement by alkanethiol anions. A useful process for the synthesis of poly [(alkylthio)benzenes]. J. Org. Chem., 1979, 44(15), 2636-2642.
[http://dx.doi.org/10.1021/jo01329a010]
[28]
Schuster, I.I.; Weissensteiner, W.; Mislow, K. Dynamic stereochemistry of hexakis(dimethylsilyl)benzene. J. Am. Chem. Soc., 1986, 108(21), 6661-6663.
[http://dx.doi.org/10.1021/ja00281a035]
[29]
Weissensteiner, W.; Blount, J.F.; Mislow, K. Molecular structure of hexakis (trimethylelementyl). J. Am. Chem. Soc., 1986, 108(21), 6664-6668.
[http://dx.doi.org/10.1021/ja00281a036]
[30]
Klein, R.; Schmid, G.; Thewalt, U.; Sedmera, P. Hanusˇ, V´.; Mach, K. The reluctant titanium-catalyzed cyclotrimerization of 1-phenyl-2- (trimethylsilyl) acetylene. Crystal structure of 1,3,5-triphenyl-2,4,6-tris (trimethylsilyl) benzene. J. Organomet. Chem., 1994, 466(1-2), 125-131.
[http://dx.doi.org/10.1016/0022-328X(94)88037-9]
[31]
Marx, H-W.; Moulines, F.G.; Wagner, T.; Astruc, D. Hexakis(but‐3‐ynyl)benzene. Angew. Chem. Int. Ed. Engl., 1996, 35(15), 1701-1704.
[http://dx.doi.org/10.1002/anie.199617011]
[32]
Cho, E.J.; Lee, V.; Yoo, B.R.; Jung, I.N.; Sohn, H.; Powell, D.R.; West, R. Syntheses and structures of silyl-group-containing hexaalkylated benzenes. Organometallics, 1997, 16(19), 4200-4205.
[http://dx.doi.org/10.1021/om970393j]
[33]
Mayor, M.; Lehn, J-M.; Fromm, K.M.; Fenske, D. Reducible nanoscale molecular rods based on diacetylene‐linked poly(phenylthio)‐substituted benzenes. Angew. Chem. Int. Ed. Engl., 1997, 36(21), 2370-2372.
[http://dx.doi.org/10.1002/anie.199723701]
[34]
Tucker, J.H.R.; Gingras, M.; Brand, H.; Lehn, J-M. Redox properties of polythiaarene derivatives. A novel class of electron acceptors. J. Chem. Soc., Perkin Trans. 2, 1997, 6(7), 1303-1308.
[http://dx.doi.org/10.1039/a608455i]
[35]
Shah, S.; Concolino, T.; Rheingold, A.L.; Protasiewicz, J.D. Sterically encumbered systems for two low-coordinate phosphorus centers. Inorg. Chem., 2000, 39(17), 3860-3867.
[http://dx.doi.org/10.1021/ic0001558] [PMID: 11196781]
[36]
Christensen, C.A.; Bryce, M.R.; Batsanov, A.S.; Becher, J. A novel hexakis(tetrathiafulvalene) derivative: Synthesis, structure and electrochemical properties. Chem. Commun. (Camb.), 2000, 5, 331-332.
[http://dx.doi.org/10.1039/a909882h]
[37]
Kim, K.M.; Kim, J.H.; Moon, D.H.; Lah, M.S.; Jung, I.N.; Yoo, B.R. Friedel-crafts peralkylation of benzene with ω- chloroalkyltrichlorosilanes: One-pot synthesis of polyfunctionalized hexakis[ω-(trichlorosilyl)alkyl]benzenes. Organometallics, 2005, 24(2), 226-230.
[http://dx.doi.org/10.1021/om0495933]
[38]
Kumar, A.; Yadav, M.K.; Singh, J.; Singh, J.D.; Butcher, R.J. Facile synthesis of mixed O, S or Se bearing hexasubstituted benzenes and their potential as Cu(ii) ion probe. Dalton Trans., 2019, 48(17), 5627-5636.
[http://dx.doi.org/10.1039/C9DT00465C] [PMID: 30964486]
[39]
Villa, M.; Roy, M.; Bergamini, G.; Gingras, M.; Ceroni, P. A turn-on phosphorescent sensor of Pb2+ in water by the formation of a coordination polymer. Dalton Trans., 2019, 48(12), 3815-3818.
[http://dx.doi.org/10.1039/C9DT00251K] [PMID: 30785170]
[40]
Hartshorn, C.M.; Steel, P.J. Metallosupramolecular silver complexes of bis- and tetrakis-(2-pyridylsulfanylmethyl)benzenes. J. Chem. Soc., Dalton Trans., 1998, 9(23), 3935-3940.
[http://dx.doi.org/10.1039/a807398h]
[41]
Suenaga, Y.; Kuroda-Sowa, T.; Munakata, M.; Maekawa, M.; Morimoto, H. Syntheses and structures of copper(i) and silver(i) coordination polymers with hexakis(methylthio)benzene. Polyhedron, 1998, 18(3–4), 429-436.
[http://dx.doi.org/10.1016/S0277-5387(98)00314-3]
[42]
Steel, P.J.; Sumby, C.J. Hexa(2-pyridyl)[3]radialene: Self-assembly of a hexanuclear silver array. Chem. Commun. (Camb.), 2002, 2(4), 322-323.
[http://dx.doi.org/10.1039/b109214f] [PMID: 12120055]
[43]
Goodgame, D.M.L.; Grachvogel, D.A.; Williams, D.J. Second-sphere coordination of ‘star’-shaped hexakis(N-pyridin-4-one)Benzene (HPOB) with hexakis(methanol)nickel(II) nitrate; Unusual (NO3-)(HPOB)(NO3-) π-stacked ‘Sandwiching’. Inorg. Chim. Acta, 2002, 330(1), 13-16.
[http://dx.doi.org/10.1016/S0020-1693(01)00702-2]
[44]
Caballero, A.; Guerrero, A.; Jalon, F.A.; Manzano, B.R.; Claramunt, R.M.; Santa Maria, M.D.; Escolastico, C.; Elguero, J. Multinuclear NMR solution studies on complexes of hexakis(pyrazol-1-yl)benzene (hpzb) with Ag(I). Inorg. Chim. Acta, 2003, 347, 168-174.
[http://dx.doi.org/10.1016/S0020-1693(02)01451-2]
[45]
Goodgame, D.M.L.; Grachvogel, D.A.; White, A.J.P.; Williams, D.J. Network coordination polymers formed by the ‘star’-shaped ligand hexakis(N-pyridin-4-one-methyl)benzene (HPMB). Inorg. Chim. Acta, 2003, 344, 214-220.
[http://dx.doi.org/10.1016/S0020-1693(02)01335-X]
[46]
Ohi, H.; Tachi, Y.; Itoh, S. Supramolecular and coordination polymer complexes supported by a tripodal tripyridine ligand containing a 1,3,5-triethylbenzene spacer. Inorg. Chem., 2004, 43(15), 4561-4563.
[http://dx.doi.org/10.1021/ic049468j] [PMID: 15257581]
[47]
Ohi, H.; Tachi, Y.; Kunimoto, T.; Itoh, S. Structure and photoluminescence property of two-dimensional coordination polymer complexes involving Cu(I)(6)X(6)(X = Cl, Br, I) hexagon prism cluster supported by a tripodal tripyridine ligand with 1,3,5-triethylbenzene spacer. Dalton Trans., 2005, (19), 3146-3147.
[http://dx.doi.org/10.1039/b508747c] [PMID: 16172637]
[48]
Cordes, D.B.; Hanton, L.R. Structural invariance in silver(I) coordination networks formed using flexible four-armed thiopyridine ligands. Inorg. Chem., 2007, 46(5), 1634-1644.
[http://dx.doi.org/10.1021/ic061867m] [PMID: 17274613]
[49]
Niembro, S.; Vallribera, A.; Moreno-Mañas, M. Star-shaped heavily fluorinated aromatic sulfurs: Stabilization of palladium nanoparticles active as catalysts in cross-coupling reactions. New J. Chem., 2008, 32(1), 94-98.
[http://dx.doi.org/10.1039/B707776A]
[50]
Diab, H.M.; Abdelmoniem, A.M.; Shaaban, M.R.; Abdelhamid, I.A.; Elwahy, A.H.M. An overview on synthetic strategies for the construction of star-shaped molecules. RSC Advances, 2019, 9(29), 16606-16682.
[http://dx.doi.org/10.1039/C9RA02749A]
[51]
Kamakura, Y.; Tanaka, D. Metal–organic frameworks and coordination polymers composed of sulfur-based nodes. Chem. Lett., 2021, 50(3), 523-533.
[http://dx.doi.org/10.1246/cl.200777]
[52]
Iwaoka, M.; Tomoda, S. First Observation of a C-H...Se “Hydrogen Bond”. J. Am. Chem. Soc., 1994, 116(10), 4463-4464.
[http://dx.doi.org/10.1021/ja00089a040]
[53]
Shimodaira, S.; Asano, Y.; Arai, K.; Iwaoka, M. Selenoglutathione diselenide: Unique redox reactions in the GPx-like catalytic cycle and repairing of disulfide bonds in scrambled protein. Biochemistry, 2017, 56(42), 5644-5653.
[http://dx.doi.org/10.1021/acs.biochem.7b00751] [PMID: 29022711]
[54]
Sanz, P.; Yanez, M.; Mo, O. Competition between X⋯H⋯Y intramolecular hydrogen bonds and X⋯Y (X) O, S, and Y) Se, Te) chalcogen-chalcogen interactions. J. Phys. Chem. A, 2002, 106(18), 4661-4668.
[http://dx.doi.org/10.1021/jp0143645]
[55]
Mansfield, N.E.; Grundy, J.; Coles, M.P.; Avent, A.G.; Hitchcock, P.B. A conformational study of phospha(III)- and phospha(V)-guanidine compounds. J. Am. Chem. Soc., 2006, 128(42), 13879-13893.
[http://dx.doi.org/10.1021/ja064212t] [PMID: 17044716]
[56]
Kumar, N.; Milton, M.D.; Singh, J.D. An efficient synthesis and structural aspects of hexakis(arylseleno)benzenes and hexakis(arylselenomethyl). Tetrahedron Lett., 2004, 45(35), 6611-6613.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.020]
[57]
Maheshwari, M.; Khan, S.; Singh, J.D. Synthesis of sterically encumbered organoselenium species and their selectivity towards Hg(II). Tetrahedron Lett., 2007, 48(27), 4737-4741.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.020]
[58]
Singh, J.D.; Maheshwari, M.; Khan, S.; Butcher, R.J. Sterically encumbered hexakis(alkylseleno)benzenes: Conformational behavior of hexakis(iso-propylselenomethyl)benzene towards Hg2+ ions on selective recognition. Tetrahedron Lett., 2008, 49(1), 117-121.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.007]
[59]
Kumar, A.; Singh, J.D. An organoselenium-based highly sensitive and selective fluorescent “turn-on” probe for the Hg2+ ion. Inorg. Chem., 2012, 51(2), 772-774.
[http://dx.doi.org/10.1021/ic2023902] [PMID: 22220642]
[60]
Milton, M.D.; Khan, S.; Singh, J.D.; Mishra, V.; Khandelwal, B.L. A Facile access to chalcogen and dichalcogen bearing dialkylamines and diols. Tetrahedron Lett., 2005, 46(5), 755-758.
[http://dx.doi.org/10.1016/j.tetlet.2004.12.035]
[61]
Hope, E.G.; Levason, W. Recent developments in the coordination chemistry of selenoether and telluroether ligands. Coord. Chem. Rev., 1993, 122(1-2), 109-170.
[http://dx.doi.org/10.1016/0010-8545(93)80044-6]
[62]
Levason, W.; Orchard, S.D.; Reid, G. Recent developments in the chemistry of selenoethers and telluroethers. Coord. Chem. Rev., 2002, 225(1-2), 159-199.
[http://dx.doi.org/10.1016/S0010-8545(01)00412-X]
[63]
Fukin, G.K.; Lindeman, S.V.; Kochi, J.K. Molecular structures of cation...pi(arene) interactions for alkali metals with pi- and sigma-modalities. J. Am. Chem. Soc., 2002, 124(28), 8329-8336.
[http://dx.doi.org/10.1021/ja0203465] [PMID: 12105914]
[64]
Vögtle, F.; Weber, E. Octopus molecules. Angew. Chem. Int. Ed. Engl., 1974, 13(12), 814-816.
[http://dx.doi.org/10.1002/anie.197408141]
[65]
MacNicol, D.D.; Wilson, D.R. New strategy for the design of inclusion compounds: Discovery of the “Hexa-hosts”. J. Chem. Soc. Chem. Commun., 1976, (13), 494-495.
[http://dx.doi.org/10.1039/C39760000494]
[66]
MacNicol, D.D.; Hardy, A.D.U.; Wilson, D.R. Crystal and molecular structure of ‘hexa-host’ inclusion compound. Nature, 1977, 266(5603), 611-612.
[http://dx.doi.org/10.1038/266611a0]
[67]
Hardy, A.D.U.; MacNicol, D.D.; Wilson, D.R. A new approach for the design of inclusion compounds. J. Chem. Soc., Perkin Trans. 2, 1979, 10(7), 1011-1019.
[http://dx.doi.org/10.1039/p29790001011]
[68]
Weber, E.; Muller, W.M.; Vögtle, F. Komplexe zwischen neutralmolekiilen: Neutralkomplexe von krakenmolek~len mit kronenethern und anderen organischen molekulen. Tetrahedron Lett., 1979, 25(25), 2335-2338.
[http://dx.doi.org/10.1016/S0040-4039(01)93966-8]
[69]
Hardy, A.D.U.; MacNicol, D.D.; Swanson, S.; Wilson, D.R. Design of inclusion compounds: Systematic structural modification of the hexa-host molecule hexakis(benzylthiomethy1)benzene. J. Chem. Soc., Perkin Trans. 2, 1980, 7, 999-1005.
[http://dx.doi.org/10.1039/p29800000999]
[70]
Bourne, S.A.; Caira, M.R.; Nassimbeni, L.R.; Sakamoto, M.; Tanaka, K.; Toda, F. Inclusion by a novel sexipedal host. Crystal structure and thermal analysis. J. Chem. Soc., Perkin Trans. 2, 1994, 9, 1899-1900.
[http://dx.doi.org/10.1039/p29940001899]
[71]
Gavette, J.V.; Sargent, A.L.; Allen, W.E. Hydrogen bonding vs steric gearing in a hexasubstituted benzene. J. Org. Chem., 2008, 73(9), 3582-3584.
[http://dx.doi.org/10.1021/jo800226s] [PMID: 18345640]
[72]
Xie, H.; Finnegan, T.J.; Liyana Gunawardana, V.W.; Pavlović, R.Z.; Moore, C.E.; Badjić, J.D. A hexapodal capsule for the recognition of anions. J. Am. Chem. Soc., 2021, 143(10), 3874-3880.
[http://dx.doi.org/10.1021/jacs.0c12329] [PMID: 33656878]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy