Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Design and Development of Triazole Derivatives as Prospective Anticancer Agents: A Review

Author(s): Harshita Sachdeva*, Mohammad Saquib and Kumud Tanwar

Volume 22, Issue 19, 2022

Published on: 17 August, 2022

Page: [3269 - 3279] Pages: 11

DOI: 10.2174/1871520622666220412133112

Price: $65

conference banner
Abstract

Background: In recent years, there has been a crucial need for the design and development of novel anticancer drugs that can lessen the serious health problems and unwanted side effects associated with currently used anticancer drugs. The triazole nucleus is well-recognized to possess numerous pharmacological activities, including anticancer, as revealed by various investigations on anticancer drugs and the latest research findings.

Objective: The aim of this review article is to summarise the anticancer potential of 1, 2, 3-triazole, 1, 2, 4-triazole and heterocycle-fused triazole derivatives against several human cancer cell lines, compiling research articles published between 2010 and 2021.

Methods: Data were collected from PubMed, Google scholar and Research Gate using keywords “anticancer activity of 1, 2, 3-triazole derivatives”, “anticancer activity of 1, 2, 4-triazole derivatives” and “anticancer activity of heterocycle- fused triazole derivatives” and reviewed comprehensively.

Results: This review examines the anticancer potential of 1,2,3-triazole coupledoleanolic acid/dithiocarbamate/ pyrido[ 2,3-d] pyrimidine derivatives, 1,2,3-triazole linked pyrimidine/1,4-naphthoquinone hybrids, and 1,2,4-triazole substituted methanone derivatives, acridine-based 1,2,4-triazole derivatives, 1,2,4-thiadiazol coupled with 1,2,4- triazole and 5-ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-one derivatives against several human cancer cell lines.

Conclusion: This review highlights the key findings in the area of cancer therapy. Triazole derivatives possess anticancer activity against various human cancer cell lines, and hence the triazole core may act as a lead molecule for the synthesis of novel anticancer drugs.

Keywords: 1, 2, 3-triazole, 1, 4-triazole, heterocycle-fused triazoles, anticancer, novel-drugs, anticancer agents.

Graphical Abstract

[1]
Joolakanti, H.B.; Battu, S.; Kamepalli, R.; Kolanupaka, H.R.; Bobbili, H.R. Synthesis, docking and biological activities of novel chromone linked [1, 2, 3]-triazole derivatives. Chem. Data Collect., 2021, 32, 100651.
[http://dx.doi.org/10.1016/j.cdc.2021.100651]
[2]
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168.
[3]
Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907.
[http://dx.doi.org/10.4067/s0717-97072020000204900]
[4]
Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin-Basa, A.; Gzella, A.; Modzelewska-Banachiewicz, B.; Michalkiewicz, J. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(13), 2664-2667.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.079] [PMID: 25978961]
[5]
K., Kamboj V.; K Verma, P.; Dhanda, A.; Ranjan, S. 1, 2, 4-Triazole derivatives as potential scaffold for anticonvulsant activity. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(1), 17-22.
[6]
Elamari, H.; Slimi, R.; Chabot, G.G.; Quentin, L.; Scherman, D.; Girard, C. Synthesis and in vitro evaluation of potential anticancer activity of mono- and bis-1,2,3-triazole derivatives of bis-alkynes. Eur. J. Med. Chem., 2013, 60, 360-364.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.025] [PMID: 23314049]
[7]
Hou, Y.P.; Sun, J.; Pang, Z.H.; Lv, P.C.; Li, D.D.; Yan, L.; Zhang, H.J.; Zheng, E.X.; Zhao, J.; Zhu, H.L. Synthesis and antitumor activity of 1,2,4-triazoles having 1,4-benzodioxan fragment as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorg. Med. Chem., 2011, 19(20), 5948-5954.
[http://dx.doi.org/10.1016/j.bmc.2011.08.063] [PMID: 21925884]
[8]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[9]
Wu, J.; Ni, T.; Chai, X.; Wang, T.; Wang, H.; Chen, J.; Jin, Y.; Zhang, D.; Yu, S.; Jiang, Y. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur. J. Med. Chem., 2018, 143, 1840-1846.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.081] [PMID: 29133044]
[10]
Cao, X.; Wang, W.; Wang, S.; Bao, L. Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action. Eur. J. Med. Chem., 2017, 139, 718-725.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.057] [PMID: 28858766]
[11]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[12]
Celik, F.; Unver, Y.; Barut, B.; Ozel, A.; Sancak, K. Synthesis, characterization and biological activities of new symmetric bis-1, 2, 3-triazoles with click chemistry. Med. Chem., 2018, 14(3), 230-241.
[http://dx.doi.org/10.2174/1573406413666171120165226] [PMID: 29165092]
[13]
Karrouchi, K.; Chemlal, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; El Abbes Faouzi, M.; Ansar, M. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Ann. Pharm. Fr., 2016, 74(6), 431-438.
[http://dx.doi.org/10.1016/j.pharma.2016.03.005] [PMID: 27107461]
[14]
Xu, M.; Peng, Y.; Zhu, L.; Wang, S.; Ji, J.; Rakesh, K.P. Triazole derivatives as inhibitors of Alzheimer’s disease: Current developments and structure-activity relationships. Eur. J. Med. Chem., 2019, 180, 656-672.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.059] [PMID: 31352246]
[15]
Mareddy, J.; Nallapati, S.B.; Anireddy, J.; Devi, Y.P.; Mangamoori, L.N.; Kapavarapu, R.; Pal, S. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(24), 6721-6727.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.035] [PMID: 24215890]
[16]
Praveena, K.S.S.; Durgadas, S.; Suresh Babu, N.; Akkenapally, S.; Ganesh Kumar, C.; Deora, G.S.; Murthy, N.Y.S.; Mukkanti, K.; Pal, S. Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolinyl substituted 1,2,3-triazole derivatives: Their evaluation as potential PDE 4B inhibitors possessing cytotoxic properties against cancer cells. Bioorg. Chem., 2014, 53, 8-14.
[http://dx.doi.org/10.1016/j.bioorg.2013.12.002] [PMID: 24463218]
[17]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abbas Bukhari, S.N.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2018, 156, 774-789.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[18]
Kumbhare, R.M.; Dadmal, T.L.; Ramaiah, M.J.; Kishore, K.S.V.; Pushpa Valli, S.N.; Tiwari, S.K.; Appalanaidu, K.; Rao, Y.K.; Bhadra, M.P. Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg. Med. Chem. Lett., 2015, 25(3), 654-658.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.083] [PMID: 25563891]
[19]
Mustafa, M.; Abuo-Rahma, G.E.A.; Abd El-Hafeez, A.A.; Ahmed, E.R.; Abdelhamid, D.; Ghosh, P.; Hayallah, A.M. Discovery of antiproliferative and anti-FAK inhibitory activity of 1,2,4-triazole derivatives containing acetamido carboxylic acid skeleton. Bioorg. Med. Chem. Lett., 2021, 40, 127965.
[http://dx.doi.org/10.1016/j.bmcl.2021.127965] [PMID: 33744442]
[20]
Yang, J.J.; Yu, W.W.; Hu, L.L.; Liu, W.J.; Lin, X.H.; Wang, W.; Zhang, Q.; Wang, P.L.; Tang, S.W.; Wang, X.; Liu, M.; Lu, W.; Zhang, H.K. Discovery and characterization of 1H-1,2,3-triazole derivatives as novel prostanoid EP4 receptor antagonists for cancer immunotherapy. J. Med. Chem., 2020, 63(2), 569-590.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01269] [PMID: 31855426]
[21]
Zhu, K.; Shao, J.; Tao, H.; Yan, X.; Luo, C.; Zhang, H.; Duan, W. Rational Design, synthesis and biological evaluation of novel triazole derivatives as potent and selective PRMT5 inhibitors with antitumor activity. J. Comput. Aided Mol. Des., 2019, 33(8), 775-785.
[http://dx.doi.org/10.1007/s10822-019-00214-y] [PMID: 31312965]
[22]
Janganati, V.; Ponder, J.; Balasubramaniam, M.; Bhat-Nakshatri, P.; Bar, E.E.; Nakshatri, H.; Jordan, C.T.; Crooks, P.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2018, 157, 562-581.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.010] [PMID: 30121494]
[23]
Fan, Y.L.; Ke, X.; Liu, M. Coumarin–triazole hybrids and their biological activities. J. Heterocycl. Chem., 2018, 55(4), 791-802.
[http://dx.doi.org/10.1002/jhet.3112]
[24]
Xu, J.H.; Fan, Y.L.; Zhou, J. Quinolone-triazole hybrids and their biological activities. J. Heterocycl. Chem., 2018, 55(8), 1854-1862.
[http://dx.doi.org/10.1002/jhet.3234]
[25]
Zhang, Z.; Li, K.; Zhang, G.Y.; Tang, Y.Z.; Jin, Z. Design, synthesis and biological activities of novel pleuromutilin derivatives with a substituted triazole moiety as potent antibacterial agents. Eur. J. Med. Chem., 2020, 204, 112604.
[http://dx.doi.org/10.1016/j.ejmech.2020.112604] [PMID: 32731187]
[26]
Aly, A.A.; Hassan, A.; Makhlouf, M.M.; Bräse, S. Chemistry and biological activities of 1, 2, 4-triazolethiones-antiviral and anti-infective drugs. Molecules, 2020, 25(13), 3036.
[http://dx.doi.org/10.3390/molecules25133036]
[27]
Gultekin, E.; Kolcuoglu, Y.; Akdemir, A.; Sirin, Y.; Bektas, H.; Bekircan, O. A study on synthesis, biological activities and molecular modelling of some novel trisubstituted 1, 2, 4‐triazole derivatives. ChemistrySelect, 2018, 3(31), 8813-8818.
[http://dx.doi.org/10.1002/slct.201801578]
[28]
Ramazani, A.; Sadighian, H.; Gouranlou, F.; Joo, S.W. Syntheses and biological activities of triazole-based sulfonamides. Curr. Org. Chem., 2019, 23(21), 2319-2349.
[http://dx.doi.org/10.2174/1385272823666191021115023]
[29]
Akın, Ş.; Demir, E.A.; Colak, A.; Kolcuoglu, Y.; Yildirim, N.; Bekircan, O. Synthesis, biological activities and molecular docking studies of some novel 2, 4, 5-trisubstituted-1, 2, 4-triazole-3-one derivatives as potent tyrosinase inhibitors. J. Mol. Struct., 2019, 1175, 280-286.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.065]
[30]
Saeedi, M.; Safavi, M.; Karimpour-Razkenari, E.; Mahdavi, M.; Edraki, N.; Moghadam, F.H.; Khanavi, M.; Akbarzadeh, T. Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer’s disease. Bioorg. Chem., 2017, 70, 86-93.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.011] [PMID: 27914694]
[31]
Wang, B.L.; Zhang, L.Y.; Liu, X.H.; Ma, Y.; Zhang, Y.; Li, Z.M.; Zhang, X. Synthesis, biological activities and SAR studies of new 3-substitutedphenyl-4-substitutedbenzylideneamino-1,2,4-triazole Mannich bases and bis-Mannich bases as ketol-acid reductoisomerase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(24), 5457-5462.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.065] [PMID: 29132751]
[32]
Szulczyk, D.; Tomaszewski, P.; Jóźwiak, M.; Kozioł, A.E.; Lis, T.; Collu, D.; Iuliano, F.; Struga, M. Synthesis and biological activities of ethyl 2-(2-pyridylacetate) derivatives containing thiourea, 1, 2, 4-triazole, thiadiazole and oxadiazole moieties. Molecules, 2017, 22(3), 409.
[http://dx.doi.org/10.3390/molecules22030409] [PMID: 28272311]
[33]
Zhang, L.Y.; Wang, B.L.; Zhan, Y.Z.; Zhang, Y.; Zhang, X.; Li, Z.M. Synthesis and biological activities of some fluorine-and piperazine-containing 1, 2, 4-triazole thione derivatives. Chin. Chem. Lett., 2016, 27(1), 163-167.
[http://dx.doi.org/10.1016/j.cclet.2015.09.015]
[34]
Yuan, J.; Yu, S.; Gao, S.; Gan, Y.; Zhang, Y.; Zhang, T.; Wang, Y.; Yang, L.; Shi, J.; Yao, W. Predicting the biological activities of triazole derivatives as SGLT2 inhibitors using multilayer perceptron neural network, support vector machine, and projection pursuit regression models. Chemom. Intell. Lab. Syst., 2016, 156, 166-173.
[http://dx.doi.org/10.1016/j.chemolab.2016.06.002]
[35]
Sachdeva, H.; Saroj, R.; Khaturia, S.; Dwivedi, D. Environeconomic synthesis and characterization of some new 1, 2, 4- triazole derivatives as organic fluorescent materials and potent fungicidal agents. Org. Chem. Int, 2013, 2013
[36]
Sahu, J.K.; Ganguly, S.; Kaushik, A. Triazoles: A valuable insight into recent developments and biological activities. Chin. J. Nat. Med., 2013, 11(5), 456-465.
[http://dx.doi.org/10.1016/S1875-5364(13)60084-9] [PMID: 24359767]
[37]
Sachdeva, H.; Dwivedi, D.; Arya, K.; Khaturia, S.; Saroj, R. Synthesis, anti-inflammatory activity, and QSAR study of some Schiff bases derived from 5-mercapto-3-(4′-pyridyl)-4 H-1, 2, 4-triazol-4-yl-thiosemicarbazide. Med. Chem. Res., 2013, 22(10), 4953-4963.
[http://dx.doi.org/10.1007/s00044-013-0507-6]
[38]
Mioc, M.; Avram, S.; Bercean, V.; Kurunczi, L.; Ghiulai, R.M.; Oprean, C.; Coricovac, D.E.; Dehelean, C.; Mioc, A.; Balan-Porcarasu, M.; Tatu, C.; Soica, C. Design, synthesis and biological activity evaluation of S-substituted 1H-5-mercapto-1, 2, 4-triazole derivatives as antiproliferative agents in colorectal cancer. Front Chem., 2018, 6(6), 373.
[http://dx.doi.org/10.3389/fchem.2018.00373] [PMID: 30234098]
[39]
Gadhave, P.P.; Dighe, N.S.; Pattan, S.R.; Deotarse, P.; Musmade, D.S.; Shete, R. Current biological and synthetic profile of triazoles: A review. Ann. Biol. Res., 2010, 1, 82-89.
[40]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[41]
Kiran, K.; Sarasija, M.; Rao, B.A.; Namratha, V.; Ashok, D.; Rao, A.S. Design, synthesis, and biological activity of new bis-1, 2, 3-triazole derivatives bearing thiophene-chalcone moiety. Russ. J. Gen. Chem., 2019, 89(9), 1859-1866.
[http://dx.doi.org/10.1134/S1070363219090214]
[42]
Assali, M.; Abualhasan, M.; Sawaftah, H.; Hawash, M.; Mousa, A. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J. Chem., 2020, 2020
[http://dx.doi.org/10.1155/2020/6393428]
[43]
Sadeghpour, H.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Hoseinpour, K.; Javid, N.; Faghih-Mirzaei, E.; Rezaei, Z. Design, synthesis, and biological activity of new triazole and nitro-triazole derivatives as antifungal agents. Molecules, 2017, 22(7), 1150.
[http://dx.doi.org/10.3390/molecules22071150] [PMID: 28698522]
[44]
Joolakanti, H.B.; Kamepalli, R.; Miryala, J.; Battu, S. Synthesis, docking, and biological activities of novel metacetamol embedded [1, 2, 3]-triazole derivatives. J. Mol. Struct., 2021, 1242, 130786.
[http://dx.doi.org/10.1016/j.molstruc.2021.130786]
[45]
Briki, K.; Othman, A.A.; Abbassi, M.S.; Lahrech, M.B. Synthesis, characterization and biological activity of Hg (II), Fe (III) complexes with 1, 3, 4-oxadiazole, 1, 2, 4-triazole derivatives from L-methionine. J. Saudi Chem. Soc., 2020, 24(12), 1051-1059.
[http://dx.doi.org/10.1016/j.jscs.2020.11.004]
[46]
García-Álvarez, J.; Díez, J.; Gimeno, J. A highly efficient copper (I) catalyst for the 1, 3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes in water: Regioselective synthesis of 1, 4-disubstituted and 1, 4, 5-trisubstituted 1, 2, 3-triazoles. Green Chem., 2010, 12(12), 2127-2130.
[http://dx.doi.org/10.1039/c0gc00342e]
[47]
Zeghada, S.; Bentabed-Ababsa, G.; Derdour, A.; Abdelmounim, S.; Domingo, L.R.; Sáez, J.A.; Roisnel, T.; Nassar, E.; Mongin, F. A combined experimental and theoretical study of the thermal cycloaddition of aryl azides with activated alkenes. Org. Biomol. Chem., 2011, 9(11), 4295-4305.
[http://dx.doi.org/10.1039/c1ob05176h] [PMID: 21494704]
[48]
Duan, Y.C.; Ma, Y.C.; Zhang, E.; Shi, X.J.; Wang, M.M.; Ye, X.W.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2013, 62, 11-19.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[49]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis of 1, 2, 3-triazole derivatives and evaluation of their anticancer activity. Sci. Pharm., 2013, 81(3), 663-676.
[http://dx.doi.org/10.3797/scipharm.1302-04] [PMID: 24106665]
[50]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis and anticancer activity evaluation of new 1, 2, 3-triazole-4-carboxamide derivatives. Med. Chem. Res., 2014, 23(5), 2426-2438.
[http://dx.doi.org/10.1007/s00044-013-0841-8]
[51]
Zhang, W.; Li, Z.; Zhou, M.; Wu, F.; Hou, X.; Luo, H.; Liu, H.; Han, X.; Yan, G.; Ding, Z.; Li, R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(3), 799-807.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.095] [PMID: 24418772]
[52]
Ma, L.Y.; Pang, L.P.; Wang, B.; Zhang, M.; Hu, B.; Xue, D.Q.; Shao, K.P.; Zhang, B.L.; Liu, Y.; Zhang, E.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur. J. Med. Chem., 2014, 86, 368-380.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.010] [PMID: 25180925]
[53]
Wei, G.; Luan, W.; Wang, S.; Cui, S.; Li, F.; Liu, Y.; Liu, Y.; Cheng, M. A library of 1,2,3-triazole-substituted oleanolic acid derivatives as anticancer agents: Design, synthesis, and biological evaluation. Org. Biomol. Chem., 2015, 13(5), 1507-1514.
[http://dx.doi.org/10.1039/C4OB01605J] [PMID: 25476168]
[54]
Kuntala, N.; Telu, J.R.; Banothu, V.; Nallapati, S.B.; Anireddy, J.S.; Pal, S. Novel benzoxepine-1, 2, 3-triazole hybrids: Synthesis and pharmacological evaluation as potential antibacterial and anticancer agents. MedChemComm, 2015, 6(9), 1612-1619.
[http://dx.doi.org/10.1039/C5MD00224A]
[55]
Naresh Kumar, R.; Jitender Dev, G.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni Rao, A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[56]
Gholampour, M.; Ranjbar, S.; Edraki, N.; Mohabbati, M.; Firuzi, O.; Khoshneviszadeh, M. Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg. Chem., 2019, 88, 102967.
[http://dx.doi.org/10.1016/j.bioorg.2019.102967] [PMID: 31078767]
[57]
Murty, S.R.M.; Ram, R. K.; Venkateswara Rao, R.; S Yadav, J.; Venkateswara Rao, J.; R Velatooru, L. Synthesis of new S-alkylated-3-mercapto-1, 2, 4-triazole derivatives bearing cyclic amine moiety as potent anticancer agents. Lett. Drug Des. Discov., 2012, 9(3), 276-281.
[http://dx.doi.org/10.2174/157018012799129882]
[58]
El-Sherief, H.A.M.; Youssif, B.G.M.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem., 2018, 76, 314-325.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.013] [PMID: 29227915]
[59]
Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1, 2, 4-triazole derivatives as anticancer agents. Synth. Commun., 2019, 49(13), 1729-1740.
[http://dx.doi.org/10.1080/00397911.2019.1608450]
[60]
Pragathi, Y.J.; Sreenivasulu, R.; Veronica, D.; Raju, R.R. Design, synthesis, and biological evaluation of 1, 2, 4-thiadiazole-1, 2, 4-triazole derivatives bearing amide functionality as anticancer agents. Arab. J. Sci. Eng., 2021, 46(1), 225-232.
[http://dx.doi.org/10.1007/s13369-020-04626-z] [PMID: 32837812]
[61]
Holota, S.; Komykhov, S.; Sysak, S.; Gzella, A.; Cherkas, A.; Lesyk, R. Synthesis, characterization and in vitro evaluation of novel 5-ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-ones as possible anticancer agents. Molecules, 2021, 26, 1162.
[http://dx.doi.org/10.3390/molecules26041162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy