Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Current Developments in the Pyran-Based Analogues as Anticancer Agents

Author(s): Parul Grover , Monika Bhardwaj , Lovekesh Mehta, Garima Kapoor and Pooja A. Chawla *

Volume 22, Issue 19, 2022

Published on: 18 January, 2022

Page: [3239 - 3268] Pages: 30

DOI: 10.2174/1871520621666211119090302

Price: $65

Abstract

Heterocyclic compounds offer an enormous area for new lead molecules for drug discovery. Till today, efforts are being continuously made to find appropriate treatment for the management of the deadly disease of cancer. Amongst the large number of heterocycles that are found in nature, heterocycles having oxygen obtained noteworthy attention due to their distinctive and pharmacological activities.‘Pyran’ is one of the most significant non-aromatic, sixmembered ring composed of one oxygen atom and five carbon atoms. It is considered a privileged structure since pyran and its related derivatives exhibit a wide spectrum of biological activities. Pyran derivatives are found to have excellent anti-cancer properties against various types of cancer. The present review focussed on the current advances in different types of pyran-based derivatives as anti-cancer agents. Various in vitro (cell based testing), in vivo (animal based testing) models as well as molecular docking along with results are also covered. A subsection describing briefly natural pyran containing anticancer compounds is also incorporated in the review.

Keywords: Heterocycles, pyran, anti-cancer, cytotoxicity, IC50, cell line.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, F. GLOBOCAN estimates of incidence and mortal ity worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[3]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[4]
Grover, P.; Bhardwaj, M.; Kapoor, G.; Mehta, L.; Ghai, R.; Nagarajan, K. Advances on quinazoline based congeners for anticancer potential. Curr. Org. Chem., 2021, 25(6), 695-723.
[http://dx.doi.org/10.2174/1385272825666210212121056]
[5]
Teli, G.; Chawla, P.A. Hybridization of imidazole with various heterocycles in targeting cancer: A decade’s work. ChemistrySelect, 2021, 6(19), 4803-4836.
[http://dx.doi.org/10.1002/slct.202101038]
[6]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[7]
Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G.K.; Jain, S.K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances, 2017, 7(59), 36977-36999.
[http://dx.doi.org/10.1039/C7RA05441F]
[8]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[9]
Garkavtsev, I.; Chauhan, V.P.; Wong, H.K.; Mukhopadhyay, A.; Glicksman, M.A.; Peterson, R.T.; Jain, R.K. Dehydro-α-lapachone, a plant product with antivascular activity. Proc. Natl. Acad. Sci. USA, 2011, 108(28), 11596-11601.
[http://dx.doi.org/10.1073/pnas.1104225108] [PMID: 21709229]
[10]
Johnson, L.E.; Dietz, A. Kalafungin, a new antibiotic produced by Streptomyces tanashiensis strain Kala. Appl. Microbiol., 1968, 16(12), 1815-1821.
[http://dx.doi.org/10.1128/am.16.12.1815-1821.1968] [PMID: 5726156]
[11]
Zhang, Y.; Ye, Q.; Ponomareva, L.V.; Cao, Y.; Liu, Y.; Cui, Z.; Van Lanen, S.G.; Voss, S.R.; She, Q.B.; Thorson, J.S. Total synthesis of griseusins and elucidation of the griseusin mechanism of action. Chem. Sci. (Camb.), 2019, 10(32), 7641-7648.
[http://dx.doi.org/10.1039/C9SC02289A] [PMID: 31583069]
[12]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[13]
Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules, 2019, 24(21), 3892.
[http://dx.doi.org/10.3390/molecules24213892] [PMID: 31671813]
[14]
Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Bal, T.R. Camptothecin and its analogues: A review on their chemotherapeutic potential. Nat. Prod. Res., 2005, 19(4), 393-412.
[http://dx.doi.org/10.1080/14786410412331299005] [PMID: 15938148]
[15]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[16]
Yount, G.; Yang, Y.; Wong, B.; Wang, H.J.; Yang, L.X. A novel camptothecin analog with enhanced antitumor activity. Anticancer Res., 2007, 27(5A), 3173-3178.
[PMID: 17970058]
[17]
Stanway, S.J.; Purohit, A.; Woo, L.W.; Sufi, S.; Vigushin, D.; Ward, R.; Wilson, R.H.; Stanczyk, F.Z.; Dobbs, N.; Kulinskaya, E.; Elliott, M.; Potter, B.V.; Reed, M.J.; Coombes, R.C. Phase I study of STX 64 (667 Coumate) in breast cancer patients: The first study of a steroid sulfatase inhibitor. Clin. Cancer Res., 2006, 12(5), 1585-1592.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1996] [PMID: 16533785]
[18]
Mohler, J.L.; Williams, B.T.; Thompson, I.M.; Marshall, M.E. Coumarin (1,2-benzopyrone) for the treatment of prostatic carcinoma. J. Cancer Res. Clin. Oncol., 1994, 120(Suppl.), S35-S38.
[http://dx.doi.org/10.1007/BF01377123] [PMID: 8132702]
[19]
Sun, M.Y.; Ye, Y.; Xiao, L.; Rahman, K.; Xia, W.; Zhang, H. Daidzein: A review of pharmacological effects. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(3), 117-132.
[http://dx.doi.org/10.4314/ajtcam.v13i3.15]
[20]
Stanisic, D.; Costa, A.F.; Fávaro, W.J.; Tasic, L.; Seabra, A.B. Anticancer activities of hesperidin and hesperetin in vivo and their potentiality against bladder cancer. J. Nanomed. Nanotechnol., 2018, 9(5), 515.
[http://dx.doi.org/10.4172/2157-7439.1000515]
[21]
Arafah, A.; Rehman, M.U.; Mir, T.M.; Wali, A.F.; Ali, R.; Qamar, W.; Khan, R.; Ahmad, A.; Aga, S.S.; Alqahtani, S.; Almatroudi, N.M. Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): Experimental evidence and mechanisms. Plants, 2020, 9(12), 1784.
[http://dx.doi.org/10.3390/plants9121784] [PMID: 33339267]
[22]
Kim, S.H.; Choi, K.C. Anti-cancer effect and underlying mechanism (s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res., 2013, 29(4), 229-234.
[http://dx.doi.org/10.5487/TR.2013.29.4.229] [PMID: 24578792]
[23]
Lee, G.A.; Choi, K.C.; Hwang, K.A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol., 2017, 49, 48-57.
[http://dx.doi.org/10.1016/j.etap.2016.11.016] [PMID: 27902959]
[24]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[25]
Raj, S.; Inbakandan, D. Anti cancer activity prediction of secondary metabolites from marine sponge Discodermia calyx: An in silico approach. Indian J. Geo-Mar. Sci., 2013, 42(5), 653-658.
[26]
Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[27]
Thamilselvan, V.; Menon, M.; Thamilselvan, S. Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 β/β-catenin pathway. Int. J. Cancer, 2011, 129(12), 2916-2927.
[http://dx.doi.org/10.1002/ijc.25949] [PMID: 21472727]
[28]
Fabri, R.L.; Grazul, R.M.; Carvalho, L.O.; Coimbra, E.S.; Cardoso, G.M.; Souza-Fagundes, E.M.; Silva, A.D.; Scio, E. Antitumor, antibiotic and antileishmanial properties of the pyranonaphthoquinone psychorubrin from Mitracarpus frigidus. An. Acad. Bras. Cienc., 2012, 84(4), 1081-1090.
[http://dx.doi.org/10.1590/S0001-37652012005000064] [PMID: 23037306]
[29]
Siripong, P.; Kanokmedakul, K.; Piyaviriyagul, S.; Yahuafai, J.; Chanpai, R.; Ruchirawat, S.; Oku, N. Antiproliferative naphthoquinone esters from Rhinacanthus nasutus Kurz. roots on various cancer cells. J. Tradit. Med., 2006, 23(5), 166-172.
[30]
Van, T.N.; Claessens, S.; Habonimana, P.; Tehrani, K.A.; Van Puyvelde, L.; De Kimpe, N. Synthesis of harounoside, a naturally occurring pentalongin hydroquinone bisglucoside. Synlett, 2006, 2006(15), 2469-2471.
[http://dx.doi.org/10.1055/s-2006-950437]
[31]
Claessens, S.; Verniest, G.; El Hady, S.; Van, T.N.; Kesteleyn, B.; Van Puyvelde, L.; De Kimpe, N. The behaviour of the natural pyranonaphthoquinone pentalongin in alcoholic solvents. Tetrahedron, 2006, 62(21), 5152-5158.
[http://dx.doi.org/10.1016/j.tet.2006.03.018]
[32]
Feng, L.; Song, P.; Xu, F.; Xu, L.; Shao, F.; Guo, M.; Huang, W.; Kong, L.; Wu, X.; Xu, Q. cis-Khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis. J. Invest. Dermatol., 2019, 139(9), 1946-1956.e3.
[http://dx.doi.org/10.1016/j.jid.2019.02.021] [PMID: 30878677]
[33]
Sarkhail, P.; Shafiee, A.; Sarkheil, P. Biological activities and pharmacokinetics of praeruptorins from Peucedanum species: A systematic review. BioMed Res. Int., 2013.
[34]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel), 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[35]
Ostrowska, K.; Olejarz, W.; Wrzosek, M.; Głuszko, A.; Nowicka, G.; Szczepański, M.; Materek, I.B.; Kozioł, A.E.; Struga, M. Anticancer effects of O-aminoalkyl derivatives of alloxanthoxyletin and seselin. Biomed. Pharmacother., 2017, 95, 1412-1424.
[http://dx.doi.org/10.1016/j.biopha.2017.09.050] [PMID: 28946189]
[36]
Yang, L.; Xu, Z.; Wang, W. Garcinone-E exhibits anticancer effects in HeLa human cervical carcinoma cells mediated via programmed cell death, cell cycle arrest and suppression of cell migration and invasion. AMB Express, 2020, 10(1), 126.
[http://dx.doi.org/10.1186/s13568-020-01060-0] [PMID: 32676834]
[37]
Espirito Santo, B.L.S.D.; Santana, L.F.; Kato, Junior, W.H.; de Araújo, F.O.; Bogo, D.; Freitas, K.C.; Guimarães, R.C.A.; Hiane, P.A.; Pott, A.; Filiú, W.F.O.; Arakaki Asato, M.; Figueiredo, P.O.; Bastos, P.R.H.O. Medicinal potential of Garcinia species and their compounds. Molecules, 2020, 25(19), 4513.
[http://dx.doi.org/10.3390/molecules25194513] [PMID: 33019745]
[38]
Xia, Y.; Liu, X.; Zou, C.; Feng, S.; Guo, H.; Yang, Y.; Lei, Y.; Zhang, J.; Lu, Y. Garcinone C exerts antitumor activity by modulating the expression of ATR/Stat3/4E BP1 in nasopharyngeal carcinoma cells. Oncol. Rep., 2018, 39(3), 1485-1493.
[http://dx.doi.org/10.3892/or.2018.6218] [PMID: 29344638]
[39]
Muchtaridi, M.U.; Wijaya, C.A. Anticancer potential of α-mangostin. Asian J. Pharm. Clin. Res., 2017, 10(12), 440.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.20812]
[40]
Sunazuka, T.; Handa, M.; Nagai, K.; Shirahata, T.; Harigaya, Y.; Otoguro, K.; Kuwajima, I.; Ōmura, S. The first total synthesis of (+/-)-arisugacin A, a potent, orally bioavailable inhibitor of acetylcholinesterase. Org. Lett., 2002, 4(3), 367-369.
[http://dx.doi.org/10.1021/ol017046x] [PMID: 11820881]
[41]
Rani, S.; Kamra, N.; Thakral, S.; Kumar, D.; Singh, A.; Sangwan, P.L.; Singh, S.K. Design and synthesis of highly oxygenated furo [3, 2-c] pyran-4-ones and furo [3, 2-c] chromen-4-ones scaffold as potential anticancer and antimicrobial agent. Beilstein Arch., 2021, 2021(1), 37.
[http://dx.doi.org/10.1002/jhet.4374]
[42]
Chan, EW; Ng, YK; Tan, CY; Alessandro, L; Wong, SK; Chan, HT Diosmetin and tamarixetin (methylated flavonoids): A review on their chemistry, sources, pharmacology, and anticancer properties. J. Appl. Pharm. Sci., 2021, 11(03), 022-028.
[43]
Abozeid, M.A.; El-Sawi, A.A.; Abdelmoteleb, M.; Awad, H.; Abdel-Aziz, M.M.; Abdel-Rahman, A.R.; El-Desoky, E.S. Synthesis of novel naphthalene-heterocycle hybrids with potent antitumor, anti-inflammatory and antituberculosis activities. RSC Advances, 2020, 10(70), 42998-43009.
[http://dx.doi.org/10.1039/D0RA08526J]
[44]
Azzam, R.A.; Mohareb, R.M.; Helal, M.H.; Eisa, K.K. Cytotoxicity, tyrosine kinase inhibition of novel pyran, pyridine, thiophene, and imidazole derivatives. J. Heterocycl. Chem., 2020, 57(8), 3037-3055.
[http://dx.doi.org/10.1002/jhet.4010]
[45]
Samir, N.; George, R.F.; Elrazaz, E.Z.; Ayoub, I.M.; Shalaby, E.M.; Plaisier, J.R.; Demitri, N.; Wink, M. Synthesis of some tropane-based compounds targeting colon cancer. Future Med. Chem., 2020, 12(23), 2123-2140.
[http://dx.doi.org/10.4155/fmc-2020-0097] [PMID: 33225729]
[46]
Ibrahim, B.A.; Mohareb, R.M. Uses of ethyl benzoyl acetate for the synthesis of thiophene, pyran, and pyridine derivatives with antitumor activities. J. Heterocycl. Chem., 2020, 57(11), 4023-4035.
[http://dx.doi.org/10.1002/jhet.4112]
[47]
Pham, H.T.; Martin, J.P.; Le, T.G. Organocatalyzed synthesis and biological activity evaluation of hybrid compounds 4 H-pyrano [2, 3-b] pyridine derivatives. Synth. Commun., 2020, 50(12), 1845-1853.
[http://dx.doi.org/10.1080/00397911.2020.1757717]
[48]
Li, D.; Wang, H.Y.; Chen, W.H.; Guo, Q. Two novel pyran derivatives: Crystal structures, anti-liver cancer activity, and docking study. J. Struct. Chem., 2020, 61(4), 587-592.
[http://dx.doi.org/10.1134/S0022476620040125]
[49]
Tan, B.; Zhang, X.; Quan, X.; Zheng, G.; Li, X.; Zhao, L.; Li, W.; Li, B. Design, synthesis and biological activity evaluation of novel 4-((1-cyclopropyl-3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl) oxy) pyridine-2-yl) amino derivatives as potent transforming growth factor-β (TGF-β) type I receptor inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(16), 127339.
[http://dx.doi.org/10.1016/j.bmcl.2020.127339] [PMID: 32631540]
[50]
Hadiyal, S.D.; Parmar, N.D.; Kalavadiya, P.L.; Lalpara, J.N.; Joshi, H.S. Microwave-assisted three-component domino synthesis of polysubstituted 4 H-pyran derivatives and their anticancer activity. Russ. J. Org. Chem., 2020, 56(4), 671-678.
[http://dx.doi.org/10.1134/S1070428020040168]
[51]
Yang, Z.J.; Gong, Q.T.; Wang, Y.; Yu, Y.; Liu, Y.H.; Wang, N.; Yu, X.Q. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. Molecular Catalysis., 2020, 491, 110983.
[http://dx.doi.org/10.1016/j.mcat.2020.110983]
[52]
Eyong, K.O.; Ketsemen, H.L.; Zhao, Z.; Du, L.; Ingels, A.; Mathieu, V.; Kornienko, A.; Hull, K.G.; Folefoc, G.N.; Baskaran, S.; Romo, D. Antiproliferative activity of naphthoquinones and indane carboxylic acids from lapachol against a panel of human cancer cell lines. Med. Chem. Res., 2020, 29(6), 1058-1066.
[http://dx.doi.org/10.1007/s00044-020-02545-0]
[53]
Paczkowski, I.M.; Guedes, E.P.; Mass, E.B.; de Meneses, E.W.; Marques, L.A.; Mantovani, M.S.; Russowsky, D. Synthesis of hybrid perillyl‐4 H‐pyrans. Cytotoxicity evaluation against hepatocellular carcinoma HepG2/C3A cell line. J. Heterocycl. Chem., 2020, 57(6), 2597-2614.
[http://dx.doi.org/10.1002/jhet.3977]
[54]
Mohareb, R.M.; Khalil, E.M.; Mayhoub, A.E.; Abdallah, A.E. Novel synthesis of pyran, thiophene, and pyridine derivatives incorporating thiazole ring and their antitumor evaluation. J. Heterocycl. Chem., 2020, 57(3), 1330-1343.
[http://dx.doi.org/10.1002/jhet.3870]
[55]
Faghih, Z.; Faghih, Z.; Divar, M.; Khabnadideh, S. Cytotoxic activity of some spirooxindole-4H-pyran derivatives. J. Pharm. Res. Int., 2019, 31(6), 1-6.
[http://dx.doi.org/10.9734/jpri/2019/v31i630364]
[56]
Hamed, E.O.; Assy, M.G.; Shalaby, A.M.; Sayed, R.E. Cyclization of N‐benzyl cyanoacetamide: Novel synthesis and biological activity of pyrrole, pyrimidine, and pyran derivatives. J. Heterocycl. Chem., 2020, 57(4), 1672-1681.
[http://dx.doi.org/10.1002/jhet.3892]
[57]
Thanaraj, C.; Priya Dharsini, G.R.; Ananthan, N.; Velladurai, R. Facile route for the synthesis and cytotoxic effect of 2-amino-4 H-benzo [b] pyran derivatives in aqueous media using copper oxide nanoparticles decorated on cellulose nanocrystals as heterogeneous catalyst. Inorg. Nano-Met. Chem, 2019, 49(9), 313-321.
[http://dx.doi.org/10.1080/24701556.2019.1661459]
[58]
Lv, G.; Li, W.J.; Chen, W.Y.; Xia, Y. Novel pyran derivatives: Crystal structures and inhibiting human cervical cancer cells evaluation. Main Group Chem., 2019, 18(3), 247-254.
[http://dx.doi.org/10.3233/MGC-180749]
[59]
Safari, F.; Hosseini, H.; Bayat, M.; Ranjbar, A. Synthesis and evaluation of antimicrobial activity, cytotoxic and pro-apoptotic effects of novel spiro-4 H-pyran derivatives. RSC Advances, 2019, 9(43), 24843-24851.
[http://dx.doi.org/10.1039/C9RA03196K]
[60]
Abe, T.; Itoh, T.; Terasaki, M. Total synthesis of fontanesine B and its isomer: Their antiproliferative activity against human colorectal cancer cells. Helv. Chim. Acta, 2019, 102(7), e1900116.
[http://dx.doi.org/10.1002/hlca.201900116]
[61]
Vijitphan, P.; Rukachaisirikul, V.; Muanprasat, C.; Iawsipo, P.; Panprasert, J.; Tadpetch, K. Unified synthesis and cytotoxic activity of 8-O-methylfusarubin and its analogues. Org. Biomol. Chem., 2019, 17(29), 7078-7087.
[http://dx.doi.org/10.1039/C9OB01221D] [PMID: 31298255]
[62]
Jeziorek, M.; Damianakos, H.; Kawiak, A.; Laudy, A.E.; Zakrzewska, K.; Sykłowska-Baranek, K.; Chinou, I.; Pietrosiuk, A. Bioactive rinderol and cynoglosol isolated from Cynoglossum columnae ten. In vitro root culture. Ind. Crops Prod., 2019, 137, 446-452.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.046]
[63]
Mudavath, R.; Vuradi, R.K.; Bathini, U.; Narsimha, N.; Kunche, S.; Sunitha, S.; Ch, S.D. Design, synthesis, in vitro anticancer, antioxidant and antibacterial activity; DNA/BSA binding, photoleavage and docking studies of Cu(II) ternary metal complexes. Nucleos. Nucleot. Nucl., 2019, 38(11), 874-900.
[http://dx.doi.org/10.1080/15257770.2019.1618470] [PMID: 31148514]
[64]
Peroković, V.P.; Car, Ž.; Usenik, A.; Opačak-Bernardi, T.; Jurić, A.; Tomić, S. Adamantyl pyran-4-one derivatives and their in vitro antiproliferative activity. Mol. Divers., 2020, 24(1), 253-263.
[http://dx.doi.org/10.1007/s11030-019-09948-1] [PMID: 30953295]
[65]
Hong, B.; Meng, G.; Tan, H.; Li, J.; Kong, K.; Zhang, Q. Synthesis and antitumor activity of pyrano [3, 2-i]-fused camptothecin derivatives. Med. Chem. Res., 2019, 28(6), 884-891.
[http://dx.doi.org/10.1007/s00044-019-02342-4]
[66]
Gong, G.H.; Bian, M.; Liu, C.Y.; Zhang, B. Heterocyclic pyran and polyhydroquinoline derivatives to inhibit human breast cancer cells. Main Group Chem., 2019, 18(1), 15-22.
[http://dx.doi.org/10.3233/MGC-180676]
[67]
Somarathne, K.K.; McCone, J.A.J.; Brackovic, A.; Rivera, J.L.P.; Fulton, J.R.; Russell, E.; Field, J.J.; Orme, C.L.; Stirrat, H.L.; Riesterer, J.; Teesdale-Spittle, P.H.; Miller, J.H.; Harvey, J.E. Synthesis of bioactive side-chain analogues of TAN-2483B. Chem. Asian J., 2019, 14(8), 1230-1237.
[http://dx.doi.org/10.1002/asia.201801767] [PMID: 30618187]
[68]
Sayed, G.H.; Azab, M.E.; Anwer, K.E. Conventional and microwave‐assisted synthesis and biological activity study of novel heterocycles containing pyran moiety. J. Heterocycl. Chem., 2019, 56(8), 2121-2133.
[http://dx.doi.org/10.1002/jhet.3606]
[69]
Han, H.; Zhang, Z.F.; Zhang, J.F.; Zhang, B. Pyran derivatives: Anti-breast cancer activity and docking study. Russ. J. Gen. Chem., 2018, 88(12), 2664-2668.
[http://dx.doi.org/10.1134/S1070363218120307]
[70]
Liu, J.; Shi, J.T.; Hao, X.C.; Liu, Y.T.; Ding, S.; Wang, Y.; Chen, Y. Synthesis, crystal structure and antitumour activity of ethyl 2-[(2-amino-3-cyano-4-phenethyl-4 H-naphtho [1, 2-b] pyran-8-yl) oxy] acetate. J. Chem. Res., 2018, 42(9), 486-489.
[http://dx.doi.org/10.3184/174751918X15365767693793]
[71]
Wardakhan, W.W.; Samir, E.M.; El-Arab, E.E. Synthesis and cytotoxicity of novel thiophene, pyran and pyridine derivatives. Bull. Chem. Soc. Ethiop., 2018, 32(2), 259-270.
[http://dx.doi.org/10.4314/bcse.v32i2.7]
[72]
Gale, T.; Zhang, Z.; Liu, Y.; Pan, L. Novel pyran derivatives: Synthesis and anticancer activity in the bones. Main Group Chem., 2018, 17(4), 317-323.
[http://dx.doi.org/10.3233/MGC-180681]
[73]
Wang, B.; Wu, J.; Wu, Y.; Chen, C.; Zou, F.; Wang, A.; Wu, H.; Hu, Z.; Jiang, Z.; Liu, Q.; Wang, W.; Zhang, Y.; Liu, F.; Zhao, M.; Hu, J.; Huang, T.; Ge, J.; Wang, L.; Ren, T.; Wang, Y.; Liu, J.; Liu, Q. Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. Eur. J. Med. Chem., 2018, 158, 896-916.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.025] [PMID: 30253346]
[74]
Gouhar, R.S.; Ewies, E.F.; El-Shehry, M.F.; El-Mahdy, E.M.; Shaheen, M.N. Synthesis and utility of naphthalen-benzofuran chalcone in the synthesis of new pyrazole, isooxazole, thiazole, pyrimidine, pyran, pyridine and different azide derivatives with antiviral and antitumor activity. Pharma Chem., 2018, 10(3), 42-54.
[75]
Rani, J.; Saini, M.; Kumar, S.; Verma, P.K. Design, synthesis and biological potentials of novel tetrahydroimidazo[1,2-a]pyrimidine derivatives. Chem. Cent. J., 2017, 11(1), 16.
[http://dx.doi.org/10.1186/s13065-017-0245-9] [PMID: 28246545]
[76]
Bi, Q.; Ruan, W.W.; Cao, L.; Xu, Y.J. Anti-osteosarcoma effect of novel pyran-annulated heterocycles derivatives. Biomed. Res., 2017, 28(3), 1290-1293.
[77]
Mouineer, A.; Zaher, A.; El-Malah, A.; Sobh, E.A. Design, synthesis, antitumor activity, cell cycle analysis and ELISA assay for cyclin dependent kinase-2 of a new (4-aryl-6-flouro-4H-benzo [4, 5] thieno [3, 2-b] pyran) derivatives. Mediterr. J. Chem., 2017, 6(5), 165-179.
[http://dx.doi.org/10.13171/mjc65/01709262240-zaher]
[78]
Mohareb, R.M.; Abdo, N.Y.; Al-Farouk, F.O. Synthesis, cytotoxic and anti-proliferative activity of novel thiophene, thieno [2, 3-b] pyridine and pyran derivatives derived from 4, 5, 6, 7-tetrahydrobenzo [b] thiophene derivative. Acta Chim. Slov., 2017, 64(1), 117-128.
[http://dx.doi.org/10.17344/acsi.2016.2920] [PMID: 28380235]
[79]
Recio, R.; Vengut-Climent, E.; Mouillac, B.; Orcel, H.; López-Lázaro, M.; Calderón-Montaño, J.M.; Álvarez, E.; Khiar, N.; Fernández, I. Design, synthesis and biological studies of a library of NK1-Receptor Ligands Based on a 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4H-pyran core: Switch from antagonist to agonist effect by chemical modification. Eur. J. Med. Chem., 2017, 138, 644-660.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.056] [PMID: 28710964]
[80]
Reddy, T.N.; Ravinder, M.; Bikshapathi, R.; Sujitha, P.; Kumar, C.G.; Rao, V.J. Design, synthesis, and biological evaluation of 4-H pyran derivatives as antimicrobial and anticancer agents. Med. Chem. Res., 2017, 26(11), 2832-2844.
[http://dx.doi.org/10.1007/s00044-017-1982-y]
[81]
Yu, G.Q.; Dou, Z.L.; Jia, Z.H. 5 bromo 3 (3 hydroxyprop 1 ynyl) 2H pyran 2 one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol. Med. Rep., 2017, 15(1), 153-159.
[http://dx.doi.org/10.3892/mmr.2016.5991] [PMID: 27922685]
[82]
Nishiguchi, G.A.; Rico, A.; Tanner, H.; Aversa, R.J.; Taft, B.R.; Subramanian, S.; Setti, L.; Burger, M.T.; Wan, L.; Tamez, V.; Smith, A.; Lou, Y.; Barsanti, P.A.; Appleton, B.A.; Mamo, M.; Tandeske, L.; Dix, I.; Tellew, J.E.; Huang, S.; Mathews Griner, L.A.; Cooke, V.G.; Van Abbema, A.; Merritt, H.; Ma, S.; Gampa, K.; Feng, F.; Yuan, J.; Wang, Y.; Haling, J.R.; Vaziri, S.; Hekmat-Nejad, M.; Jansen, J.M.; Polyakov, V.; Zang, R.; Sethuraman, V.; Amiri, P.; Singh, M.; Lees, E.; Shao, W.; Stuart, D.D.; Dillon, M.P.; Ramurthy, S. Design and discovery of N-(2-methyl-5′-morpholino-6′-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3′-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (RAF709): A potent, selective, and efficacious RAF inhibitor targeting RAS mutant cancers. J. Med. Chem., 2017, 60(12), 4869-4881.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01862] [PMID: 28557458]
[83]
Mar’yasov, M.A.; Sheverdov, V.P.; Davydova, V.V.; Nasakin, O.E. Antiproliferative Activity of Cyano-Substituted Pyrans and 1, 2, 5, 6, 7, 8-Hexahydroquinoline-3, 3, 4, 4-Tetracarbonitriles. Pharm. Chem. J., 2017, 50(12), 798-799.
[http://dx.doi.org/10.1007/s11094-017-1534-2]
[84]
Edeler, D.; Bensing, C.; Schmidt, H.; Kaluđerović, G.N. Preparation and in vitro investigations of triphenyl [ω‐(tetrahydro‐2H‐pyran‐2‐yloxy) alkyl] tin (IV) compounds. Appl. Organomet. Chem., 2017, 31(6), e3630.
[http://dx.doi.org/10.1002/aoc.3630]
[85]
Zaher, A.F.; Abuel-Maaty, S.M.; El-Nassan, H.B.; Amer, S.A.; Abdelghany, T.M. Synthesis, antitumor screening and cell cycle analysis of novel benzothieno [3, 2-b] pyran derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(sup4), 145-153.
[http://dx.doi.org/10.1080/14756366.2016.1222582] [PMID: 27590401]
[86]
Zhou, H.Y.; Dong, F.Q.; Du, X.L.; Zhou, Z.K.; Huo, H.R.; Wang, W.H.; Zhan, H.D.; Dai, Y.F.; Jing Meng, J. Sui, Y.P.; Li, J.; Sui, F.; Zhai, Y.H. Antitumor activities of biscoumarin and dihydropyran derivatives. Bioorg. Med. Chem. Lett., 2016, 26(16), 3876-3880.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.023] [PMID: 27432761]
[87]
Wang, C. Synthesis and biological evaluation of tetrahydrobenzo [b] pyran derivatives as potential anti-ovarian cancer agents. Biomedical Res.-India, 2016, 27, S322-S325.
[88]
Ahmed, M.F.; Belal, A. Synthesis, characterization, and biological evaluation of new quinazolin-4-one derivatives hybridized with pyridine or pyran moiety. Res. Chem. Intermed., 2016, 42(2), 659-671.
[http://dx.doi.org/10.1007/s11164-015-2048-8]
[89]
Velpula, R.; Deshineni, R.; Gali, R.; Bavantula, R. One-pot multicomponent synthesis of novel 1-thiazolyl-5-coumarin-3-yl-pyrazole derivatives and evaluation of their cytotoxic activity. Res. Chem. Intermed., 2016, 42(3), 1729-1740.
[http://dx.doi.org/10.1007/s11164-015-2114-2]
[90]
Mohareb, R.M.; Ibrahim, R.A.; Wardakhan, W.W. Synthesis of pyridine, pyran and thiazole containing thiophene derivatives and their anti-tumor evaluations. Med. Chem. Res., 2016, 25(10), 2187-2204.
[http://dx.doi.org/10.1007/s00044-016-1654-3]
[91]
Refat, H.M.; Fadda, A.A. Synthesis and cytotoxicity activity of some novel hydrazide, pyrazole, isoxazole, pyrimidine and fused pyran-2-one derivatives. Heterocycles, 2015, 91(6), 1212-1226.
[http://dx.doi.org/10.3987/COM-15-13209]
[92]
Maigali, S.S.; El‐Hussieny, M.; Soliman, F.M. Chemistry of phosphorus ylides. Part 37. The reaction of phosphonium ylides with indoles and naphthofurans. Synthesis of phosphanylidenes, pyrans, cyclobutenes, and pyridazine as antitumor agents. J. Heterocycl. Chem., 2015, 52(1), 15-23.
[http://dx.doi.org/10.1002/jhet.1911]
[93]
Ouf, N.H.; Amr, A.E.; Sakran, M.I. Anticancer activity of some newly synthesized pyrano [2, 3-d][1, 2, 3] triazine derivatives using 1-(7-hydroxy-2, 2-dimethylchroman-6-yl) ethanone as synthon. Med. Chem. Res., 2015, 24(4), 1514-1526.
[http://dx.doi.org/10.1007/s00044-014-1229-0]
[94]
Du, Q.; Xin, G.; Niu, H.; Huang, W. Hydroquinone analog 4-[(tetrahydro-2H-pyran-2 yl) oxy] phenol induces C26 colon cancer cell apoptosis and inhibits tumor growth in vivo. Mol. Med. Rep., 2015, 11(6), 4671-4677.
[http://dx.doi.org/10.3892/mmr.2015.3300] [PMID: 25651526]
[95]
Ota, M.; Sasamori, T.; Tokitoh, N.; Onodera, T.; Mizushina, Y.; Kuramochi, K.; Tsubaki, K. Synthesis, photochemical properties, and cytotoxicities of 2H-naphtho[1,2-b]pyran and its photodimers. J. Org. Chem., 2015, 80(11), 5687-5695.
[http://dx.doi.org/10.1021/acs.joc.5b00645] [PMID: 25927340]
[96]
Mohareb, R.M.; Megally Abdo, N.Y. Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-acetylcoumarin. Chem. Pharm. Bull. (Tokyo), 2015, 63(9), 678-687.
[http://dx.doi.org/10.1248/cpb.c15-00115] [PMID: 26329861]
[97]
Li, J.; Sui, Y.P.; Xin, J.J.; Du, X.L.; Li, J.T.; Huo, H.R.; Ma, H.; Wang, W.H.; Zhou, H.Y.; Zhan, H.D.; Wang, Z.J.; Li, C.; Sui, F.; Li, X. Synthesis of biscoumarin and dihydropyran derivatives with promising antitumor and antibacterial activities. Bioorg. Med. Chem. Lett., 2015, 25(23), 5520-5523.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.063] [PMID: 26522947]
[98]
Azzam, R.A.; Mohareb, R.M. Multicomponent reactions of acetoacetanilide derivatives with aromatic aldehydes and cyanomethylene reagents to produce 4H-pyran and 1, 4-dihydropyridine derivatives with antitumor activities. Chem. Pharm. Bull. (Tokyo), 2015, 63(12), 1055-1064.
[http://dx.doi.org/10.1248/cpb.c15-00685] [PMID: 26633027]
[99]
Iranshahi, M.; Arfa, P.; Ramezani, M.; Jaafari, M.R.; Sadeghian, H.; Bassarello, C.; Piacente, S.; Pizza, C. Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry, 2007, 68(4), 554-561.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.002] [PMID: 17196626]
[100]
DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol. Biomarkers Prev., 2015, 24(10), 1495-1506.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0535] [PMID: 26359465]
[101]
Valiahdi, S.M.; Iranshahi, M.; Sahebkar, A. Cytotoxic activities of phytochemicals from Ferula species. Daru, 2013, 21(1), 39.
[http://dx.doi.org/10.1186/2008-2231-21-39] [PMID: 23701832]
[102]
Qin, Q.P.; Wang, Z.F.; Huang, X.L.; Tan, M.X.; Shi, B.B.; Liang, H. High in vitro and in vivo tumor-selective novel ruthenium (II) complexes with 3-(2′-Benzimidazolyl)-7-fluoro-coumarin. ACS Med. Chem. Lett., 2019, 10(6), 936-940.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00098] [PMID: 31223451]
[103]
da Cruz, R.M.D.; Batista, T.M.; de Sousa, T.K.G.; Mangueira, V.M.; Dos Santos, J.A.F.; de Abrantes, R.A.; Ferreira, R.C.; Leite, F.C.; Brito, M.T.; Batista, L.M.; Veras, R.C.; Vieira, G.C.; Mendonca, F.J.B. Jr.; de Araújo, R.S.A.; Sobral, M.V. Coumarin derivative 7-isopentenyloxycoumarin induces in vivo antitumor activity by inhibit angiogenesis via CCL2 chemokine decrease. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(9), 1701-1714.
[http://dx.doi.org/10.1007/s00210-020-01884-4] [PMID: 32388599]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy