Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Antiviral Properties of Various Bioactive Components Present in the Root of Glycyrrhiza glabra: Review

Author(s): Noel Joseph J., Akansha Shrivastava, Bitto Benny, Mohamed Yusuf Baig, Ann Georgine S. and Mary Saral A.*

Volume 19, Issue 2, 2023

Published on: 23 August, 2022

Page: [166 - 175] Pages: 10

DOI: 10.2174/1573401318666220411125333

Price: $65

Abstract

The plant Glycyrrhiza glabra species (liquorice or licorice), a flowering plant of the bean family Fabaceae, is of utmost importance as it contains glycyrrhizin, an important antiviral compound along with other significant phytoconstituents like glycyrrhetinic acid, glabrin A&B, triterpene sterols, isoflavones, and many more. Glycyrrhiza glabra has been recognized for its ethnopharmacological values since time immemorial, as it exhibits various pharmacological activities. The crux of this review focuses on the antiviral activity of liquorice against several viruses that pose a severe threat to humankind like herpes simplex virus (HSV), Hepatitis C virus (HCV), H5N1 virus, human immunodeficiency virus (HIV), H3N2 virus, influenza, and influenza A virus, pseudorabies virus (PrV), etc. Overall, This review article explains the compilation of data obtained from Scopus indexed journal articles over 5 years ranging from 2015 to 2020, which not only aims to shed light on the application of Glycyrrhiza glabra against human viruses but also on how to develop these responses further to improve the efficacy. Further, the review also focuses on Glycyrrhiza glabra for its potential commercial uses, such as treating the porcine virus in pigs and piglets, which is verified.

Keywords: Glycyrrhiza glabra, bioactive constituents, polyphenols, antiviral, pharmacological properties, root

Graphical Abstract

[1]
Al-Snafi AE. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR J Pharm 2018; 8(6): 1-17.
[2]
Ji S, Li Z, Song W, et al. Bioactive constituents of Glycyrrhiza uralensis (Licorice): Discovery of the effective components of a traditional herbal medicine. J Nat Prod 2016; 79(2): 281-92.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00877] [PMID: 26841168]
[3]
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel-Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10(3): 352.
[http://dx.doi.org/10.3390/biom10030352] [PMID: 32106571]
[4]
Thakur AK, Raj P. Pharmacological perspective of Glycyrrhiza glabra Linn.: A mini-review. J Anal Pharm Res 2017; 5(5): 00156.
[http://dx.doi.org/10.15406/japlr.2017.05.00156]
[5]
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32(12): 2323-39.
[http://dx.doi.org/10.1002/ptr.6178] [PMID: 30117204]
[6]
Sharma V, Katiyar A, Agrawal RC. Glycyrrhiza glabra: Chemistry and pharmacological activity Reference Series in Phytochemistry. Cham: Springer International Publishing 2018; pp. 87-100.
[7]
de Freitas KS, Squarisi IS, Acésio NO, et al. Licochalcone A, a licorice flavonoid: Antioxidant, cytotoxic, genotoxic, and chemopreventive potential. J Toxicol Environ Health A 2020; 83(21-22): 673-86.
[http://dx.doi.org/10.1080/15287394.2020.1813228] [PMID: 32886024]
[8]
Rizzato G, Scalabrin E, Radaelli M, Capodaglio G, Piccolo O. A new exploration of licorice metabolome. Food Chem 2017; 221: 959-68.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.068] [PMID: 27979300]
[9]
Ota M, Xu F, Li Y-L, Shang M-Y, Makino T, Cai S-Q. Comparison of chemical constituents among licorice, roasted licorice, and roasted licorice with honey. J Nat Med 2018; 72(1): 80-95.
[http://dx.doi.org/10.1007/s11418-017-1115-4] [PMID: 28779368]
[10]
Karkanis A, Martins N, Petropoulos SA, Ferreira ICFR. Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabraL.): A medicinal plant. Food Rev Int 2018; 34(2): 182-203.
[http://dx.doi.org/10.1080/87559129.2016.1261300]
[11]
Bode AM, Dong Z. Chemopreventive effects of licorice and its components. Curr Pharmacol Rep 2015; 1(1): 60-71.
[http://dx.doi.org/10.1007/s40495-014-0015-5] [PMID: 32226725]
[12]
Huang Z-Y, Wang L-J, Wang J-J, et al. Hispaglabridin B, a constituent of liquorice identified by a bioinformatics and machine learning approach, relieves protein-energy wasting by inhibiting forkhead box O1. Br J Pharmacol 2019; 176(2): 267-81.
[http://dx.doi.org/10.1111/bph.14508] [PMID: 30270561]
[13]
Charpe TW, Rathod VK. Separation of Glycyrrhizic acid from licorice root extract using macroporous resin. Food Bioprod Process 2015; 93: 51-7.
[http://dx.doi.org/10.1016/j.fbp.2013.11.002]
[14]
Pandey S. A review on constituents, pharmacological activities and medicinal uses of Glycyrrhiza glabra. Univers J Pharm Res 2017; 2(2): 6-11.
[http://dx.doi.org/10.22270/ujpr.v2i2.RW2]
[15]
Kalsi S, Verma DSK. A review on Glycyrrhiza glabra (Liquorice) and its pharmacological activities. Int J Pharm Drug Anal 2016; 4(5): 09-234.
[16]
Huang L, Li W, Feng Y, et al. Simultaneous recovery of glycyrrhizic acid and liquiritin from Chinese licorice root (Glycyrrhiza uralensis Fisch) by aqueous two-phase system and evaluation biological activities of extracts. Sep Sci Technol 2018; 53(9): 1342-50.
[http://dx.doi.org/10.1080/01496395.2018.1444052]
[17]
Saikiran KV, Kamatham R, Sahiti PS, Nuvvula S. Impact of educational (sign language/video modeling) and therapeutic (Glycyrrhiza glabra--liquorice mouth wash) interventions on oral health pertaining to children with hearing impairment: A randomized clinical trial. Spec Care Dentist 2019; 39(5): 505-14.
[http://dx.doi.org/10.1111/scd.12404] [PMID: 31287184]
[18]
Vlaisavljević S, Šibul F, Sinka I, Zupko I, Ocsovszki I, Jovanović-Šanta S. Chemical composition, antioxidant and anticancer activity of licorice from fruska gora locality. Ind Crops Prod 2018; 112: 217-24.
[http://dx.doi.org/10.1016/j.indcrop.2017.11.050]
[19]
Alagawany M, Elnesr SS, Farag MR, et al. Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: Current knowledge and prospects. Animals (Basel) 2019; 9(8): 536.
[http://dx.doi.org/10.3390/ani9080536] [PMID: 31394812]
[20]
Vani S, Rajarajan S. A study on in vitro antiviral activities of lyophilized extracts of Glycyrrhiza glabra on hepatitis B virus. Int J Pharmacol Res 2016; 6(6): 09-206.
[21]
Yu J-Y, Ha JY, Kim K-M, Jung Y-S, Jung J-C, Oh S. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015; 20(7): 13041-54.
[http://dx.doi.org/10.3390/molecules200713041] [PMID: 26205049]
[22]
Yang R, Wang L-Q, Yuan B-C, Liu Y. The pharmacological activities of licorice. Planta Med 2015; 81(18): 1654-69.
[http://dx.doi.org/10.1055/s-0035-1557893] [PMID: 26366756]
[23]
Wang KL, Hsia SM, Chan CJ, et al. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin Ther Targets 2013; 17(4): 337-49.
[http://dx.doi.org/10.1517/14728222.2013.756869] [PMID: 23327692]
[24]
Lin D, Zhong W, Li J, Zhang B, Song G, Hu T. Involvement of BID translocation in glycyrrhetinic acid and 11-deoxy glycyrrhetinic acid-induced attenuation of gastric cancer growth. Nutr Cancer 2014; 66(3): 463-73.
[http://dx.doi.org/10.1080/01635581.2013.877498] [PMID: 24547973]
[25]
Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144: 210-26.
[http://dx.doi.org/10.1016/j.phrs.2019.04.025] [PMID: 31022523]
[26]
Abe M, Akbar F, Hasebe A, Horiike N, Onji M. Glycyrrhizin enhances interleukin-10 production by liver dendritic cells in mice with hepatitis. J Gastroenterol 2003; 38(10): 962-7.
[http://dx.doi.org/10.1007/s00535-003-1179-7] [PMID: 14614603]
[27]
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. J Ethnopharmacol 2020; 263(113216): 113216.
[http://dx.doi.org/10.1016/j.jep.2020.113216] [PMID: 32763420]
[28]
Jung J-C, Lee Y-H, Kim SH, et al. Hepatoprotective effect of licorice, the root of Glycyrrhiza uralensis Fischer, in alcohol-induced fatty liver disease. BMC Complement Altern Med 2016; 16(1): 19.
[http://dx.doi.org/10.1186/s12906-016-0997-0] [PMID: 26801973]
[29]
Shen H, Zeng G, Tang G, et al. Antimetastatic effects of licochalcone A on oral cancer via regulating metastasis-associated proteases. Tumour Biol 2014; 35(8): 7467-74.
[http://dx.doi.org/10.1007/s13277-014-1985-y] [PMID: 24789273]
[30]
Sidhu P, Shankargouda S, Rath A, Hesarghatta Ramamurthy P, Fernandes B, Kumar Singh A. Therapeutic benefits of liquorice in dentistry. J Ayurveda Integr Med 2020; 11(1): 82-8.
[http://dx.doi.org/10.1016/j.jaim.2017.12.004] [PMID: 30391123]
[31]
Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev 2018; 38(3): 951-76.
[http://dx.doi.org/10.1002/med.21484] [PMID: 29350407]
[32]
Baltina LA, Zarubaev VV, Baltina LA, et al. Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors. Bioorg Med Chem Lett 2015; 25(8): 1742-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.074] [PMID: 25801933]
[33]
Lee M, Son M, Ryu E, et al. Quercetin-induced apoptosis prevents EBV infection. Oncotarget 2015; 6(14): 12603-24.
[http://dx.doi.org/10.18632/oncotarget.3687] [PMID: 26059439]
[34]
Pu J, He L, Xie H, et al. Promising anti-hepatitis C virus compounds from natural resources. Nat Prod Commun 2016; 11(8): 1193-200.
[35]
Pu J, He L, Xie H, et al. Antiviral activity of Carbenoxolone disodium against dengue virus infection. J Med Virol 2017; 89(4): 571-81.
[http://dx.doi.org/10.1002/jmv.24571] [PMID: 27155198]
[36]
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective antiviral medicinal plants and biological compounds against central nervous system infections: A mechanistic review. Curr Drug Discov Technol 2020; 17(4): 469-83.
[http://dx.doi.org/10.2174/1570163816666190715114741] [PMID: 31309894]
[37]
Langer D, Czarczynska-Goslinska B, Goslinski T. Glycyrrhetinic acid and its derivatives in infectious diseases. Curr Issues Pharm Med Sci 2016; 29(3): 118-23.
[http://dx.doi.org/10.1515/cipms-2016-0024]
[38]
Kumar S, Dora BB. A critical appraisal on phytochemical constituents and therapeutic effect of yashtimadhu (Glycyrrhiza glabra). RRJoMST 2017; 6(3): 06-10.
[39]
Dissanayake KGC, Weerakoon WMTDN, Perera WPRT. Root/stem extracts of Glycyrrhiza glabra; As a medicinal plant against disease forming microorganisms. Int J Sci Basic Appl Res 2020; 51(1): 1-11.
[40]
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5(4): 310-5.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[41]
Sun Z-G, Zhao T-T, Lu N, Yang Y-A, Zhu H-L. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019; 19(10): 826-32.
[http://dx.doi.org/10.2174/1389557519666190119111125] [PMID: 30659537]
[42]
Zhang C, Li Q-J, Wang Y-L, et al. The in vitro antiviral mechanisms of stronger Neo-Minophafen C, an established formulation of compound glycyrrhizin. Antiinfect Agents 2018; 16(2): 136-43.
[http://dx.doi.org/10.2174/2211352516666180619142745]
[43]
Baltina LA, Tasi Y-T, Huang S-H, et al. Glycyrrhizic acid derivatives as Dengue virus inhibitors. Bioorg Med Chem Lett 2019; 29(20): 126645.
[http://dx.doi.org/10.1016/j.bmcl.2019.126645] [PMID: 31519375]
[44]
Investigation of Antiviral Potential of Licorice. (Glycyrrhiza glabra l.) crude extract against tobacco mosaic virus. J Anim Plant Sci 2020; 30(1)
[http://dx.doi.org/10.36899/JAPS.2020.1.0013]
[45]
Ashraf A, Ashraf MM, Rafiqe A, et al. In vivo antiviral potential of Glycyrrhiza glabra extract against Newcastle disease virus. Pak J Pharm Sci 2017; 30(2(Suppl.))(Suppl.): 567-72.
[PMID: 28650322]
[46]
Sun N. Antiviral and immunomodulatory effects of dipotassium glycyrrhizinate in chicks artificially infected with infectious bursal disease virus. Pak Vet J 2019; 39(01): 43-8.
[http://dx.doi.org/10.29261/pakvetj/2018.109]
[47]
Zitterl-Eglseer K, Marschik T. Antiviral medicinal plants of veterinary importance: A literature review. Planta Med 2020; 86(15): 1058-72.
[http://dx.doi.org/10.1055/a-1224-6115] [PMID: 32777833]
[48]
Ocampo Camberos L, Tapia G, Gutiérrez L, Sumano López HS. Effects of glycyrrhizic acid (Viusid-Vet® powder) on the reduction of Influenza virus spread and on production parameters in pigs. Vet Méx OA 2017; 4(1).
[http://dx.doi.org/10.21753/vmoa.4.1.373]
[49]
Hussain W, Haleem KS, Khan I, et al. Medicinal plants: A repository of antiviral metabolites. Future Virol 2017; 12(6): 299-308.
[http://dx.doi.org/10.2217/fvl-2016-0110]
[50]
Fukuchi K, Okudaira N, Adachi K, et al. Antiviral and antitumor activity of licorice root extracts. In Vivo 2016; 30(6): 777-85.
[http://dx.doi.org/10.21873/invivo.10994] [PMID: 27815461]
[51]
Moisy D, Avilov SV, Jacob Y, et al. HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86(17): 9122-33.
[http://dx.doi.org/10.1128/JVI.00789-12] [PMID: 22696656]
[52]
Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol (Berl) 2010; 199(4): 291-7.
[http://dx.doi.org/10.1007/s00430-010-0155-0] [PMID: 20386921]
[53]
Matsumoto Y, Matsuura T, Aoyagi H, et al. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PLoS One 2013; 8(7): e68992.
[http://dx.doi.org/10.1371/journal.pone.0068992] [PMID: 23874843]
[54]
Bentz GL, Lowrey AJ, Horne DC, et al. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS One 2019; 14(5): e0217578.
[http://dx.doi.org/10.1371/journal.pone.0217578] [PMID: 31125383]
[55]
Xie Y, Chen Y, Guo Y, Huang Y, Zhu B. Allicin and glycyrrhizic acid display antiviral activity against latent and lytic Kaposi sarcoma-associated herpesvirus. Infectious Microbes Dis 2020; 2(1): 30-4.
[http://dx.doi.org/10.1097/IM9.0000000000000016]
[56]
Wei W, Wan H, Peng X, Zhou H, Lu Y, He Y. Antiviral effects of Ma Huang Tang against H1N1 influenza virus infection in vitro and in an ICR pneumonia mouse model. Biomed Pharmacother 2018; 102: 1161-75.
[http://dx.doi.org/10.1016/j.biopha.2018.03.161] [PMID: 29710534]
[57]
Wang D, Liang J, Zhang J, Wang Y, Chai X. Natural chalcones in Chinese materia medica: Licorice. Evid Based Complement Alternat Med 2020; 2020: 3821248.
[http://dx.doi.org/10.1155/2020/3821248] [PMID: 32256642]
[58]
Bello-Onaghise G, Wang G, Han X, et al. Antiviral strategies of Chinese herbal medicine against PRRSV infection. Front Microbiol 2020; 11: 1756.
[http://dx.doi.org/10.3389/fmicb.2020.01756] [PMID: 32849384]
[59]
Graebin CS. The pharmacological activities of glycyrrhizinic acid (“Glycyrrhizin”) and glycyrrhetinic acid. In: Mérillon JM, Ramawat K, Eds. Sweeteners Reference Series in Phytochemistry. Cham: Springer 2018; pp. 245-61.
[60]
Tong T, Hu H, Zhou J, et al. Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 2020; 16(13): e1906206.
[http://dx.doi.org/10.1002/smll.201906206] [PMID: 32077621]
[61]
Duan E, Wang D, Fang L, et al. Suppression of porcine reproductive and respiratory syndrome virus proliferation by glycyrrhizin. Antiviral Res 2015; 120: 122-5.
[http://dx.doi.org/10.1016/j.antiviral.2015.06.001] [PMID: 26055123]
[62]
Tang Z-H, Li T, Tong Y-G, et al. A systematic review of the anticancer properties of compounds isolated from licorice (Gancao). Planta Med 2015; 81(18): 1670-87.
[http://dx.doi.org/10.1055/s-0035-1558227] [PMID: 26695708]
[63]
Baltina LA Jr, Chistoedova ES, Baltina LA, Kondratenko RM, Plyasunova OA. Synthesis and anti-HIV-1 activity of new conjugates of 18β- and 18α-glycyrrhizic acids with aspartic acid esters. Chem Nat Compd 2012; 48(2): 262-6.
[http://dx.doi.org/10.1007/s10600-012-0217-1] [PMID: 32214422]
[64]
Smedegaard SB, Svart MV. Licorice induced pseudohyperaldosteronism, severe hypertension, and long QT. Endocrinol Diabetes Metab Case Rep 2019; 2019: EDM190109.
[http://dx.doi.org/10.1530/EDM-19-0109] [PMID: 31829973]
[65]
Sabbadin C, Bordin L, Donà G, Manso J, Avruscio G, Armanini D. Licorice: From pseudohyperaldosteronism to therapeutic uses. Front Endocrinol (Lausanne) 2019; 10: 484.
[http://dx.doi.org/10.3389/fendo.2019.00484] [PMID: 31379750]
[66]
Lin P-H, Chiang Y-F, Shieh T-M, et al. Dietary compound isoliquiritigenin, an antioxidant from licorice, suppresses triple-negative breast tumor growth via apoptotic death program activation in cell and xenograft animal models. Antioxidants 2020; 9(3): 228.
[http://dx.doi.org/10.3390/antiox9030228] [PMID: 32164337]
[67]
van Gelderen CE, Bijlsma JA, van Dokkum W, Savelkoul TJ. Glycyrrhizic acid: The assessment of a no effect level. Hum Exp Toxicol 2000; 19(8): 434-9.
[http://dx.doi.org/10.1191/096032700682694251] [PMID: 11125713]
[68]
Morgan AG, McAdam WA, Pacsoo C, Damborough A. Comparison between cimetidine and Caved-S in the treatment of gastric ulceration, and subsequent maintenance therapy. Gut 1982; 236: 545-51.
[http://dx.doi.org/10.1136/gut.23.6.545]
[69]
Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 46(3): 167- 92 2006.
[70]
Choudhry N, Zhao X, Xu D, et al. Chinese therapeutic strategy for fighting COVID-19 and potential small-molecule inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Med Chem 2020; 63(22): 13205-27.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00626] [PMID: 32845145]
[71]
Zhang C, Huang S, Zheng F, Dai Y. Controversial treatments: An updated understanding of the coronavirus disease 2019. J Med Virol 2020; 92(9): 1441-8.
[http://dx.doi.org/10.1002/jmv.25788] [PMID: 32219882]
[72]
Jain R, Shukla S, Nema N, Panday A, Gour HS. A systemic review: Structural mechanism of SARS-CoV-2A and promising preventive cure by phytochemicals. Int J Immunol Immunother 2020; 11: 1-6.
[73]
Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res 2020; 179: 104811.
[http://dx.doi.org/10.1016/j.antiviral.2020.104811] [PMID: 32360182]
[74]
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[75]
Sinha SK, Prasad SK, Islam MS, et al. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study. J Biomol Struct Dyn 2020; 0: 1-15.
[76]
Petric D. Glycyrrhizin and Coronaviruses Preprint 2020; 2020.
[77]
Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect 2020; 10(4): 171-86.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[78]
Chen L, Hu C, Hood M, et al. A novel combination of vitamin c, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. Nutrients 2020; 12(4): 1-17.
[http://dx.doi.org/10.3390/nu12041193] [PMID: 32344708]
[79]
Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 2005; 48(4): 1256-9.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[80]
Shigeta S, Yamase T. Current status of anti-SARS agents. Antivir Chem Chemother 2005; 16(1): 23-31.
[http://dx.doi.org/10.1177/095632020501600103] [PMID: 15739619]
[81]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[82]
Hon KL, Leung KKY, Leung AKC, et al. Coronavirus disease 2019 (COVID-19): Latest developments in potential treatments COVID-19. Drugs Contexts 2020; 9: 2020-4-15.
[83]
Maurya DK. Evaluation of yashtimadhu (Glycyrrhiza glabra) active phytochemicals against novel coronavirus (SARS-CoV-2). Austin J Pharmacol Ther 2021; 9(6): 1153.
[84]
Belcaro G, Cornelli U, Cesarone MR, et al. Decrease in COVID-19 contagiousness: Virucidals control the presence of COVID in saliva and salivary glands. Med Clin Res 2020; 5.(4).
[http://dx.doi.org/10.26434/chemrxiv.1/987475.vi]
[85]
Mohammadi N, Shaghaghi N. Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. ChemRxiv 2020.
[86]
Shahid MA, Chowdhury MA, Kashem MA. Scope of natural plant extract to deactivate COVID-19. Research Square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-19240/v1]
[87]
Santos I A, Grosche V R, Sabino-Silva R, Jardim A C G. Antivirals against human and animal Coronaviruses: Different approach in SARS-CoV-2 treatment. 2020; 55: 1-24.
[http://dx.doi.org/10.31219/osf.io/ycjgq]
[88]
Murck H. Symptomatic protective action of glycyrrhizin (Licorice) in COVID-19 infection? Front Immunol 2020; 11: 1239.
[http://dx.doi.org/10.3389/fimmu.2020.01239] [PMID: 32574273]
[89]
Bhat SA, Rather SA, Iqbal A, Qureshi HA, Islam N. Immunomodulators for curtailing COVID-19: A positive approach. J Drug Deliv Ther 2020; 10: 286-94.
[http://dx.doi.org/10.22270/jddt.v10i3-s.4085]
[90]
Prasad A, Muthamilarasan M, Prasad M. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep 2020; 39(9): 1109-14.
[http://dx.doi.org/10.1007/s00299-020-02560-w] [PMID: 32561979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy