Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

The Lymphatic System In The Brain Clearance Mechanisms - New Therapeutic Perspectives For Alzheimer's Disease

Author(s): Angelika Chachaj*, Kazimierz Gąsiorowski, Andrzej Szuba, Adrian Sieradzki and Jerzy Leszek

Volume 21, Issue 2, 2023

Published on: 08 November, 2022

Page: [380 - 391] Pages: 12

DOI: 10.2174/1570159X20666220411091332

Price: $65

Abstract

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxic proteins within the brain, such as amyloid-ß and hyperphosphorylated tau tangles, are the prominent features in AD. According to recent studies, the newly discovered brain lymphatic system was demonstrated to be crucial in the clearance of metabolic macromolecules from the brain. Meningeal lymphatic vessels located in the dura mater drain the fluid, macromolecules, and immune cells from cerebrospinal fluid (CSF) and transport them, as lymph, to the deep cervical lymph nodes. The lymphatic system provides the perivascular exchange of CSF with interstitial fluid (ISF) and ensures the homeostasis of neuronal interstitial space. In this review, we aim to summarize recent findings on the role of the lymphatic system in AD pathophysiology and discuss possible therapeutic perspectives, targeting the lymphatic clearance mechanisms within the brain.

Keywords: dementia, meningeal lymphatic vessels (MLVs), glymphatic system, cerebrospinal fluid (CSF), interstitial fluid (ISF), perivascular space, amyloid-β (Aβ), tau, aquaporin-4 (AQP4), deep cervical lymph nodes (dcLNs)

Graphical Abstract

[1]
Patterson, C. World Alzheimer Report 2018. The state of the art of dementia research: New frontiers. Alzheimer’s Disease International; ADI: London, 2018.
[2]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[3]
Wang, M.; Ding, F.; Deng, S.; Guo, X.; Wang, W.; Iliff, J.J.; Nedergaard, M. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J. Neurosci., 2017, 37(11), 2870-2877.
[http://dx.doi.org/10.1523/JNEUROSCI.2112-16.2017] [PMID: 28188218]
[4]
Földi, M. The brain and the lymphatic system revisited. Lymphology, 1999, 32(2), 40-44.
[PMID: 10389110]
[5]
Baluk, P.; Fuxe, J.; Hashizume, H.; Romano, T.; Lashnits, E.; Butz, S.; Vestweber, D.; Corada, M.; Molendini, C.; Dejana, E.; McDonald, D.M. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med., 2007, 204(10), 2349-2362.
[http://dx.doi.org/10.1084/jem.20062596] [PMID: 17846148]
[6]
Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070), 946-953.
[http://dx.doi.org/10.1038/nature04480] [PMID: 16355212]
[7]
Szentistványi, I.; Patlak, C.S.; Ellis, R.A.; Cserr, H.F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol., 1984, 246(6 Pt 2), F835-F844.
[PMID: 6742132]
[8]
Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999.
[http://dx.doi.org/10.1084/jem.20142290] [PMID: 26077718]
[9]
Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341.
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[10]
Absinta, M.; Ha, S.K.; Nair, G.; Sati, P.; Luciano, N.J.; Palisoc, M.; Louveau, A.; Zaghloul, K.A.; Pittaluga, S.; Kipnis, J.; Reich, D.S. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.29738] [PMID: 28971799]
[11]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[12]
Xu, Z.; Xiao, N.; Chen, Y.; Huang, H.; Marshall, C.; Gao, J.; Cai, Z.; Wu, T.; Hu, G.; Xiao, M. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener., 2015, 10(1), 58.
[http://dx.doi.org/10.1186/s13024-015-0056-1] [PMID: 26526066]
[13]
Da Mesquita, S.; Louveau, A.; Vaccari, A.; Smirnov, I.; Cornelison, R.C.; Kingsmore, K.M.; Contarino, C.; Onengut-Gumuscu, S.; Farber, E.; Raper, D.; Viar, K.E.; Powell, R.D.; Baker, W.; Dabhi, N.; Bai, R.; Cao, R.; Hu, S.; Rich, S.S.; Munson, J.M.; Lopes, M.B.; Overall, C.C.; Acton, S.T.; Kipnis, J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 2018, 560(7717), 185-191.
[http://dx.doi.org/10.1038/s41586-018-0368-8] [PMID: 30046111]
[14]
Zeppenfeld, D.M.; Simon, M.; Haswell, J.D.; D’Abreo, D.; Murchison, C.; Quinn, J.F.; Grafe, M.R.; Woltjer, R.L.; Kaye, J.; Iliff, J.J. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol., 2017, 74(1), 91-99.
[http://dx.doi.org/10.1001/jamaneurol.2016.4370] [PMID: 27893874]
[15]
Xia, M.; Yang, L.; Sun, G.; Qi, S.; Li, B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: The function of AQP4 and the glymphatic system. Psychopharmacology (Berl.), 2017, 234(3), 365-379.
[http://dx.doi.org/10.1007/s00213-016-4473-9] [PMID: 27837334]
[16]
Lukić I.K.; Gluncić V.; Ivkić G.; Hubenstorf, M.; Marusić A. Virtual dissection: A lesson from the 18th century. Lancet, 2003, 362(9401), 2110-2113.
[http://dx.doi.org/10.1016/S0140-6736(03)15114-8] [PMID: 14697818]
[17]
Ma, Q.; Ineichen, B.V.; Detmar, M.; Proulx, S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun., 2017, 8(1), 1434.
[http://dx.doi.org/10.1038/s41467-017-01484-6] [PMID: 29127332]
[18]
Johanson, C.E.; Duncan, J.A., III; Klinge, P.M.; Brinker, T.; Stopa, E.G.; Silverberg, G.D. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res., 2008, 5(1), 10.
[http://dx.doi.org/10.1186/1743-8454-5-10] [PMID: 18479516]
[19]
Lim, H.Y.; Thiam, C.H.; Yeo, K.P.; Bisoendial, R.; Hii, C.S.; McGrath, K.C.; Tan, K.W.; Heather, A.; Alexander, J.S.; Angeli, V. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab., 2013, 17(5), 671-684.
[http://dx.doi.org/10.1016/j.cmet.2013.04.002] [PMID: 23663736]
[20]
Thanopoulou, K.; Fragkouli, A.; Stylianopoulou, F.; Georgopoulos, S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc. Natl. Acad. Sci. USA, 2010, 107(48), 20816-20821.
[http://dx.doi.org/10.1073/pnas.1005888107] [PMID: 21076037]
[21]
Antila, S.; Karaman, S.; Nurmi, H.; Airavaara, M.; Voutilainen, M.H.; Mathivet, T.; Chilov, D.; Li, Z.; Koppinen, T.; Park, J.H.; Fang, S.; Aspelund, A.; Saarma, M.; Eichmann, A.; Thomas, J.L.; Alitalo, K. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med., 2017, 214(12), 3645-3667.
[http://dx.doi.org/10.1084/jem.20170391] [PMID: 29141865]
[22]
Rennels, M.L.; Gregory, T.F.; Blaumanis, O.R.; Fujimoto, K.; Grady, P.A. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res., 1985, 326(1), 47-63.
[http://dx.doi.org/10.1016/0006-8993(85)91383-6] [PMID: 3971148]
[23]
Dobson, H.; Sharp, M.M.; Cumpsty, R.; Criswell, T.P.; Wellman, T.; Finucane, C.; Sullivan, J.M.; Weller, R.O.; Verma, A.; Carare, R.O. The perivascular pathways for influx of cerebrospinal fluid are most efficient in the midbrain. Clin. Sci. (Lond.), 2017, 131(22), 2745-2752.
[http://dx.doi.org/10.1042/CS20171265] [PMID: 29021222]
[24]
Mestre, H.; Hablitz, L.M.; Xavier, A.L.; Feng, W.; Zou, W.; Pu, T.; Monai, H.; Murlidharan, G.; Castellanos Rivera, R.M.; Simon, M.J.; Pike, M.M.; Pla, V.; Du, T.; Kress, B.T.; Wang, X.; Plog, B.A.; Thrane, A.S.; Lundgaard, I.; Abe, Y.; Yasui, M.; Thomas, J.H.; Xiao, M.; Hirase, H.; Asokan, A.; Iliff, J.J.; Nedergaard, M. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife, 2018, 7.
[25]
Iliff, J.J.; Wang, M.; Zeppenfeld, D.M.; Venkataraman, A.; Plog, B.A.; Liao, Y.; Deane, R.; Nedergaard, M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci., 2013, 33(46), 18190-18199.
[http://dx.doi.org/10.1523/JNEUROSCI.1592-13.2013] [PMID: 24227727]
[26]
Ringstad, G.; Valnes, L.M.; Dale, A.M.; Pripp, A.H.; Vatnehol, S.S.; Emblem, K.E.; Mardal, K.A.; Eide, P.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. J.C.I., 2018, 3(13), e121537.
[27]
Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, A.M.; Olveda, G.; Thomas, J.H.; Nedergaard, M.; Kelley, D.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun., 2018, 9(1), 4878.
[http://dx.doi.org/10.1038/s41467-018-07318-3] [PMID: 30451853]
[28]
Bedussi, B.; Almasian, M.; de Vos, J.; VanBavel, E.; Bakker, E.N. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. J. Cereb. Blood Flow Metab., 2018, 38(4), 719-726.
[http://dx.doi.org/10.1177/0271678X17737984] [PMID: 29039724]
[29]
Carnevale, D.; Mascio, G.; D’Andrea, I.; Fardella, V.; Bell, R.D.; Branchi, I.; Pallante, F.; Zlokovic, B.; Yan, S.S.; Lembo, G. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension, 2012, 60(1), 188-197.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.195511] [PMID: 22615109]
[30]
Gentile, M.T.; Poulet, R.; Di Pardo, A.; Cifelli, G.; Maffei, A.; Vecchione, C.; Passarelli, F.; Landolfi, A.; Carullo, P.; Lembo, G. Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol. Aging, 2009, 30(2), 222-228.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.005] [PMID: 17673335]
[31]
Baglietto-Vargas, D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev., 2016, 64, 272-287.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.005] [PMID: 26969101]
[32]
Jiang, Q.; Zhang, L.; Ding, G.; Davoodi-Bojd, E.; Li, Q.; Li, L.; Sadry, N.; Nedergaard, M.; Chopp, M.; Zhang, Z. Impairment of the glymphatic system after diabetes. J. Cereb. Blood Flow Metab., 2017, 37(4), 1326-1337.
[http://dx.doi.org/10.1177/0271678X16654702] [PMID: 27306755]
[33]
Vogels, R.L.; Oosterman, J.M.; van Harten, B.; Scheltens, P.; van der Flier, W.M.; Schroeder-Tanka, J.M.; Weinstein, H.C. Profile of cognitive impairment in chronic heart failure. J. Am. Geriatr. Soc., 2007, 55(11), 1764-1770.
[http://dx.doi.org/10.1111/j.1532-5415.2007.01395.x] [PMID: 17727641]
[34]
Kiviniemi, V.; Wang, X.; Korhonen, V.; Keinänen, T.; Tuovinen, T.; Autio, J.; LeVan, P.; Keilholz, S.; Zang, Y.F.; Hennig, J.; Nedergaard, M. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms? J. Cereb. Blood Flow Metab., 2016, 36(6), 1033-1045.
[http://dx.doi.org/10.1177/0271678X15622047] [PMID: 26690495]
[35]
Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; Takano, T.; Deane, R.; Nedergaard, M. Sleep drives metabolite clearance from the adult brain. Science, 2013, 342(6156), 373-377.
[http://dx.doi.org/10.1126/science.1241224] [PMID: 24136970]
[36]
Plog, B.A.; Dashnaw, M.L.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci., 2015, 35(2), 518-526.
[http://dx.doi.org/10.1523/JNEUROSCI.3742-14.2015] [PMID: 25589747]
[37]
Lundgaard, I.; Lu, M.L.; Yang, E.; Peng, W.; Mestre, H.; Hitomi, E.; Deane, R.; Nedergaard, M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab., 2017, 37(6), 2112-2124.
[http://dx.doi.org/10.1177/0271678X16661202] [PMID: 27481936]
[38]
Ju, Y.E.; Lucey, B.P.; Holtzman, D.M. Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat. Rev. Neurol., 2014, 10(2), 115-119.
[http://dx.doi.org/10.1038/nrneurol.2013.269] [PMID: 24366271]
[39]
Ju, Y.S.; Ooms, S.J.; Sutphen, C.; Macauley, S.L.; Zangrilli, M.A.; Jerome, G.; Fagan, A.M.; Mignot, E.; Zempel, J.M.; Claassen, J.A.H.R.; Holtzman, D.M. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain, 2017, 140(8), 2104-2111.
[http://dx.doi.org/10.1093/brain/awx148] [PMID: 28899014]
[40]
Lee, H.; Xie, L.; Yu, M.; Kang, H.; Feng, T.; Deane, R.; Logan, J.; Nedergaard, M.; Benveniste, H. The effect of body posture on brain glymphatic transport. J. Neurosci., 2015, 35(31), 11034-11044.
[http://dx.doi.org/10.1523/JNEUROSCI.1625-15.2015] [PMID: 26245965]
[41]
Jin, B.J.; Smith, A.J.; Verkman, A.S. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol., 2016, 148(6), 489-501.
[http://dx.doi.org/10.1085/jgp.201611684] [PMID: 27836940]
[42]
Holter, K.E.; Kehlet, B.; Devor, A.; Sejnowski, T.J.; Dale, A.M.; Omholt, S.W.; Ottersen, O.P.; Nagelhus, E.A.; Mardal, K.A.; Pettersen, K.H. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl. Acad. Sci. USA, 2017, 114(37), 9894-9899.
[http://dx.doi.org/10.1073/pnas.1706942114] [PMID: 28847942]
[43]
Smith, A.J.; Yao, X.; Dix, J.A.; Jin, B.J.; Verkman, A.S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife, 2017, 6.
[44]
Guerreiro, R.; Bras, J. The age factor in Alzheimer’s disease. Genome Med., 2015, 7(1), 106.
[http://dx.doi.org/10.1186/s13073-015-0232-5] [PMID: 26482651]
[45]
Ahn, J.H.; Cho, H.; Kim, J.H.; Kim, S.H.; Ham, J.S.; Park, I.; Suh, S.H.; Hong, S.P.; Song, J.H.; Hong, Y.K.; Jeong, Y.; Park, S.H.; Koh, G.Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, 572(7767), 62-66.
[http://dx.doi.org/10.1038/s41586-019-1419-5] [PMID: 31341278]
[46]
Gousopoulos, E.; Proulx, S.T.; Scholl, J.; Uecker, M.; Detmar, M. Prominent lymphatic vessel hyperplasia with progressive dysfunction and distinct immune cell infiltration in lymphedema. Am. J. Pathol., 2016, 186(8), 2193-2203.
[http://dx.doi.org/10.1016/j.ajpath.2016.04.006] [PMID: 27315777]
[47]
Pollay, M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res., 2010, 7(1), 9.
[http://dx.doi.org/10.1186/1743-8454-7-9] [PMID: 20565964]
[48]
Kress, B.T.; Iliff, J.J.; Xia, M.; Wang, M.; Wei, H.S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J.A.; Plog, B.A.; Ding, F.; Deane, R.; Nedergaard, M. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol., 2014, 76(6), 845-861.
[http://dx.doi.org/10.1002/ana.24271] [PMID: 25204284]
[49]
Patel, T.K.; Habimana-Griffin, L.; Gao, X.; Xu, B.; Achilefu, S.; Alitalo, K.; McKee, C.A.; Sheehan, P.W.; Musiek, E.S.; Xiong, C.; Coble, D.; Holtzman, D.M. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol. Neurodegener., 2019, 14(1), 11.
[http://dx.doi.org/10.1186/s13024-019-0312-x] [PMID: 30813965]
[50]
Wang, L.; Zhang, Y.; Zhao, Y.; Marshall, C.; Wu, T.; Xiao, M. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol., 2019, 29(2), 176-192.
[http://dx.doi.org/10.1111/bpa.12656] [PMID: 30192999]
[51]
Cao, X.; Xu, H.; Feng, W.; Su, D.; Xiao, M. Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage. Brain Res. Bull., 2018, 143, 83-96.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.007] [PMID: 30347264]
[52]
Peng, W.; Achariyar, T.M.; Li, B.; Liao, Y.; Mestre, H.; Hitomi, E.; Regan, S.; Kasper, T.; Peng, S.; Ding, F.; Benveniste, H.; Nedergaard, M.; Deane, R. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2016, 93, 215-225.
[http://dx.doi.org/10.1016/j.nbd.2016.05.015] [PMID: 27234656]
[53]
Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci., 2014, 34(49), 16180-16193.
[http://dx.doi.org/10.1523/JNEUROSCI.3020-14.2014] [PMID: 25471560]
[54]
Silverberg, G.D.; Heit, G.; Huhn, S.; Jaffe, R.A.; Chang, S.D.; Bronte-Stewart, H.; Rubenstein, E.; Possin, K.; Saul, T.A. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology, 2001, 57(10), 1763-1766.
[http://dx.doi.org/10.1212/WNL.57.10.1763] [PMID: 11723260]
[55]
de Leon, M.J.; Li, Y.; Okamura, N.; Tsui, W.H.; Saint-Louis, L.A.; Glodzik, L.; Osorio, R.S.; Fortea, J.; Butler, T.; Pirraglia, E.; Fossati, S.; Kim, H.J.; Carare, R.O.; Nedergaard, M.; Benveniste, H.; Rusinek, H. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET. J. Nucl. Med., 2017, 58(9), 1471-1476.
[http://dx.doi.org/10.2967/jnumed.116.187211] [PMID: 28302766]
[56]
Weiner, H.L.; Frenkel, D. Immunology and immunotherapy of Alzheimer’s disease. Nat. Rev. Immunol., 2006, 6(5), 404-416.
[http://dx.doi.org/10.1038/nri1843] [PMID: 16639431]
[57]
Baruch, K.; Kertser, A.; Porat, Z.; Schwartz, M. Cerebral nitric oxide represses choroid plexus NFκB-dependent gateway activity for leukocyte trafficking. EMBO J., 2015, 34(13), 1816-1828.
[http://dx.doi.org/10.15252/embj.201591468] [PMID: 25940071]
[58]
Dansokho, C.; Ait Ahmed, D.; Aid, S.; Toly-Ndour, C.; Chaigneau, T.; Calle, V.; Cagnard, N.; Holzenberger, M.; Piaggio, E.; Aucouturier, P.; Dorothée, G. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain, 2016, 139(Pt 4), 1237-1251.
[http://dx.doi.org/10.1093/brain/awv408] [PMID: 26912648]
[59]
Togo, T.; Akiyama, H.; Iseki, E.; Kondo, H.; Ikeda, K.; Kato, M.; Oda, T.; Tsuchiya, K.; Kosaka, K. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol., 2002, 124(1-2), 83-92.
[http://dx.doi.org/10.1016/S0165-5728(01)00496-9] [PMID: 11958825]
[60]
Kipnis, J.; Gadani, S.; Derecki, N.C. Pro-cognitive properties of T cells. Nat. Rev. Immunol., 2012, 12(9), 663-669.
[http://dx.doi.org/10.1038/nri3280] [PMID: 22903149]
[61]
Giri, M.; Zhang, M.; Lü, Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin. Interv. Aging, 2016, 11, 665-681.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[62]
Ye, S.; Huang, Y.; Müllendorff, K.; Dong, L.; Giedt, G.; Meng, E.C.; Cohen, F.E.; Kuntz, I.D.; Weisgraber, K.H.; Mahley, R.W. Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18700-18705.
[http://dx.doi.org/10.1073/pnas.0508693102] [PMID: 16344478]
[63]
Mentis, A.A.; Dardiotis, E.; Chrousos, G.P. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: A conceptual framework. Mol. Psychiatry, 2021, 26(4), 1075-1097.
[PMID: 32355332]
[64]
Amiry-Moghaddam, M.; Williamson, A.; Palomba, M.; Eid, T.; de Lanerolle, N.C.; Nagelhus, E.A.; Adams, M.E.; Froehner, S.C.; Agre, P.; Ottersen, O.P. Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13615-13620.
[http://dx.doi.org/10.1073/pnas.2336064100] [PMID: 14597704]
[65]
Harrison, I.F.; Ismail, O.; Machhada, A.; Colgan, N.; Ohene, Y.; Nahavandi, P.; Ahmed, Z.; Fisher, A.; Meftah, S.; Murray, T.K.; Ottersen, O.P.; Nagelhus, E.A.; O’Neill, M.J.; Wells, J.A.; Lythgoe, M.F. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain, 2020, 143(8), 2576-2593.
[http://dx.doi.org/10.1093/brain/awaa179] [PMID: 32705145]
[66]
Yang, J.; Lunde, L.K.; Nuntagij, P.; Oguchi, T.; Camassa, L.M.; Nilsson, L.N.; Lannfelt, L.; Xu, Y.; Amiry-Moghaddam, M.; Ottersen, O.P.; Torp, R. Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2011, 27(4), 711-722.
[http://dx.doi.org/10.3233/JAD-2011-110725] [PMID: 21891870]
[67]
Kessing, L.V.; Nilsson, F.M. Increased risk of developing dementia in patients with major affective disorders compared to patients with other medical illnesses. J. Affect. Disord., 2003, 73(3), 261-269.
[http://dx.doi.org/10.1016/S0165-0327(02)00004-6] [PMID: 12547295]
[68]
Burfeind, K.G.; Murchison, C.F.; Westaway, S.K.; Simon, M.J.; Erten-Lyons, D.; Kaye, J.A.; Quinn, J.F.; Iliff, J.J. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2017, 3(3), 348-359.
[http://dx.doi.org/10.1016/j.trci.2017.05.001] [PMID: 29067342]
[69]
Rainey-Smith, S.R.; Mazzucchelli, G.N.; Villemagne, V.L.; Brown, B.M.; Porter, T.; Weinborn, M.; Bucks, R.S.; Milicic, L.; Sohrabi, H.R.; Taddei, K.; Ames, D.; Maruff, P.; Masters, C.L.; Rowe, C.C.; Salvado, O.; Martins, R.N.; Laws, S.M. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl. Psychiatry, 2018, 8(1), 47.
[http://dx.doi.org/10.1038/s41398-018-0094-x] [PMID: 29479071]
[70]
Brunner, P.; Sözer-Topcular, N.; Jockers, R.; Ravid, R.; Angeloni, D.; Fraschini, F.; Eckert, A.; Müller-Spahn, F.; Savaskan, E. Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur. J. Histochem., 2006, 50(4), 311-316.
[PMID: 17213040]
[71]
Wu, Y.H.; Feenstra, M.G.; Zhou, J.N.; Liu, R.Y.; Toranõ, J.S.; Van Kan, H.J.; Fischer, D.F.; Ravid, R.; Swaab, D.F. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: Alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab., 2003, 88(12), 5898-5906.
[http://dx.doi.org/10.1210/jc.2003-030833] [PMID: 14671188]
[72]
Cardinali, D.P. Melatonin: Clinical perspectives in neurodegeneration. Front. Endocrinol. (Lausanne), 2019, 10, 480.
[http://dx.doi.org/10.3389/fendo.2019.00480] [PMID: 31379746]
[73]
Li, Y.; Zhang, J.; Wan, J.; Liu, A.; Sun, J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother., 2020, 132, 110887.
[http://dx.doi.org/10.1016/j.biopha.2020.110887] [PMID: 33254429]
[74]
Plog, B.A.; Nedergaard, M. The glymphatic system in central nervous system health and disease: Past, present, and future. Annu. Rev. Pathol., 2018, 13(1), 379-394.
[http://dx.doi.org/10.1146/annurev-pathol-051217-111018] [PMID: 29195051]
[75]
Cheng, J.W.; Zhang, X.J.; Cheng, L.S.; Li, G.Y.; Zhang, L.J.; Ji, K.X.; Zhao, Q.; Bai, Y. Low-dose tissue plasminogen activator in acute ischemic stroke: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis., 2018, 27(2), 381-390.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.014] [PMID: 29111341]
[76]
Yu, P.; Venkat, P.; Chopp, M.; Zacharek, A.; Shen, Y.; Liang, L.; Landschoot-Ward, J.; Liu, Z.; Jiang, R.; Chen, J. Deficiency of tPA exacerbates white matter damage, neuroinflammation, glymphatic dysfunction and cognitive dysfunction in aging mice. Aging Dis., 2019, 10(4), 770-783.
[http://dx.doi.org/10.14336/AD.2018.0816] [PMID: 31440383]
[77]
Bi Oh, S.; Suh, N.; Kim, I.; Lee, J.Y. Impacts of aging and amyloid-β deposition on plasminogen activators and plasminogen activator inhibitor-1 in the Tg2576 mouse model of Alzheimer’s disease. Brain Res., 2015, 1597, 159-167.
[http://dx.doi.org/10.1016/j.brainres.2014.11.042] [PMID: 25454795]
[78]
Cortes-Canteli, M.; Paul, J.; Norris, E.H.; Bronstein, R.; Ahn, H.J.; Zamolodchikov, D.; Bhuvanendran, S.; Fenz, K.M.; Strickland, S. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: A possible contributing factor to Alzheimer’s disease. Neuron, 2010, 66(5), 695-709.
[http://dx.doi.org/10.1016/j.neuron.2010.05.014] [PMID: 20547128]
[79]
Tang, Y.; Cai, D.; Chen, Y. Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes. J. Mol. Neurosci., 2007, 31(1), 83-93.
[http://dx.doi.org/10.1007/BF02686120] [PMID: 17416972]
[80]
Hansson, O.; Lehmann, S.; Otto, M.; Zetterberg, H.; Lewczuk, P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimers Res. Ther., 2019, 11(1), 34.
[http://dx.doi.org/10.1186/s13195-019-0485-0] [PMID: 31010420]
[81]
Eide, P.K.; Ringstad, G. MRI with intrathecal MRI gadolinium contrast medium administration: A possible method to assess glymphatic function in human brain. Acta Radiol. Open, 2015, 4(11), 2058460115609635.
[http://dx.doi.org/10.1177/2058460115609635] [PMID: 26634147]
[82]
Sun, B.L.; Wang, L.H.; Yang, T.; Sun, J.Y.; Mao, L.L.; Yang, M.F.; Yuan, H.; Colvin, R.A.; Yang, X.Y. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog. Neurobiol., 2018, 163-164, 118-143.
[http://dx.doi.org/10.1016/j.pneurobio.2017.08.007] [PMID: 28903061]
[83]
Nedergaard, M.; Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science, 2020, 370(6512), 50-56.
[http://dx.doi.org/10.1126/science.abb8739] [PMID: 33004510]
[84]
Lee, Y.; Choi, Y.; Park, E.J.; Kwon, S.; Kim, H.; Lee, J.Y.; Lee, D.S. Improvement of glymphatic-lymphatic drainage of beta-amyloid by focused ultrasound in Alzheimer’s disease model. Sci. Rep., 2020, 10(1), 16144.
[http://dx.doi.org/10.1038/s41598-020-73151-8] [PMID: 32999351]
[85]
Poon, C.T.; Shah, K.; Lin, C.; Tse, R.; Kim, K.K.; Mooney, S.; Aubert, I.; Stefanovic, B.; Hynynen, K. Time course of focused ultrasound effects on β-amyloid plaque pathology in the TgCRND8 mouse model of Alzheimer’s disease. Sci. Rep., 2018, 8(1), 14061.
[http://dx.doi.org/10.1038/s41598-018-32250-3] [PMID: 30232364]
[86]
Chen, K.T.; Wei, K.C.; Liu, H.L. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front. Pharmacol., 2019, 10, 86.
[http://dx.doi.org/10.3389/fphar.2019.00086] [PMID: 30792657]
[87]
Pappolla, M.A.; Matsubara, E.; Vidal, R.; Pacheco-Quinto, J.; Poeggeler, B.; Zagorski, M.; Sambamurti, K. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr. Alzheimer Res., 2018, 15(7), 637-642.
[http://dx.doi.org/10.2174/1567205015666180411092551] [PMID: 29637859]
[88]
Wade, A.G.; Farmer, M.; Harari, G.; Fund, N.; Laudon, M.; Nir, T.; Frydman-Marom, A.; Zisapel, N. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: A 6-month, randomized, placebo-controlled, multicenter trial. Clin. Interv. Aging, 2014, 9, 947-961.
[PMID: 24971004]
[89]
Cardinali, D.P.; Vigo, D.E.; Olivar, N.; Vidal, M.F.; Furio, A.M.; Brusco, L.I. Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener. Dis., 2012, 1(3), 280-291.
[PMID: 23383398]
[90]
Wolak, D.J.; Thorne, R.G. Diffusion of macromolecules in the brain: Implications for drug delivery. Mol. Pharm., 2013, 10(5), 1492-1504.
[http://dx.doi.org/10.1021/mp300495e] [PMID: 23298378]
[91]
Pizzo, M.E.; Wolak, D.J.; Kumar, N.N.; Brunette, E.; Brunnquell, C.L.; Hannocks, M.J.; Abbott, N.J.; Meyerand, M.E.; Sorokin, L.; Stanimirovic, D.B.; Thorne, R.G. Intrathecal antibody distribution in the rat brain: Surface diffusion, perivascular transport and osmotic enhancement of delivery. J. Physiol., 2018, 596(3), 445-475.
[http://dx.doi.org/10.1113/JP275105] [PMID: 29023798]
[92]
Rasmussen, M.K.; Mestre, H.; Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol., 2018, 17(11), 1016-1024.
[http://dx.doi.org/10.1016/S1474-4422(18)30318-1] [PMID: 30353860]
[93]
Murlidharan, G.; Crowther, A.; Reardon, R.A.; Song, J.; Asokan, A. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight, 2016, 1(14), e88034.
[http://dx.doi.org/10.1172/jci.insight.88034] [PMID: 27699236]
[94]
Vulchanova, L.; Schuster, D.J.; Belur, L.R.; Riedl, M.S.; Podetz-Pedersen, K.M.; Kitto, K.F.; Wilcox, G.L.; McIvor, R.S.; Fairbanks, C.A. Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Mol. Pain, 2010, 6, 31.
[http://dx.doi.org/10.1186/1744-8069-6-31] [PMID: 20509925]
[95]
Da Mesquita, S.; Fu, Z.; Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron, 2018, 100(2), 375-388.
[http://dx.doi.org/10.1016/j.neuron.2018.09.022] [PMID: 30359603]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy