Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

New Insights of Early Brain Injury after Subarachnoid Hemorrhage: A Focus on the Caspase Family

Author(s): Xiaoyu Wang, Penglei Xu, Yibo Liu, Zefeng Wang, Cameron Lenahan, Yuanjian Fang, Jianan Lu, Jingwei Zheng, Kaikai Wang, Wei Wang, Jingyi Zhou, Sheng Chen* and Jianming Zhang*

Volume 21, Issue 2, 2023

Published on: 08 December, 2022

Page: [392 - 408] Pages: 17

DOI: 10.2174/1570159X20666220420115925

Price: $65

Abstract

Spontaneous subarachnoid hemorrhage (SAH), primarily caused by ruptured intracranial aneurysms, remains a prominent clinical challenge with a high rate of mortality and morbidity worldwide. Accumulating clinical trials aiming at the prevention of cerebral vasospasm (CVS) have failed to improve the clinical outcome of patients with SAH. Therefore, a growing number of studies have shifted focus to the pathophysiological changes that occur during the periods of early brain injury (EBI). New pharmacological agents aiming to alleviate EBI have become a promising direction to improve outcomes after SAH. Caspases belong to a family of cysteine proteases with diverse functions involved in maintaining metabolism, autophagy, tissue differentiation, regeneration, and neural development. Increasing evidence shows that caspases play a critical role in brain pathology after SAH. Therefore, caspase regulation could be a potential target for SAH treatment. Herein, we provide an overview pertaining to the current knowledge on the role of caspases in EBI after SAH, and we discuss the promising therapeutic value of caspase-related agents after SAH.

Keywords: subarachnoid hemorrhage, early brain injury, caspases.

Graphical Abstract

[1]
Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet, 2017, 389(10069), 655-666.
[http://dx.doi.org/10.1016/S0140-6736(16)30668-7] [PMID: 27637674]
[2]
Kanamaru, H.; Suzuki, H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen. Res., 2019, 14(7), 1138-1143.
[http://dx.doi.org/10.4103/1673-5374.251190] [PMID: 30804237]
[3]
Petridis, A.K.; Kamp, M.A.; Cornelius, J.F.; Beez, T.; Beseoglu, K.; Turowski, B.; Steiger, H.J. Aneurysmal subarachnoid hemorrhage. Dtsch. Arztebl. Int., 2017, 114(13), 226-236.
[PMID: 28434443]
[4]
Geraghty, J.R.; Testai, F.D. Delayed cerebral ischemia after subarachnoid hemorrhage: Beyond vasospasm and towards a multifactorial pathophysiology. Curr. Atheroscler. Rep., 2017, 19(12), 50.
[http://dx.doi.org/10.1007/s11883-017-0690-x] [PMID: 29063300]
[5]
Geraghty, J.R.; Davis, J.L.; Testai, F.D. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: Emerging components of early brain injury related to outcome. Neurocrit. Care, 2019, 31(2), 373-389.
[http://dx.doi.org/10.1007/s12028-019-00710-x] [PMID: 31012056]
[6]
Etminan, N.; Vergouwen, M.D.; Ilodigwe, D.; Macdonald, R.L. Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J. Cereb. Blood Flow Metab., 2011, 31(6), 1443-1451.
[http://dx.doi.org/10.1038/jcbfm.2011.7] [PMID: 21285966]
[7]
Macdonald, R.L.; Kassell, N.F.; Mayer, S.; Ruefenacht, D.; Schmiedek, P.; Weidauer, S.; Frey, A.; Roux, S.; Pasqualin, A. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (conscious-1): Randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke, 2008, 39(11), 3015-3021.
[http://dx.doi.org/10.1161/STROKEAHA.108.519942] [PMID: 18688013]
[8]
Peng, Y.; Zhuang, J.; Ying, G.; Zeng, H.; Zhou, H.; Cao, Y.; Chen, H.; Xu, C.; Fu, X.; Xu, H.; Li, J.; Cao, S.; Chen, J.; Gu, C.; Yan, F.; Chen, G. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J. Neuroinflammation, 2020, 17(1), 165.
[http://dx.doi.org/10.1186/s12974-020-01830-4] [PMID: 32450897]
[9]
Okada, T.; Suzuki, H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol. Histopathol., 2020, 35(7), 623-636.
[PMID: 32026458]
[10]
Luo, Y.; Fang, Y.; Kang, R.; Lenahan, C.; Gamdzyk, M.; Zhang, Z.; Okada, T.; Tang, J.; Chen, S.; Zhang, J.H. Inhibition of EZH2 (Enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (Trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-κB) in a rat model of subarachnoid hemorrhage. Stroke, 2020, 51(11), 3320-3331.
[http://dx.doi.org/10.1161/STROKEAHA.120.029951] [PMID: 32933418]
[11]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[12]
Imre, G.; Berthelet, J.; Heering, J.; Kehrloesser, S.; Melzer, I.M.; Lee, B.I.; Thiede, B.; Dötsch, V.; Rajalingam, K. Apoptosis inhibitor 5 is an endogenous inhibitor of caspase-2. EMBO Rep., 2017, 18(5), 733-744.
[http://dx.doi.org/10.15252/embr.201643744] [PMID: 28336776]
[13]
Liccardi, G.; Ramos Garcia, L.; Tenev, T.; Annibaldi, A.; Legrand, A.J.; Robertson, D.; Feltham, R.; Anderton, H.; Darding, M.; Peltzer, N.; Dannappel, M.; Schünke, H.; Fava, L.L.; Haschka, M.D.; Glatter, T.; Nesvizhskii, A.; Schmidt, A.; Harris, P.A.; Bertin, J.; Gough, P.J.; Villunger, A.; Silke, J.; Pasparakis, M.; Bianchi, K.; Meier, P. RIPK1 and caspase-8 ensure chromosome stability independently of their role in cell death and inflammation. Mol. Cell, 2019, 73(3), 413-428.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.11.010] [PMID: 30598363]
[14]
Tsapras, P.; Nezis, I.P. Caspase involvement in autophagy. Cell Death Differ., 2017, 24(8), 1369-1379.
[http://dx.doi.org/10.1038/cdd.2017.43] [PMID: 28574508]
[15]
Chung, Y.; Lee, J.; Jung, S.; Lee, Y.; Cho, J.W.; Oh, Y.J. Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis., 2018, 9(12), 1189.
[http://dx.doi.org/10.1038/s41419-018-1229-y] [PMID: 30538224]
[16]
Boonstra, K.; Bloemberg, D.; Quadrilatero, J. Caspase-2 is required for skeletal muscle differentiation and myogenesis. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(1), 95-104.
[http://dx.doi.org/10.1016/j.bbamcr.2017.07.016] [PMID: 28765049]
[17]
Sun, G.; Ding, X.A.; Argaw, Y.; Guo, X.; Montell, D.J. Akt1 and dCIZ1 promote cell survival from apoptotic caspase activation during regeneration and oncogenic overgrowth. Nat. Commun., 2020, 11(1), 5726.
[http://dx.doi.org/10.1038/s41467-020-19068-2] [PMID: 33184261]
[18]
Fok, S.K.; Chen, C.P.; Tseng, T.L.; Chiang, Y.H.; Chen, J.H. Caspase dependent apoptosis is required for anterior regeneration in Aeolosoma viride and its related gene expressions are regulated by the Wnt signaling pathway. Sci. Rep., 2020, 10(1), 10692.
[http://dx.doi.org/10.1038/s41598-020-64008-1] [PMID: 32612157]
[19]
Yamaguchi, Y.; Miura, M. Programmed cell death and caspase functions during neural development. Curr. Top. Dev. Biol., 2015, 114, 159-184.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.016] [PMID: 26431567]
[20]
Zhang, Z.; Shao, X.; Jiang, N.; Mou, S.; Gu, L.; Li, S.; Lin, Q.; He, Y.; Zhang, M.; Zhou, W.; Ni, Z. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 983.
[http://dx.doi.org/10.1038/s41419-018-1023-x] [PMID: 30250284]
[21]
Troy, C.M.; Jean, Y.Y. Caspases: Therapeutic targets in neurologic disease. Neurotherapeutics, 2015, 12(1), 42-48.
[http://dx.doi.org/10.1007/s13311-014-0307-9] [PMID: 25339539]
[22]
Glushakova, O.Y.; Glushakov, A.O.; Borlongan, C.V.; Valadka, A.B.; Hayes, R.L.; Glushakov, A.V. Role of caspase-3-mediated apoptosis in chronic caspase-3-cleaved tau accumulation and blood-brain barrier damage in the corpus callosum after traumatic brain injury in rats. J. Neurotrauma, 2018, 35(1), 157-173.
[http://dx.doi.org/10.1089/neu.2017.4999] [PMID: 28637381]
[23]
Zhang, R.; Zhou, W.; Yu, Z.; Yang, L.; Liu, G.; Yu, H.; Zhou, Q.; Min, Z.; Zhang, C.; Wu, Q.; Hu, X.M.; Yuan, Q. miR-1247-3p mediates apoptosis of cerebral neurons by targeting caspase-2 in stroke. Brain Res., 2019, 1714, 18-26.
[http://dx.doi.org/10.1016/j.brainres.2019.02.020] [PMID: 30779911]
[24]
Ke, D.Q.; Chen, Z.Y.; Li, Z.L.; Huang, X.; Liang, H. Target inhibition of caspase-8 alleviates brain damage after subarachnoid hemorrhage. Neural Regen. Res., 2020, 15(7), 1283-1289.
[http://dx.doi.org/10.4103/1673-5374.272613] [PMID: 31960814]
[25]
Amantea, D.; Russo, R.; Certo, M.; Rombolà, L.; Adornetto, A.; Morrone, L.A.; Corasaniti, M.T.; Bagetta, G. Caspase-1-independent maturation of IL-1β in ischemic brain injury: Is there a role for gelatinases? Mini Rev. Med. Chem., 2016, 16(9), 729-737.
[http://dx.doi.org/10.2174/1389557516666160321112512] [PMID: 26996625]
[26]
Li, H.; Yu, J.S.; Zhang, H.S.; Yang, Y.Q.; Huang, L.T.; Zhang, D.D.; Hang, C.H. Increased expression of caspase-12 after experimental subarachnoid hemorrhage. Neurochem. Res., 2016, 41(12), 3407-3416.
[http://dx.doi.org/10.1007/s11064-016-2076-9] [PMID: 27718045]
[27]
Suzuki, H.; Fujimoto, M.; Kawakita, F.; Liu, L.; Nakatsuka, Y.; Nakano, F.; Nishikawa, H.; Okada, T.; Kanamaru, H.; Imanaka-Yoshida, K.; Yoshida, T.; Shiba, M. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. J. Neurosci. Res., 2020, 98(1), 42-56.
[http://dx.doi.org/10.1002/jnr.24330] [PMID: 30242870]
[28]
Topkoru, B.; Egemen, E.; Solaroglu, I.; Zhang, J.H. Early brain injury or vasospasm? An overview of common mechanisms. Curr. Drug Targets, 2017, 18(12), 1424-1429.
[http://dx.doi.org/10.2174/1389450117666160905112923] [PMID: 27593685]
[29]
Caner, B.; Hou, J.; Altay, O.; Fujii, M.; Zhang, J.H. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J. Neurochem., 2012, 123(Suppl. 2), 12-21.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07939.x] [PMID: 23050638]
[30]
Karnchanapandh, K. Effect of increased ICP and decreased CPP on DND and outcome in ASAH. Acta Neurochir. Suppl. (Wien), 2012, 114, 339-342.
[http://dx.doi.org/10.1007/978-3-7091-0956-4_65] [PMID: 22327719]
[31]
Sehba, F.A.; Pluta, R.M.; Zhang, J.H. Metamorphosis of subarachnoid hemorrhage research: From delayed vasospasm to early brain injury. Mol. Neurobiol., 2011, 43(1), 27-40.
[http://dx.doi.org/10.1007/s12035-010-8155-z] [PMID: 21161614]
[32]
Serrone, J.C.; Maekawa, H.; Tjahjadi, M.; Hernesniemi, J. Aneurysmal subarachnoid hemorrhage: Pathobiology, current treatment and future directions. Expert Rev. Neurother., 2015, 15(4), 367-380.
[http://dx.doi.org/10.1586/14737175.2015.1018892] [PMID: 25719927]
[33]
Reinhard, M.; Bernardini, G.L. Cerebral autoregulation in acute SAH: The more we know the better? Neurology, 2016, 86(21), 1936-1937.
[http://dx.doi.org/10.1212/WNL.0000000000002708] [PMID: 27164687]
[34]
Diringer, M.N.; Dhar, R.; Scalfani, M.; Zazulia, A.R.; Chicoine, M.; Powers, W.J.; Derdeyn, C.P. Effect of high-dose simvastatin on cerebral blood flow and static autoregulation in subarachnoid hemorrhage. Neurocrit. Care, 2016, 25(1), 56-63.
[http://dx.doi.org/10.1007/s12028-015-0233-7] [PMID: 26721259]
[35]
Conzen, C.; Becker, K.; Albanna, W.; Weiss, M.; Bach, A.; Lushina, N.; Steimers, A.; Pinkernell, S.; Clusmann, H.; Lindauer, U.; Schubert, G.A. The acute phase of experimental subarachnoid hemorrhage: Intracranial pressure dynamics and their effect on cerebral blood flow and autoregulation. Transl. Stroke Res., 2019, 10(5), 566-582.
[http://dx.doi.org/10.1007/s12975-018-0674-3] [PMID: 30443885]
[36]
Jaeger, M.; Soehle, M.; Schuhmann, M.U.; Meixensberger, J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke, 2012, 43(8), 2097-2101.
[http://dx.doi.org/10.1161/STROKEAHA.112.659888] [PMID: 22618384]
[37]
Budohoski, K.P.; Czosnyka, M.; Smielewski, P.; Kasprowicz, M.; Helmy, A.; Bulters, D.; Pickard, J.D.; Kirkpatrick, P.J. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: A prospective observational study. Stroke, 2012, 43(12), 3230-3237.
[http://dx.doi.org/10.1161/STROKEAHA.112.669788] [PMID: 23150652]
[38]
Budohoski, K.P.; Czosnyka, M.; Smielewski, P.; Varsos, G.V.; Kasprowicz, M.; Brady, K.M.; Pickard, J.D.; Kirkpatrick, P.J. Cerebral autoregulation after subarachnoid hemorrhage: Comparison of three methods. J. Cereb. Blood Flow Metab., 2013, 33(3), 449-456.
[http://dx.doi.org/10.1038/jcbfm.2012.189] [PMID: 23232948]
[39]
Friedrich, V.; Flores, R.; Sehba, F.A. Cell death starts early after subarachnoid hemorrhage. Neurosci. Lett., 2012, 512(1), 6-11.
[http://dx.doi.org/10.1016/j.neulet.2012.01.036] [PMID: 22306092]
[40]
Hasegawa, Y.; Suzuki, H.; Altay, O.; Chen, H.; Zhang, J.H. Treatment with sodium orthovanadate reduces blood-brain barrier disruption via phosphatase and tensin homolog deleted on chromosome 10 (PTEN) phosphorylation in experimental subarachnoid hemorrhage. J. Neurosci. Res., 2012, 90(3), 691-697.
[http://dx.doi.org/10.1002/jnr.22801] [PMID: 22183833]
[41]
Chen, S.; Shao, L.; Ma, L. Cerebral edema formation after stroke: Emphasis on blood-brain barrier and the lymphatic drainage system of the brain. Front. Cell. Neurosci., 2021, 15, 716825.
[http://dx.doi.org/10.3389/fncel.2021.716825] [PMID: 34483842]
[42]
Lane, R.S.; Fu, Y.; Matsuzaki, S.; Kinter, M.; Humphries, K.M.; Griffin, T.M. Mitochondrial respiration and redox coupling in articular chondrocytes. Arthritis Res. Ther., 2015, 17(1), 54.
[http://dx.doi.org/10.1186/s13075-015-0566-9] [PMID: 25889867]
[43]
Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood, 1998, 92(9), 3007-3017.
[http://dx.doi.org/10.1182/blood.V92.9.3007] [PMID: 9787133]
[44]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[45]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[46]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[47]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[48]
Hu, L.; Wang, Z.; Carmone, C.; Keijer, J.; Zhang, D. Role of oxidative DNA damage and repair in atrial fibrillation and ischemic heart disease. Int. J. Mol. Sci., 2021, 22(8), 3838.
[http://dx.doi.org/10.3390/ijms22083838] [PMID: 33917194]
[49]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[50]
Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol., 2013, 13(5), 349-361.
[http://dx.doi.org/10.1038/nri3423] [PMID: 23618831]
[51]
Ayer, R.E.; Zhang, J.H. Oxidative stress in subarachnoid haemorrhage: Significance in acute brain injury and vasospasm. Acta Neurochir. Suppl. (Wien), 2008, 104, 33-41.
[http://dx.doi.org/10.1007/978-3-211-75718-5_7] [PMID: 18456995]
[52]
Lucke-Wold, B.P.; Logsdon, A.F.; Manoranjan, B.; Turner, R.C.; McConnell, E.; Vates, G.E.; Huber, J.D.; Rosen, C.L.; Simard, J.M. Aneurysmal subarachnoid hemorrhage and neuroinflammation: A comprehensive review. Int. J. Mol. Sci., 2016, 17(4), 497.
[http://dx.doi.org/10.3390/ijms17040497] [PMID: 27049383]
[53]
Kwon, M.S.; Woo, S.K.; Kurland, D.B.; Yoon, S.H.; Palmer, A.F.; Banerjee, U.; Iqbal, S.; Ivanova, S.; Gerzanich, V.; Simard, J.M. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int. J. Mol. Sci., 2015, 16(3), 5028-5046.
[http://dx.doi.org/10.3390/ijms16035028] [PMID: 25751721]
[54]
Lu, Y.; Zhang, X.S.; Zhang, Z.H.; Zhou, X.M.; Gao, Y.Y.; Liu, G.J.; Wang, H.; Wu, L.Y.; Li, W.; Hang, C.H. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J. Neuroinflammation, 2018, 15(1), 87.
[http://dx.doi.org/10.1186/s12974-018-1118-4] [PMID: 29554978]
[55]
Liu, G.J.; Zhang, Q.R.; Gao, X.; Wang, H.; Tao, T.; Gao, Y.Y.; Zhou, Y.; Chen, X.X.; Li, W.; Hang, C.H. MiR-146a ameliorates hemoglobin-induced microglial inflammatory response via TLR4/IRAK1/TRAF6 associated pathways. Front. Neurosci., 2020, 14, 311.
[http://dx.doi.org/10.3389/fnins.2020.00311] [PMID: 32317924]
[56]
Sozen, T.; Tsuchiyama, R.; Hasegawa, Y.; Suzuki, H.; Jadhav, V.; Nishizawa, S.; Zhang, J.H. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke, 2009, 40(7), 2519-2525.
[http://dx.doi.org/10.1161/STROKEAHA.109.549592] [PMID: 19461019]
[57]
Kooijman, E.; Nijboer, C.H.; van Velthoven, C.T.; Mol, W.; Dijkhuizen, R.M.; Kesecioglu, J.; Heijnen, C.J. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS One, 2014, 9(6), e90584.
[http://dx.doi.org/10.1371/journal.pone.0090584] [PMID: 24603553]
[58]
Cahill, J.; Calvert, J.W.; Solaroglu, I.; Zhang, J.H. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke, 2006, 37(7), 1868-1874.
[http://dx.doi.org/10.1161/01.STR.0000226995.27230.96] [PMID: 16741174]
[59]
Ji, C.; Chen, G. Signaling pathway in early brain injury after subarachnoid hemorrhage: News update. Acta Neurochir. Suppl. (Wien), 2016, 121, 123-126.
[http://dx.doi.org/10.1007/978-3-319-18497-5_21] [PMID: 26463934]
[60]
Guo, Z.D.; Zhang, X.D.; Wu, H.T.; Lin, B.; Sun, X.C.; Zhang, J.H. Matrix metalloproteinase 9 inhibition reduces early brain injury in cortex after subarachnoid hemorrhage. Acta Neurochir. Suppl. (Wien), 2011, 110(Pt 1), 81-84.
[http://dx.doi.org/10.1007/978-3-7091-0353-1_15] [PMID: 21116920]
[61]
Yuan, B.; Zhou, X.M.; You, Z.Q.; Xu, W.D.; Fan, J.M.; Chen, S.J.; Han, Y.L.; Wu, Q.; Zhang, X. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis., 2020, 11(1), 76.
[http://dx.doi.org/10.1038/s41419-020-2248-z] [PMID: 32001670]
[62]
Chen, J.; Zhang, C.; Yan, T.; Yang, L.; Wang, Y.; Shi, Z.; Li, M.; Chen, Q. Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of pyroptosis and neuroinflammation. J. Cell. Physiol., 2021, 236(10), 6920-6931.
[http://dx.doi.org/10.1002/jcp.30351] [PMID: 33792028]
[63]
Fang, Y.; Gao, S.; Wang, X.; Cao, Y.; Lu, J.; Chen, S.; Lenahan, C.; Zhang, J.H.; Shao, A.; Zhang, J. Programmed cell deaths and potential crosstalk with blood-brain barrier dysfunction after hemorrhagic stroke. Front. Cell. Neurosci., 2020, 14, 68.
[http://dx.doi.org/10.3389/fncel.2020.00068] [PMID: 32317935]
[64]
Alnemri, E.S.; Livingston, D.J.; Nicholson, D.W.; Salvesen, G.; Thornberry, N.A.; Wong, W.W.; Yuan, J. Human ICE/CED-3 protease nomenclature. Cell, 1996, 87(2), 171.
[http://dx.doi.org/10.1016/S0092-8674(00)81334-3] [PMID: 8861900]
[65]
Schauperl, M.; Fuchs, J.E.; Waldner, B.J.; Huber, R.G.; Kramer, C.; Liedl, K.R. Characterizing protease specificity: How many substrates do we need? PLoS One, 2015, 10(11), e0142658.
[http://dx.doi.org/10.1371/journal.pone.0142658] [PMID: 26559682]
[66]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[67]
Kumar, S. Caspase function in programmed cell death. Cell Death Differ., 2007, 14(1), 32-43.
[http://dx.doi.org/10.1038/sj.cdd.4402060] [PMID: 17082813]
[68]
Parrish, A.B.; Freel, C.D.; Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol., 2013, 5(6), a008672.
[http://dx.doi.org/10.1101/cshperspect.a008672] [PMID: 23732469]
[69]
Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of pyroptosis. Trends Cell Biol., 2017, 27(9), 673-684.
[http://dx.doi.org/10.1016/j.tcb.2017.05.005] [PMID: 28619472]
[70]
Frank, D.; Vince, J.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ., 2019, 26(1), 99-114.
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[71]
Thurston, T.L.; Matthews, S.A.; Jennings, E.; Alix, E.; Shao, F.; Shenoy, A.R.; Birrell, M.A.; Holden, D.W. Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nat. Commun., 2016, 7(1), 13292.
[http://dx.doi.org/10.1038/ncomms13292] [PMID: 27808091]
[72]
Shinoda, N.; Hanawa, N.; Chihara, T.; Koto, A.; Miura, M. Dronc-independent basal executioner caspase activity sustains Drosophila imaginal tissue growth. Proc. Natl. Acad. Sci. USA, 2019, 116(41), 20539-20544.
[http://dx.doi.org/10.1073/pnas.1904647116] [PMID: 31548372]
[73]
Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[74]
Chen, S.; Zuo, Y.; Huang, L.; Sherchan, P.; Zhang, J.; Yu, Z.; Peng, J.; Zhang, J.; Zhao, L.; Doycheva, D.; Liu, F.; Zhang, J.H.; Xia, Y.; Tang, J. The MC4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br. J. Pharmacol., 2019, 176(9), 1341-1356.
[http://dx.doi.org/10.1111/bph.14639] [PMID: 30811584]
[75]
Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother., 2019, 109, 726-733.
[http://dx.doi.org/10.1016/j.biopha.2018.10.161] [PMID: 30551525]
[76]
Wang, Y.; Gu, J.; Hu, L.; Kong, L.; Wang, T.; Di, M.; Li, C.; Gui, S. miR-130a alleviates neuronal apoptosis and changes in expression of Bcl-2/Bax and caspase-3 in cerebral infarction rats through PTEN/PI3K/Akt signaling pathway. Exp. Ther. Med., 2020, 19(3), 2119-2126.
[http://dx.doi.org/10.3892/etm.2020.8415] [PMID: 32104274]
[77]
Rochfort, K.D.; Cummins, P.M. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc. Res., 2015, 100, 48-53.
[http://dx.doi.org/10.1016/j.mvr.2015.04.010] [PMID: 25953589]
[78]
Zehendner, C.M.; Librizzi, L.; de Curtis, M.; Kuhlmann, C.R.; Luhmann, H.J. Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage. PLoS One, 2011, 6(2), e16760.
[http://dx.doi.org/10.1371/journal.pone.0016760] [PMID: 21364989]
[79]
Chen, D.; Wei, X.T.; Guan, J.H.; Yuan, J.W.; Peng, Y.T.; Song, L.; Liu, Y.H. Inhibition of c-Jun N-terminal kinase prevents blood-brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir. (Wien), 2012, 154(8), 1469-1476.
[http://dx.doi.org/10.1007/s00701-012-1328-y] [PMID: 22661329]
[80]
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol., 2018, 315(3), C343-C356.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[81]
Lee, S.R.; Lo, E.H. Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J. Cereb. Blood Flow Metab., 2004, 24(7), 720-727.
[http://dx.doi.org/10.1097/01.WCB.0000122747.72175.47] [PMID: 15241180]
[82]
Fang, R.; Zheng, X.; Zhang, M. Ethyl pyruvate alleviates early brain injury following subarachnoid hemorrhage in rats. Acta Neurochir. (Wien), 2016, 158(6), 1069-1076.
[http://dx.doi.org/10.1007/s00701-016-2795-3] [PMID: 27072679]
[83]
Luo, Y.; Reis, C.; Chen, S. NLRP3 inflammasome in the pathophysiology of hemorrhagic stroke: A review. Curr. Neuropharmacol., 2019, 17(7), 582-589.
[http://dx.doi.org/10.2174/1570159X17666181227170053] [PMID: 30592254]
[84]
Hu, X.; Yan, J.; Huang, L.; Araujo, C.; Peng, J.; Gao, L.; Liu, S.; Tang, J.; Zuo, G.; Zhang, J.H. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav. Immun., 2021, 91, 587-600.
[http://dx.doi.org/10.1016/j.bbi.2020.09.016] [PMID: 32961266]
[85]
Miao, E.A.; Rajan, J.V.; Aderem, A. Caspase-1-induced pyroptotic cell death. Immunol. Rev., 2011, 243(1), 206-214.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01044.x] [PMID: 21884178]
[86]
Thornberry, N.A.; Bull, H.G.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Miller, D.K.; Molineaux, S.M.; Weidner, J.R.; Aunins, J.; Elliston, K.O.; Ayala, J.M.; Casano, F.J.; Chin, J.; Ding, G.J-F.; Egger, L.A.; Gaffney, E.P.; Limjuco, G.; Palyha, O.C.; Raju, S.M.; Rolando, A.M.; Salley, J.P.; Yamin, T-T.; Lee, T.D.; Shively, J.E.; MacCross, M.; Mumford, R.A.; Schmidt, J.A.; Tocci, M.J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992, 356(6372), 768-774.
[http://dx.doi.org/10.1038/356768a0] [PMID: 1574116]
[87]
Li, P.; Allen, H.; Banerjee, S.; Franklin, S.; Herzog, L.; Johnston, C.; McDowell, J.; Paskind, M.; Rodman, L.; Salfeld, J.; Towne, E.; Tracey, D.; Wardwell, S.; Wei, F-Y.; Wong, W.; Kamen, R.; Seshadri, T. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell, 1995, 80(3), 401-411.
[http://dx.doi.org/10.1016/0092-8674(95)90490-5] [PMID: 7859282]
[88]
Siegmund, B. Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation. Biochem. Pharmacol., 2002, 64(1), 1-8.
[http://dx.doi.org/10.1016/S0006-2952(02)01064-X] [PMID: 12106600]
[89]
Kersse, K.; Vanden Berghe, T.; Lamkanfi, M.; Vandenabeele, P. A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem. Soc. Trans., 2007, 35(Pt 6), 1508-1511.
[http://dx.doi.org/10.1042/BST0351508] [PMID: 18031255]
[90]
Rathinam, V.A.K.; Zhao, Y.; Shao, F. Innate immunity to intracellular LPS. Nat. Immunol., 2019, 20(5), 527-533.
[http://dx.doi.org/10.1038/s41590-019-0368-3] [PMID: 30962589]
[91]
Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192.
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[92]
Hirsch, Y.; Geraghty, J.R.; Katz, E.A.; Testai, F.D. Inflammasome caspase-1 activity is elevated in cerebrospinal fluid after aneurysmal subarachnoid hemorrhage and predicts functional outcome. Neurocrit. Care, 2021, 34(3), 889-898.
[http://dx.doi.org/10.1007/s12028-020-01113-z] [PMID: 32996055]
[93]
Scott, A.M.; Saleh, M. The inflammatory caspases: Guardians against infections and sepsis. Cell Death Differ., 2007, 14(1), 23-31.
[http://dx.doi.org/10.1038/sj.cdd.4402026] [PMID: 16977333]
[94]
Allam, R.; Lawlor, K.E.; Yu, E.C.; Mildenhall, A.L.; Moujalled, D.M.; Lewis, R.S.; Ke, F.; Mason, K.D.; White, M.J.; Stacey, K.J.; Strasser, A.; O’Reilly, L.A.; Alexander, W.; Kile, B.T.; Vaux, D.L.; Vince, J.E. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep., 2014, 15(9), 982-990.
[http://dx.doi.org/10.15252/embr.201438463] [PMID: 24990442]
[95]
Kovalenko, A.; Kim, J.C.; Kang, T.B.; Rajput, A.; Bogdanov, K.; Dittrich-Breiholz, O.; Kracht, M.; Brenner, O.; Wallach, D. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med., 2009, 206(10), 2161-2177.
[http://dx.doi.org/10.1084/jem.20090616] [PMID: 19720838]
[96]
Xu, W.; Li, T.; Gao, L.; Zheng, J.; Yan, J.; Zhang, J.; Shao, A. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J. Neuroinflammation, 2019, 16(1), 247.
[http://dx.doi.org/10.1186/s12974-019-1620-3] [PMID: 31791369]
[97]
Mo, J.; Enkhjargal, B.; Travis, Z.D.; Zhou, K.; Wu, P.; Zhang, G.; Zhu, Q.; Zhang, T.; Peng, J.; Xu, W.; Ocak, U.; Chen, Y.; Tang, J.; Zhang, J.; Zhang, J.H. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol., 2019, 20, 75-86.
[http://dx.doi.org/10.1016/j.redox.2018.09.022] [PMID: 30296700]
[98]
Lin, S.H.; Song, W.; Cressatti, M.; Zukor, H.; Wang, E.; Schipper, H.M. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: Implications for chronic brain disorders. Glia, 2015, 63(7), 1270-1284.
[http://dx.doi.org/10.1002/glia.22823] [PMID: 25820186]
[99]
Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol., 2013, 87(7), 1157-1180.
[http://dx.doi.org/10.1007/s00204-013-1034-4] [PMID: 23543009]
[100]
Yan, H.; Hao, S.; Sun, X.; Zhang, D.; Gao, X.; Yu, Z.; Li, K.; Hang, C.H. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage. Biochem. Biophys. Res. Commun., 2015, 456(4), 835-840.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.073] [PMID: 25529443]
[101]
Takahashi, A.; Masuda, A.; Sun, M.; Centonze, V.E.; Herman, B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res. Bull., 2004, 62(6), 497-504.
[http://dx.doi.org/10.1016/j.brainresbull.2003.07.009] [PMID: 15036564]
[102]
Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ., 2015, 22(3), 377-388.
[http://dx.doi.org/10.1038/cdd.2014.150] [PMID: 25257172]
[103]
Zhang, T.; Wu, P.; Budbazar, E.; Zhu, Q.; Sun, C.; Mo, J.; Peng, J.; Gospodarev, V.; Tang, J.; Shi, H.; Zhang, J.H. Mitophagy reduces oxidative stress via Keap1 (kelch-like epichlorohydrin-associated protein 1)/Nrf2 (Nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats. Stroke, 2019, 50(4), 978-988.
[http://dx.doi.org/10.1161/STROKEAHA.118.021590] [PMID: 30890112]
[104]
Wu, P.; Li, Y.; Zhu, S.; Wang, C.; Dai, J.; Zhang, G.; Zheng, B.; Xu, S.; Wang, L.; Zhang, T.; Zhou, P.; Zhang, J.H.; Shi, H. Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of Drp1-activated mitochondrial fission and oxidative stress. Neurochem. Res., 2017, 42(5), 1449-1458.
[http://dx.doi.org/10.1007/s11064-017-2201-4] [PMID: 28210956]
[105]
Yang, S.; Chen, X.; Li, S.; Sun, B.; Hang, C. Melatonin treatment regulates SIRT3 expression in early brain injury (EBI) due to reactive oxygen species (ROS) in a mouse model of subarachnoid hemorrhage (SAH). Med. Sci. Monit., 2018, 24, 3804-3814.
[http://dx.doi.org/10.12659/MSM.907734] [PMID: 29872034]
[106]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008656.
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[107]
Creagh, E.M. Caspase crosstalk: Integration of apoptotic and innate immune signalling pathways. Trends Immunol., 2014, 35(12), 631-640.
[http://dx.doi.org/10.1016/j.it.2014.10.004] [PMID: 25457353]
[108]
Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol., 2020, 38(1), 567-595.
[http://dx.doi.org/10.1146/annurev-immunol-073119-095439] [PMID: 32017655]
[109]
D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[110]
Park, H.H. Structural features of caspase-activating complexes. Int. J. Mol. Sci., 2012, 13(4), 4807-4818.
[http://dx.doi.org/10.3390/ijms13044807] [PMID: 22606010]
[111]
Gibson, C.J.; Davids, M.S. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin. Cancer Res., 2015, 21(22), 5021-5029.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0364] [PMID: 26567361]
[112]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[113]
Chan, P.H. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res., 2004, 29(11), 1943-1949.
[http://dx.doi.org/10.1007/s11064-004-6869-x] [PMID: 15662830]
[114]
Cheng, G.; Wei, L.; Zhi-Dan, S.; Shi-Guang, Z.; Xiang-Zhen, L. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci., 2009, 10(1), 7.
[http://dx.doi.org/10.1186/1471-2202-10-7] [PMID: 19159448]
[115]
Yan, J.; Chen, C.; Hu, Q.; Yang, X.; Lei, J.; Yang, L.; Wang, K.; Qin, L.; Huang, H.; Zhou, C. The role of p53 in brain edema after 24 h of experimental subarachnoid hemorrhage in a rat model. Exp. Neurol., 2008, 214(1), 37-46.
[http://dx.doi.org/10.1016/j.expneurol.2008.07.006] [PMID: 18691572]
[116]
Zhou, C.; Yamaguchi, M.; Kusaka, G.; Schonholz, C.; Nanda, A.; Zhang, J.H. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab., 2004, 24(4), 419-431.
[http://dx.doi.org/10.1097/00004647-200404000-00007] [PMID: 15087711]
[117]
Li, M.; Wang, Y.; Wang, W.; Zou, C.; Wang, X.; Chen, Q. Recombinant human brain-derived neurotrophic factor prevents neuronal apoptosis in a novel in vitro model of subarachnoid hemorrhage. Neuropsychiatr. Dis. Treat., 2017, 13, 1013-1021.
[http://dx.doi.org/10.2147/NDT.S128442] [PMID: 28435271]
[118]
Cookson, B.T.; Brennan, M.A. Pro-inflammatory programmed cell death. Trends Microbiol., 2001, 9(3), 113-114.
[http://dx.doi.org/10.1016/S0966-842X(00)01936-3] [PMID: 11303500]
[119]
Vande, W.L.; Lamkanfi, M. Pyroptosis. Curr. Biol., 2016, 26(13), R568-R572.
[http://dx.doi.org/10.1016/j.cub.2016.02.019] [PMID: 27404251]
[120]
Broz, P. Immunology: Caspase target drives pyroptosis. Nature, 2015, 526(7575), 642-643.
[http://dx.doi.org/10.1038/nature15632] [PMID: 26375000]
[121]
Ghayur, T.; Banerjee, S.; Hugunin, M.; Butler, D.; Herzog, L.; Carter, A.; Quintal, L.; Sekut, L.; Talanian, R.; Paskind, M.; Wong, W.; Kamen, R.; Tracey, D.; Allen, H. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature, 1997, 386(6625), 619-623.
[http://dx.doi.org/10.1038/386619a0] [PMID: 9121587]
[122]
He, W.T.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res., 2015, 25(12), 1285-1298.
[http://dx.doi.org/10.1038/cr.2015.139] [PMID: 26611636]
[123]
Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665.
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[124]
Xu, P.; Hong, Y.; Xie, Y.; Yuan, K.; Li, J.; Sun, R.; Zhang, X.; Shi, X.; Li, R.; Wu, J.; Liu, X.; Hu, W.; Sun, W. TREM-1 exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl. Stroke Res., 2021, 12(4), 643-659.
[http://dx.doi.org/10.1007/s12975-020-00840-x] [PMID: 32862402]
[125]
Xu, P.; Tao, C.; Zhu, Y.; Wang, G.; Kong, L.; Li, W.; Li, R.; Li, J.; Zhang, C.; Wang, L.; Liu, X.; Sun, W.; Hu, W. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J. Neuroinflammation, 2021, 18(1), 188.
[http://dx.doi.org/10.1186/s12974-021-02226-8] [PMID: 34461942]
[126]
Jia, C.; Chen, H.; Zhang, J.; Zhou, K.; Zhuge, Y.; Niu, C.; Qiu, J.; Rong, X.; Shi, Z.; Xiao, J.; Shi, Y.; Chu, M. Role of pyroptosis in cardiovascular diseases. Int. Immunopharmacol., 2019, 67, 311-318.
[http://dx.doi.org/10.1016/j.intimp.2018.12.028] [PMID: 30572256]
[127]
Liu, C.; Zhang, K.; Shen, H.; Yao, X.; Sun, Q.; Chen, G. Necroptosis: A novel manner of cell death, associated with stroke (Review). Int. J. Mol. Med., 2018, 41(2), 624-630.
[PMID: 29207014]
[128]
Vandenabeele, P.; Galluzzi, L.; Vanden Berghe, T.; Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol., 2010, 11(10), 700-714.
[http://dx.doi.org/10.1038/nrm2970] [PMID: 20823910]
[129]
Zhang, S.; Tang, M.B.; Luo, H.Y.; Shi, C.H.; Xu, Y.M. Necroptosis in neurodegenerative diseases: A potential therapeutic target. Cell Death Dis., 2017, 8(6), e2905.
[http://dx.doi.org/10.1038/cddis.2017.286] [PMID: 28661482]
[130]
Wang, X.; Yousefi, S.; Simon, H.U. Necroptosis and neutrophil-associated disorders. Cell Death Dis., 2018, 9(2), 111.
[http://dx.doi.org/10.1038/s41419-017-0058-8] [PMID: 29371616]
[131]
Linkermann, A.; Green, D.R. Necroptosis. N. Engl. J. Med., 2014, 370(5), 455-465.
[http://dx.doi.org/10.1056/NEJMra1310050] [PMID: 24476434]
[132]
Ofengeim, D.; Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol., 2013, 14(11), 727-736.
[http://dx.doi.org/10.1038/nrm3683] [PMID: 24129419]
[133]
Rickard, J.A.; O’Donnell, J.A.; Evans, J.M.; Lalaoui, N.; Poh, A.R.; Rogers, T.; Vince, J.E.; Lawlor, K.E.; Ninnis, R.L.; Anderton, H.; Hall, C.; Spall, S.K.; Phesse, T.J.; Abud, H.E.; Cengia, L.H.; Corbin, J.; Mifsud, S.; Di Rago, L.; Metcalf, D.; Ernst, M.; Dewson, G.; Roberts, A.W.; Alexander, W.S.; Murphy, J.M.; Ekert, P.G.; Masters, S.L.; Vaux, D.L.; Croker, B.A.; Gerlic, M.; Silke, J. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell, 2014, 157(5), 1175-1188.
[http://dx.doi.org/10.1016/j.cell.2014.04.019] [PMID: 24813849]
[134]
Yuan, S.; Yu, Z.; Zhang, Z.; Zhang, J.; Zhang, P.; Li, X.; Li, H.; Shen, H.; Chen, G. RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiol. Dis., 2019, 129, 144-158.
[http://dx.doi.org/10.1016/j.nbd.2019.05.004] [PMID: 31082470]
[135]
Xu, H.; Cai, Y.; Yu, M.; Sun, J.; Cai, J.; Li, J.; Qin, B.; Ying, G.; Chen, T.; Shen, Y.; Jie, L.; Xu, D.; Gu, C.; Wang, C.; Hu, X.; Chen, J.; Wang, L.; Chen, G. Celastrol protects against early brain injury after subarachnoid hemorrhage in rats through alleviating blood-brain barrier disruption and blocking necroptosis. Aging (Albany NY), 2021, 13(12), 16816-16833.
[http://dx.doi.org/10.18632/aging.203221] [PMID: 34182541]
[136]
Chen, T.; Pan, H.; Li, J.; Xu, H.; Jin, H.; Qian, C.; Yan, F.; Chen, J.; Wang, C.; Chen, J.; Wang, L.; Chen, G. Inhibiting of RIPK3 attenuates early brain injury following subarachnoid hemorrhage: Possibly through alleviating necroptosis. Biomed. Pharmacother., 2018, 107, 563-570.
[http://dx.doi.org/10.1016/j.biopha.2018.08.056] [PMID: 30114640]
[137]
Chen, J.; Jin, H.; Xu, H.; Peng, Y.; Jie, L.; Xu, D.; Chen, L.; Li, T.; Fan, L.; He, P.; Ying, G.; Gu, C.; Wang, C.; Wang, L.; Chen, G. The neuroprotective effects of necrostatin-1 on subarachnoid hemorrhage in rats are possibly mediated by preventing blood-brain barrier disruption and RIP3-mediated necroptosis. Cell Transplant., 2019, 28(11), 1358-1372.
[http://dx.doi.org/10.1177/0963689719867285] [PMID: 31370690]
[138]
Chen, F.; Su, X.; Lin, Z.; Lin, Y.; Yu, L.; Cai, J.; Kang, D.; Hu, L. Necrostatin-1 attenuates early brain injury after subarachnoid hemorrhage in rats by inhibiting necroptosis. Neuropsychiatr. Dis. Treat., 2017, 13, 1771-1782.
[http://dx.doi.org/10.2147/NDT.S140801] [PMID: 28744127]
[139]
Galluzzi, L.; Kepp, O.; Chan, F.K.; Kroemer, G. Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol., 2017, 12(1), 103-130.
[http://dx.doi.org/10.1146/annurev-pathol-052016-100247] [PMID: 27959630]
[140]
Wang, P.; Shao, B.Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.Y. Autophagy in ischemic stroke. Prog. Neurobiol., 2018, 163-164, 98-117.
[http://dx.doi.org/10.1016/j.pneurobio.2018.01.001] [PMID: 29331396]
[141]
Mizushima, N.; Levine, B. Autophagy in human diseases. N. Engl. J. Med., 2020, 383(16), 1564-1576.
[http://dx.doi.org/10.1056/NEJMra2022774] [PMID: 33053285]
[142]
Levine, B.; Kroemer, G. Biological functions of autophagy genes: A disease perspective. Cell, 2019, 176(1-2), 11-42.
[http://dx.doi.org/10.1016/j.cell.2018.09.048] [PMID: 30633901]
[143]
Allan, L.A.; Clarke, P.R. Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. FEBS J., 2009, 276(21), 6063-6073.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07330.x] [PMID: 19788417]
[144]
Booth, L.A.; Tavallai, S.; Hamed, H.A.; Cruickshanks, N.; Dent, P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell. Signal., 2014, 26(3), 549-555.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.028] [PMID: 24308968]
[145]
Wu, H.; Che, X.; Zheng, Q.; Wu, A.; Pan, K.; Shao, A.; Wu, Q.; Zhang, J.; Hong, Y. Caspases: A molecular switch node in the crosstalk between autophagy and apoptosis. Int. J. Biol. Sci., 2014, 10(9), 1072-1083.
[http://dx.doi.org/10.7150/ijbs.9719] [PMID: 25285039]
[146]
Norman, J.M.; Cohen, G.M.; Bampton, E.T. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy, 2010, 6(8), 1042-1056.
[http://dx.doi.org/10.4161/auto.6.8.13337] [PMID: 21121091]
[147]
Zhu, Y.; Zhao, L.; Liu, L.; Gao, P.; Tian, W.; Wang, X.; Jin, H.; Xu, H.; Chen, Q. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell, 2010, 1(5), 468-477.
[http://dx.doi.org/10.1007/s13238-010-0048-4] [PMID: 21203962]
[148]
Pagliarini, V.; Wirawan, E.; Romagnoli, A.; Ciccosanti, F.; Lisi, G.; Lippens, S.; Cecconi, F.; Fimia, G.M.; Vandenabeele, P.; Corazzari, M.; Piacentini, M. Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ., 2012, 19(9), 1495-1504.
[http://dx.doi.org/10.1038/cdd.2012.27] [PMID: 22441670]
[149]
Oral, O.; Akkoc, Y.; Bayraktar, O.; Gozuacik, D. Physiological and pathological significance of the molecular cross-talk between autophagy and apoptosis. Histol. Histopathol., 2016, 31(5), 479-498.
[PMID: 26680630]
[150]
Wirawan, E.; Vande Walle, L.; Kersse, K.; Cornelis, S.; Claerhout, S.; Vanoverberghe, I.; Roelandt, R.; De Rycke, R.; Verspurten, J.; Declercq, W.; Agostinis, P.; Vanden Berghe, T.; Lippens, S.; Vandenabeele, P. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis., 2010, 1(1), e18.
[http://dx.doi.org/10.1038/cddis.2009.16] [PMID: 21364619]
[151]
Betin, V.M.; Lane, J.D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci., 2009, 122(Pt 14), 2554-2566.
[http://dx.doi.org/10.1242/jcs.046250] [PMID: 19549685]
[152]
Sun, Q.; Gao, W.; Loughran, P.; Shapiro, R.; Fan, J.; Billiar, T.R.; Scott, M.J. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress. J. Biol. Chem., 2013, 288(22), 15947-15958.
[http://dx.doi.org/10.1074/jbc.M112.426791] [PMID: 23589298]
[153]
Han, J.; Hou, W.; Goldstein, L.A.; Stolz, D.B.; Watkins, S.C.; Rabinowich, H. A Complex between Atg7 and Caspase-9: A novel mechanism of cross-regulation between autophagy and apoptosis. J. Biol. Chem., 2014, 289(10), 6485-6497.
[http://dx.doi.org/10.1074/jbc.M113.536854] [PMID: 24362031]
[154]
Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun., 2005, 73(4), 1907-1916.
[http://dx.doi.org/10.1128/IAI.73.4.1907-1916.2005] [PMID: 15784530]
[155]
Tiwari, M.; Lopez-Cruzan, M.; Morgan, W.W.; Herman, B. Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J. Biol. Chem., 2011, 286(10), 8493-8506.
[http://dx.doi.org/10.1074/jbc.M110.163824] [PMID: 21216964]
[156]
Tiwari, M.; Sharma, L.K.; Vanegas, D.; Callaway, D.A.; Bai, Y.; Lechleiter, J.D.; Herman, B. A nonapoptotic role for CASP2/caspase 2: Modulation of autophagy. Autophagy, 2014, 10(6), 1054-1070.
[http://dx.doi.org/10.4161/auto.28528] [PMID: 24879153]
[157]
Young, M.M.; Takahashi, Y.; Khan, O.; Park, S.; Hori, T.; Yun, J.; Sharma, A.K.; Amin, S.; Hu, C.D.; Zhang, J.; Kester, M.; Wang, H.G. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem., 2012, 287(15), 12455-12468.
[http://dx.doi.org/10.1074/jbc.M111.309104] [PMID: 22362782]
[158]
Huang, S.; Okamoto, K.; Yu, C.; Sinicrope, F.A. p62/sequestosome-1 up-regulation promotes ABT-263-induced caspase-8 aggregation/activation on the autophagosome. J. Biol. Chem., 2013, 288(47), 33654-33666.
[http://dx.doi.org/10.1074/jbc.M113.518134] [PMID: 24121507]
[159]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[160]
Zhao, H.; Ji, Z.; Tang, D.; Yan, C.; Zhao, W.; Gao, C. Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol. Biol. Rep., 2013, 40(2), 819-827.
[http://dx.doi.org/10.1007/s11033-012-2120-z] [PMID: 23054025]
[161]
Sun, C.M.; Enkhjargal, B.; Reis, C.; Zhou, K.R.; Xie, Z.Y.; Wu, L.Y.; Zhang, T.Y.; Zhu, Q.Q.; Tang, J.P.; Jiang, X.D.; Zhang, J.H. Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci. Ther., 2019, 25(10), 1162-1172.
[http://dx.doi.org/10.1111/cns.13199] [PMID: 31436915]
[162]
Li, J.R.; Xu, H.Z.; Nie, S.; Peng, Y.C.; Fan, L.F.; Wang, Z.J.; Wu, C.; Yan, F.; Chen, J.Y.; Gu, C.; Wang, C.; Chen, J.S.; Wang, L.; Chen, G. Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subrachnoid hemorrhage in rats. J. Neuroinflammation, 2017, 14(1), 186.
[http://dx.doi.org/10.1186/s12974-017-0959-6] [PMID: 28903766]
[163]
Chen, J.; Wang, L.; Wu, C.; Hu, Q.; Gu, C.; Yan, F.; Li, J.; Yan, W.; Chen, G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J. Pineal Res., 2014, 56(1), 12-19.
[http://dx.doi.org/10.1111/jpi.12086] [PMID: 24033352]
[164]
Ribe, E.M.; Serrano-Saiz, E.; Akpan, N.; Troy, C.M. Mechanisms of neuronal death in disease: Defining the models and the players. Biochem. J., 2008, 415(2), 165-182.
[http://dx.doi.org/10.1042/BJ20081118] [PMID: 18800967]
[165]
Akpan, N.; Serrano-Saiz, E.; Zacharia, B.E.; Otten, M.L.; Ducruet, A.F.; Snipas, S.J.; Liu, W.; Velloza, J.; Cohen, G.; Sosunov, S.A.; Frey, W.H., II; Salvesen, G.S.; Connolly, E.S., Jr; Troy, C.M. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J. Neurosci., 2011, 31(24), 8894-8904.
[http://dx.doi.org/10.1523/JNEUROSCI.0698-11.2011] [PMID: 21677173]
[166]
Ooboshi, H. Gene therapy as a novel pharmaceutical intervention for stroke. Curr. Pharm. Des., 2011, 17(5), 424-433.
[http://dx.doi.org/10.2174/138161211795164149] [PMID: 21375487]
[167]
Markosyan, V.; Safiullov, Z.; Izmailov, A.; Fadeev, F.; Sokolov, M.; Kuznetsov, M.; Trofimov, D.; Kim, E.; Kundakchyan, G.; Gibadullin, A.; Salafutdinov, I.; Nurullin, L.; Bashirov, F.; Islamov, R. Preventive triple gene therapy reduces the negative consequences of ischemia-induced brain injury after modelling stroke in a rat. Int. J. Mol. Sci., 2020, 21(18), E6858.
[http://dx.doi.org/10.3390/ijms21186858] [PMID: 32962079]
[168]
Ghasemi, S.; Alavian, K.; Alavian, F. Nanoparticle-based gene therapy intervention for stroke treatment: A systematic review. Curr. Gene Ther., 2020, 20(5), 373-382.
[http://dx.doi.org/10.2174/1566523220666201012150130] [PMID: 33045966]
[169]
Shabanzadeh, A.P.; D’Onofrio, P.M.; Monnier, P.P.; Koeberle, P.D. Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke. Cell Death Dis., 2015, 6(11), e1967.
[http://dx.doi.org/10.1038/cddis.2015.272] [PMID: 26539914]
[170]
Torres-Ruiz, R.; Rodriguez-Perales, S. CRISPR-Cas9: A revolutionary tool for cancer modelling. Int. J. Mol. Sci., 2015, 16(9), 22151-22168.
[http://dx.doi.org/10.3390/ijms160922151] [PMID: 26389881]
[171]
Heidenreich, M.; Zhang, F. Applications of CRISPR-Cas systems in neuroscience. Nat. Rev. Neurosci., 2016, 17(1), 36-44.
[http://dx.doi.org/10.1038/nrn.2015.2] [PMID: 26656253]
[172]
Wu, W.; Guan, Y.; Zhao, G.; Fu, X.J.; Guo, T.Z.; Liu, Y.T.; Ren, X.L.; Wang, W.; Liu, H.R.; Li, Y.Q. Elevated IL-6 and TNF-α levels in cerebrospinal fluid of subarachnoid hemorrhage patients. Mol. Neurobiol., 2016, 53(5), 3277-3285.
[http://dx.doi.org/10.1007/s12035-015-9268-1] [PMID: 26063595]
[173]
Ma, L.; Jiang, Y.; Dong, Y.; Gao, J.; Du, B.; Liu, D. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk. Neuropsychiatr. Dis. Treat., 2018, 14, 525-536.
[http://dx.doi.org/10.2147/NDT.S154809] [PMID: 29497296]
[174]
de Torres, R.; Mancha, F.; Bustamante, A.; Canhao, P.; Fragata, I.; Montaner, J. Usefulness of TNFR1 as biomarker of intracranial aneurysm in patients with spontaneous subarachnoid hemorrhage. Future Sci. OA, 2019, 6(1), FSO431.
[http://dx.doi.org/10.2144/fsoa-2019-0090] [PMID: 31915532]
[175]
Fragata, I.; Bustamante, A.; Penalba, A.; Ferreira, P.; Nunes, A.P.; Canhão, P.; Montaner, J. Venous and arterial TNF-R1 predicts outcome and complications in acute subarachnoid hemorrhage. Neurocrit. Care, 2019, 31(1), 107-115.
[http://dx.doi.org/10.1007/s12028-019-00669-9] [PMID: 30673997]
[176]
Fan, W.; Dai, Y.; Xu, H.; Zhu, X.; Cai, P.; Wang, L.; Sun, C.; Hu, C.; Zheng, P.; Zhao, B.Q. Caspase-3 modulates regenerative response after stroke. Stem Cells, 2014, 32(2), 473-486.
[http://dx.doi.org/10.1002/stem.1503] [PMID: 23939807]
[177]
Sun, Y.; Xu, Y.; Geng, L. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction. Exp. Ther. Med., 2015, 10(1), 133-138.
[http://dx.doi.org/10.3892/etm.2015.2462] [PMID: 26170924]
[178]
Li, Q.; Dai, Z.; Cao, Y.; Wang, L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem. Biophys. Res. Commun., 2019, 513(2), 479-485.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.202] [PMID: 30979498]
[179]
Garcia-Tsao, G.; Fuchs, M.; Shiffman, M.; Borg, B.B.; Pyrsopoulos, N.; Shetty, K.; Gallegos-Orozco, J.F.; Reddy, K.R.; Feyssa, E.; Chan, J.L.; Yamashita, M.; Robinson, J.M.; Spada, A.P.; Hagerty, D.T.; Bosch, J. Emricasan (IDN-6556) lowers portal pressure in patients with compensated cirrhosis and severe portal hypertension. Hepatology, 2019, 69(2), 717-728.
[http://dx.doi.org/10.1002/hep.30199] [PMID: 30063802]
[180]
Mehta, G.; Rousell, S.; Burgess, G.; Morris, M.; Wright, G.; McPherson, S.; Frenette, C.; Cave, M.; Hagerty, D.T.; Spada, A.; Jalan, R. A placebo-controlled, multicenter, double-blind, phase 2 randomized trial of the pan-caspase inhibitor emricasan in patients with acutely decompensated cirrhosis. J. Clin. Exp. Hepatol., 2018, 8(3), 224-234.
[http://dx.doi.org/10.1016/j.jceh.2017.11.006] [PMID: 30302038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy