Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens

Author(s): Sarmistha Mitra, Raju Dash, Md. Sohel, Apusi Chowdhury, Yeasmin Akter Munni, Md. Chayan Ali, Md. Abdul Hannan, Md. Tofazzal Islam and Il Soo Moon*

Volume 21, Issue 2, 2023

Published on: 25 August, 2022

Page: [353 - 379] Pages: 27

DOI: 10.2174/1570159X20666220310115004

Price: $65

Abstract

Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.

Keywords: Radiation, Brain, Neurodegeneration, Estrogen, Phytoestrogen, Radiation therapy

Graphical Abstract

[1]
Dash, R.; Ali, M.C.; Jahan, I.; Munni, Y.A.; Mitra, S.; Hannan, M.A.; Timalsina, B.; Oktaviani, D.F.; Choi, H.J.; Moon, I.S. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res. Rev., 2021, 65, 101209.
[http://dx.doi.org/10.1016/j.arr.2020.101209] [PMID: 33181336]
[2]
Dash, R.; Mitra, S.; Ali, M.C.; Oktaviani, D.F.; Hannan, M.A.; Choi, S.M.; Moon, I.S. Phytosterols: Targeting neuroinflammation in neurodegeneration. Curr. Pharm. Des., 2021, 27(3), 383-401.
[http://dx.doi.org/10.2174/1381612826666200628022812] [PMID: 32600224]
[3]
Hannan, M.A.; Dash, R.; Sohag, A.A.M.; Haque, M.N.; Moon, I.S. Neuroprotection against oxidative stress: Phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system. Front. Mol. Neurosci., 2020, 13, 116.
[http://dx.doi.org/10.3389/fnmol.2020.00116] [PMID: 32714148]
[4]
Hannan, M.A.; Sohag, A.A.M.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Oktaviani, D.F.; Hossain, T.; Choi, H.J.; Moon, I.I.S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine, 2020, 69, 153201.
[http://dx.doi.org/10.1016/j.phymed.2020.153201] [PMID: 32276177]
[5]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[6]
Gilbert, E.S. Ionising radiation and cancer risks: What have we learned from epidemiology? Int. J. Radiat. Biol., 2009, 85(6), 467-482.
[http://dx.doi.org/10.1080/09553000902883836] [PMID: 19401906]
[7]
Durazzo, T.C.; Mattsson, N.; Weiner, M.W. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement., 2014, 10(3)(Suppl.), S122-S145.
[http://dx.doi.org/10.1016/j.jalz.2014.04.009] [PMID: 24924665]
[8]
Spagnuolo, C.; Napolitano, M.; Tedesco, I.; Moccia, S.; Milito, A.; Russo, G.L. Neuroprotective role of natural polyphenols. Curr. Top. Med. Chem., 2016, 16(17), 1943-1950.
[http://dx.doi.org/10.2174/1568026616666160204122449] [PMID: 26845551]
[9]
Kempf, S.J.; Azimzadeh, O.; Atkinson, M.J.; Tapio, S. Long-term effects of ionising radiation on the brain: Cause for concern? Radiat. Environ. Biophys., 2013, 52(1), 5-16.
[http://dx.doi.org/10.1007/s00411-012-0436-7] [PMID: 23100112]
[10]
Donya, M.; Radford, M.; ElGuindy, A.; Firmin, D.; Yacoub, M.H. Radiation in medicine: Origins, risks and aspirations. Glob. Cardiol. Sci. Pract., 2014, 2014(4), 437-448.
[http://dx.doi.org/10.5339/gcsp.2014.57] [PMID: 25780797]
[11]
Timins, J.K. Communication of benefits and risks of medical radiation: A historical perspective. Health Phys., 2011, 101(5), 562-565.
[http://dx.doi.org/10.1097/HP.0b013e3182259a71] [PMID: 21979541]
[12]
Hoheisel, M. Review of medical imaging with emphasis on X-ray detectors. Nucl. Instrum. Methods Phys. Res. A, 2006, 563(1), 215-224.
[http://dx.doi.org/10.1016/j.nima.2006.01.123]
[13]
Villarraga-Gómez, H.; Herazo, E.L.; Smith, S.T. X-ray computed tomography: From medical imaging to dimensional metrology. Precis. Eng., 2019, 60, 544-569.
[http://dx.doi.org/10.1016/j.precisioneng.2019.06.007]
[14]
Fass, L. Imaging and cancer: A review. Mol. Oncol., 2008, 2(2), 115-152.
[http://dx.doi.org/10.1016/j.molonc.2008.04.001] [PMID: 19383333]
[15]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K-W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[16]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[17]
Ramamoorthy, N. Impact of nuclear medicine and radiopharmaceuticals on health-care delivery: Advances, lessons, and need for an objective value-matrix. Indian J. Nucl. Med., 2018, 33(4), 273-276.
[http://dx.doi.org/10.4103/ijnm.IJNM_56_18] [PMID: 30386046]
[18]
Hacker, M.; Beyer, T.; Baum, R.P.; Kalemis, A.; Lammertsma, A.A.; Lewington, V.; Talbot, J.N.; Verzijlbergen, F. Nuclear medicine innovations help (drive) healthcare (benefits). Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 173-175.
[http://dx.doi.org/10.1007/s00259-014-2957-6] [PMID: 25416634]
[19]
Holmberg, O.; Czarwinski, R.; Mettler, F. The importance and unique aspects of radiation protection in medicine. Eur. J. Radiol., 2010, 76(1), 6-10.
[http://dx.doi.org/10.1016/j.ejrad.2010.06.031] [PMID: 20638808]
[20]
Schulz, R.J.; Albert, R.E. Follow-up study of patients treated by x-ray epilation for tinea capitis. 3. Dose to organs of the head from the x-ray treatment of tinea capitis. Arch. Environ. Health, 1968, 17(6), 935-950.
[http://dx.doi.org/10.1080/00039896.1968.10665350] [PMID: 5699301]
[21]
Acharya, M.M.; Patel, N.H.; Craver, B.M.; Tran, K.K.; Giedzinski, E.; Tseng, B.P.; Parihar, V.K.; Limoli, C.L. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment. PLoS One, 2015, 10(6), e0128316.
[http://dx.doi.org/10.1371/journal.pone.0128316] [PMID: 26042591]
[22]
Greene-Schloesser, D.; Robbins, M.E.; Peiffer, A.M.; Shaw, E.G.; Wheeler, K.T.; Chan, M.D. Radiation-induced brain injury: A review. Front. Oncol., 2012, 2, 73.
[http://dx.doi.org/10.3389/fonc.2012.00073] [PMID: 22833841]
[23]
Giusti, A.M.; Raimondi, M.; Ravagnan, G.; Sapora, O.; Parasassi, T. Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation: A fluorescence spectroscopy study. Int. J. Radiat. Biol., 1998, 74(5), 595-605.
[http://dx.doi.org/10.1080/095530098141177] [PMID: 9848278]
[24]
Azzam, E.I.; de Toledo, S.M.; Little, J.B. Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Res., 2003, 63(21), 7128-7135.
[PMID: 14612506]
[25]
Dayal, D.; Martin, S.M.; Owens, K.M.; Aykin-Burns, N.; Zhu, Y.; Boominathan, A.; Pain, D.; Limoli, C.L.; Goswami, P.C.; Domann, F.E.; Spitz, D.R. Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation. Radiat. Res., 2009, 172(6), 737-745.
[http://dx.doi.org/10.1667/RR1617.1] [PMID: 19929420]
[26]
Sharma, N.K.; Sharma, R.; Mathur, D.; Sharad, S.; Minhas, G.; Bhatia, K.; Anand, A.; Ghosh, S.P. Role of ionizing radiation in neurodegenerative diseases. Front. Aging Neurosci., 2018, 10, 134.
[http://dx.doi.org/10.3389/fnagi.2018.00134] [PMID: 29867445]
[27]
Shaw, E.G.; Rosdhal, R.; D’Agostino, R.B., Jr; Lovato, J.; Naughton, M.J.; Robbins, M.E.; Rapp, S.R. Phase II study of donepezil in irradiated brain tumor patients: Effect on cognitive function, mood, and quality of life. J. Clin. Oncol., 2006, 24(9), 1415-1420.
[http://dx.doi.org/10.1200/JCO.2005.03.3001] [PMID: 16549835]
[28]
Rapp, S.R.; Case, L.D.; Peiffer, A.; Naughton, M.M.; Chan, M.D.; Stieber, V.W.; Moore, D.F., Jr; Falchuk, S.C.; Piephoff, J.V.; Edenfield, W.J.; Giguere, J.K.; Loghin, M.E.; Shaw, E.G. Donepezil for irradiated brain tumor survivors: A phase III randomized placebo-controlled clinical trial. J. Clin. Oncol., 2015, 33(15), 1653-1659.
[http://dx.doi.org/10.1200/JCO.2014.58.4508] [PMID: 25897156]
[29]
Kabat, G.C.; Etgen, A.M.; Rohan, T.E. Do steroid hormones play a role in the etiology of glioma? Cancer Epidemiol. Biomarkers Prev., 2010, 19(10), 2421-2427.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0658] [PMID: 20841389]
[30]
Ström, A.; Hartman, J.; Foster, J.S.; Kietz, S.; Wimalasena, J.; Gustafsson, J.A. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl. Acad. Sci. USA, 2004, 101(6), 1566-1571.
[http://dx.doi.org/10.1073/pnas.0308319100] [PMID: 14745018]
[31]
Hartman, J.; Edvardsson, K.; Lindberg, K.; Zhao, C.; Williams, C.; Ström, A.; Gustafsson, J.A. Tumor repressive functions of estrogen receptor beta in SW480 colon cancer cells. Cancer Res., 2009, 69(15), 6100-6106.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0506] [PMID: 19602591]
[32]
Liu, J.; Sareddy, G.R.; Zhou, M.; Viswanadhapalli, S.; Li, X.; Lai, Z.; Tekmal, R.R.; Brenner, A.; Vadlamudi, R.K. Differential effects of estrogen receptor β isoforms on glioblastoma progression. Cancer Res., 2018, 78(12), 3176-3189.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3470] [PMID: 29661831]
[33]
Sareddy, G.R.; Nair, B.C.; Gonugunta, V.K.; Zhang, Q.G.; Brenner, A.; Brann, D.W.; Tekmal, R.R.; Vadlamudi, R.K. Therapeutic significance of estrogen receptor β agonists in gliomas. Mol. Cancer Ther., 2012, 11(5), 1174-1182.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0960] [PMID: 22442308]
[34]
Zhou, M.; Sareddy, G.R.; Li, M.; Liu, J.; Luo, Y.; Venkata, P.P.; Viswanadhapalli, S.; Tekmal, R.R.; Brenner, A.; Vadlamudi, R.K. Estrogen receptor beta enhances chemotherapy response of GBM cells by down regulating DNA damage response pathways. Sci. Rep., 2019, 9(1), 6124.
[http://dx.doi.org/10.1038/s41598-019-42313-8] [PMID: 30992459]
[35]
Bellanti, F.; Matteo, M.; Rollo, T.; De Rosario, F.; Greco, P.; Vendemiale, G.; Serviddio, G. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox Biol., 2013, 1(1), 340-346.
[http://dx.doi.org/10.1016/j.redox.2013.05.003] [PMID: 24024169]
[36]
Rekkas, P.V.; Wilson, A.A.; Lee, V.W.; Yogalingam, P.; Sacher, J.; Rusjan, P.; Houle, S.; Stewart, D.E.; Kolla, N.J.; Kish, S.; Chiuccariello, L.; Meyer, J.H. Greater monoamine oxidase a binding in perimenopausal age as measured with carbon 11-labeled harmine positron emission tomography. JAMA Psychiatry, 2014, 71(8), 873-879.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.250] [PMID: 24898155]
[37]
Singh, M.; Meyer, E.M.; Simpkins, J.W. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology, 1995, 136(5), 2320-2324.
[http://dx.doi.org/10.1210/endo.136.5.7720680] [PMID: 7720680]
[38]
Solum, D.T.; Handa, R.J. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J. Neurosci., 2002, 22(7), 2650-2659.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02650.2002] [PMID: 11923430]
[39]
Wallace, M.; Luine, V.; Arellanos, A.; Frankfurt, M. Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res., 2006, 1126(1), 176-182.
[http://dx.doi.org/10.1016/j.brainres.2006.07.064] [PMID: 16934233]
[40]
Luine, V.; Frankfurt, M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience, 2013, 239, 34-45.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.019] [PMID: 23079626]
[41]
Bálentová, S.; Hnilicová, P.; Kalenská, D.; Murín, P.; Hajtmanová, E.; Lehotský, J.; Adamkov, M. Effect of whole-brain irradiation on the specific brain regions in a rat model: Metabolic and histopathological changes. Neurotoxicol., 2017, 60, 70-81.
[http://dx.doi.org/10.1016/j.neuro.2017.03.005] [PMID: 28330762]
[42]
Sundgren, P.C.; Cao, Y. Brain irradiation: Effects on normal brain parenchyma and radiation injury. Neuroimaging Clin. N. Am., 2009, 19(4), 657-668.
[http://dx.doi.org/10.1016/j.nic.2009.08.014] [PMID: 19959011]
[43]
Armstrong, C.L.; Gyato, K.; Awadalla, A.W.; Lustig, R.; Tochner, Z.A. A critical review of the clinical effects of therapeutic irradiation damage to the brain: The roots of controversy. Neuropsychol. Rev., 2004, 14(1), 65-86.
[http://dx.doi.org/10.1023/B:NERV.0000026649.68781.8e] [PMID: 15260139]
[44]
Cheng, H.; Chen, H.; Lv, Y.; Chen, Z.; Li, C.R. Prospective memory impairment following whole brain radiotherapy in patients with metastatic brain cancer. Cancer Med., 2018, 7(10), 5315-5321.
[http://dx.doi.org/10.1002/cam4.1784] [PMID: 30259694]
[45]
Klein, M.; Heimans, J.J.; Aaronson, N.K.; van der Ploeg, H.M.; Grit, J.; Muller, M.; Postma, T.J.; Mooij, J.J.; Boerman, R.H.; Beute, G.N.; Ossenkoppele, G.J.; van Imhoff, G.W.; Dekker, A.W.; Jolles, J.; Slotman, B.J.; Struikmans, H.; Taphoorn, M.J. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: A comparative study. Lancet, 2002, 360(9343), 1361-1368.
[http://dx.doi.org/10.1016/S0140-6736(02)11398-5] [PMID: 12423981]
[46]
Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K. Subacute brain atrophy after radiation therapy for malignant brain tumor. Cancer, 1989, 63(10), 1962-1974.
[http://dx.doi.org/10.1002/1097-0142(19890515)63:10<1962:AID-CNCR2820631016>3.0.CO;2-V] [PMID: 2702569]
[47]
Akiyama, K.; Tanaka, R.; Sato, M.; Takeda, N. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation. Neurol. Med. Chir. (Tokyo), 2001, 41(12), 590-598.
[http://dx.doi.org/10.2176/nmc.41.590] [PMID: 11803584]
[48]
Zhou, H.; Liu, Z.; Liu, J.; Wang, J.; Zhou, D.; Zhao, Z.; Xiao, S.; Tao, E.; Suo, W.Z. Fractionated radiation-induced acute encephalopathy in a young rat model: Cognitive dysfunction and histologic findings. AJNR Am. J. Neuroradiol., 2011, 32(10), 1795-1800.
[http://dx.doi.org/10.3174/ajnr.A2643] [PMID: 21920857]
[49]
Welzel, G.; Fleckenstein, K.; Schaefer, J.; Hermann, B.; Kraus-Tiefenbacher, U.; Mai, S.K.; Wenz, F. Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(5), 1311-1318.
[http://dx.doi.org/10.1016/j.ijrobp.2008.03.009] [PMID: 18448270]
[50]
Wu, X.; Gu, M.; Zhou, G.; Xu, X.; Wu, M.; Huang, H. Cognitive and neuropsychiatric impairment in cerebral radionecrosis patients after radiotherapy of nasopharyngeal carcinoma. BMC Neurol., 2014, 14(1), 10.
[http://dx.doi.org/10.1186/1471-2377-14-10] [PMID: 24418214]
[51]
Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: Stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(s2)(Suppl. 2), S357-S367.
[http://dx.doi.org/10.3233/JAD-2010-100498] [PMID: 20421690]
[52]
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature, 2016, 539(7628), 180-186.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[53]
Castelli, V.; Benedetti, E.; Antonosante, A.; Catanesi, M.; Pitari, G.; Ippoliti, R.; Cimini, A.; d’Angelo, M. Neuronal cells rearrangement during aging and neurodegenerative disease: Metabolism, oxidative stress and organelles dynamic. Front. Mol. Neurosci., 2019, 12, 132.
[http://dx.doi.org/10.3389/fnmol.2019.00132] [PMID: 31191244]
[54]
Schapira, A.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol., 2008, 7(1), 97-109.
[http://dx.doi.org/10.1016/S1474-4422(07)70327-7] [PMID: 18093566]
[55]
Anandatheerthavarada, H.K.; Biswas, G.; Robin, M-A.; Avadhani, N.G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol., 2003, 161(1), 41-54.
[http://dx.doi.org/10.1083/jcb.200207030] [PMID: 12695498]
[56]
Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett., 2018, 592(5), 728-742.
[http://dx.doi.org/10.1002/1873-3468.12956] [PMID: 29281123]
[57]
Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.M.; Rahman, M.A.; Uddin, M.J.; Alam, M.; Moon, I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs, 2020, 18(7), E347.
[http://dx.doi.org/10.3390/md18070347] [PMID: 32630301]
[58]
Burgio, E.; Piscitelli, P.; Migliore, L. Ionizing radiation and human health: Reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective. Int. J. Environ. Res. Public Health, 2018, 15(9), 1971.
[http://dx.doi.org/10.3390/ijerph15091971] [PMID: 30201914]
[59]
Spinks, J.W.T.; Woods, R.J. An introduction to radiation chemistry; John Wiley and Sons Inc: United States, 1990.
[60]
Mikkelsen, R.B.; Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene, 2003, 22(37), 5734-5754.
[http://dx.doi.org/10.1038/sj.onc.1206663] [PMID: 12947383]
[61]
Jay-Gerin, J-P.; Ferradini, C. Are there protective enzymatic pathways to regulate high local Nitric Oxide (NO) concentrations in cells under stress conditions? Biochimie, 2000, 82(2), 161-166.
[http://dx.doi.org/10.1016/S0300-9084(00)00062-6] [PMID: 10727772]
[62]
Goodhead, D.T. The initial physical damage produced by ionizing radiations. Int. J. Radiat. Biol., 1989, 56(5), 623-634.
[http://dx.doi.org/10.1080/09553008914551841] [PMID: 2573657]
[63]
Mehta, N.J.; Marwah, P.K.; Njus, D. Are proteinopathy and oxidative stress two sides of the same coin? Cells, 2019, 8(1), E59.
[http://dx.doi.org/10.3390/cells8010059] [PMID: 30654525]
[64]
Lévy, E.; El Banna, N.; Baïlle, D.; Heneman-Masurel, A.; Truchet, S.; Rezaei, H.; Huang, M.E.; Béringue, V.; Martin, D.; Vernis, L. Causative links between protein aggregation and oxidative stress: A review. Int. J. Mol. Sci., 2019, 20(16), 3896.
[http://dx.doi.org/10.3390/ijms20163896] [PMID: 31405050]
[65]
Squier, T.C. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol., 2001, 36(9), 1539-1550.
[http://dx.doi.org/10.1016/S0531-5565(01)00139-5] [PMID: 11525876]
[66]
Ganguly, G.; Chakrabarti, S.; Chatterjee, U.; Saso, L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des. Devel. Ther., 2017, 11, 797-810.
[http://dx.doi.org/10.2147/DDDT.S130514] [PMID: 28352155]
[67]
Aivazidis, S.; Anderson, C.C.; Roede, J.R. Toxicant-mediated redox control of proteostasis in neurodegeneration. Curr. Opin. Toxicol., 2019, 13, 22-34.
[http://dx.doi.org/10.1016/j.cotox.2018.12.007] [PMID: 31602419]
[68]
Grimm, S.; Höhn, A.; Grune, T. Oxidative protein damage and the proteasome. Amino Acids, 2012, 42(1), 23-38.
[http://dx.doi.org/10.1007/s00726-010-0646-8] [PMID: 20556625]
[69]
Hawkins, C.L.; Davies, M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta, 2001, 1504(2-3), 196-219.
[http://dx.doi.org/10.1016/S0005-2728(00)00252-8] [PMID: 11245785]
[70]
Baraibar, M.A.; Liu, L.; Ahmed, E.K.; Friguet, B. Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases. Oxid. Med. Cell. Longev., 2012, 2012, 919832.
[http://dx.doi.org/10.1155/2012/919832] [PMID: 23125894]
[71]
Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 1997, 272(33), 20313-20316.
[http://dx.doi.org/10.1074/jbc.272.33.20313] [PMID: 9252331]
[72]
Dash, R.; Jahan, I.; Ali, M.C.; Mitra, S.; Munni, Y.A.; Timalsina, B.; Hannan, M.A.; Moon, I.S. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem. Int., 2021, 145, 105011.
[http://dx.doi.org/10.1016/j.neuint.2021.105011] [PMID: 33711400]
[73]
Vendruscolo, M.; Knowles, T.P.J.; Dobson, C.M. Protein solubility and protein homeostasis: A generic view of protein misfolding disorders. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a010454.
[http://dx.doi.org/10.1101/cshperspect.a010454] [PMID: 21825020]
[74]
Ciechanover, A. Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract. Res. Clin. Haematol., 2017, 30(4), 341-355.
[http://dx.doi.org/10.1016/j.beha.2017.09.001] [PMID: 29156207]
[75]
Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem., 2017, 86, 193-224.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044908] [PMID: 28460188]
[76]
Boland, B.; Yu, W.H.; Corti, O.; Mollereau, B.; Henriques, A.; Bezard, E.; Pastores, G.M.; Rubinsztein, D.C.; Nixon, R.A.; Duchen, M.R.; Mallucci, G.R.; Kroemer, G.; Levine, B.; Eskelinen, E.L.; Mochel, F.; Spedding, M.; Louis, C.; Martin, O.R.; Millan, M.J. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2018, 17(9), 660-688.
[http://dx.doi.org/10.1038/nrd.2018.109] [PMID: 30116051]
[77]
Haeri, M.; Knox, B.E. Endoplasmic reticulum stress and unfolded protein response pathways: Potential for treating age-related retinal degeneration. J. Ophthalmic Vis. Res., 2012, 7(1), 45-59.
[PMID: 22737387]
[78]
Snapp, E.L. Unfolded protein responses with or without unfolded proteins? Cells, 2012, 1(4), 926-950.
[http://dx.doi.org/10.3390/cells1040926] [PMID: 24710536]
[79]
Labbadia, J.; Morimoto, R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem., 2015, 84(1), 435-464.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033955] [PMID: 25784053]
[80]
Scheper, W.; Hoozemans, J.J. The unfolded protein response in neurodegenerative diseases: A neuropathological perspective. Acta Neuropathol., 2015, 130(3), 315-331.
[http://dx.doi.org/10.1007/s00401-015-1462-8] [PMID: 26210990]
[81]
Feng, J.; Yang, Y.; Zhou, Y.; Wang, B.; Xiong, H.; Fan, C.; Jiang, S.; Liu, J.; Ma, Z.; Hu, W.; Li, T.; Feng, X.; Xu, J.; Jin, Z. Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function: The role of silent information regulator 1. Apoptosis, 2016, 21(5), 532-545.
[http://dx.doi.org/10.1007/s10495-016-1225-6] [PMID: 27000151]
[82]
Hetz, C.; Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol., 2017, 13(8), 477-491.
[http://dx.doi.org/10.1038/nrneurol.2017.99] [PMID: 28731040]
[83]
Fike, J.R.; Rola, R.; Limoli, C.L. Radiation response of neural precursor cells. Neurosurg. Clin. N. Am., 2007, 18(1), 115-127. x.
[http://dx.doi.org/10.1016/j.nec.2006.10.010] [PMID: 17244559]
[84]
Fike, J.R.; Rosi, S.; Limoli, C.L. Neural precursor cells and central nervous system radiation sensitivity. Semin. Radiat. Oncol., 2009, 19(2), 122-132.
[http://dx.doi.org/10.1016/j.semradonc.2008.12.003] [PMID: 19249650]
[85]
Tseng, B.P.; Giedzinski, E.; Izadi, A.; Suarez, T.; Lan, M.L.; Tran, K.K.; Acharya, M.M.; Nelson, G.A.; Raber, J.; Parihar, V.K.; Limoli, C.L. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid. Redox Signal., 2014, 20(9), 1410-1422.
[http://dx.doi.org/10.1089/ars.2012.5134] [PMID: 23802883]
[86]
Prithivirajsingh, S.; Story, M.D.; Bergh, S.A.; Geara, F.B.; Ang, K.K.; Ismail, S.M.; Stevens, C.W.; Buchholz, T.A.; Brock, W.A. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett., 2004, 571(1-3), 227-232.
[http://dx.doi.org/10.1016/j.febslet.2004.06.078] [PMID: 15280047]
[87]
Malakhova, L.; Bezlepkin, V.G.; Antipova, V.; Ushakova, T.; Fomenko, L.; Sirota, N.; Gaziev, A.I. The increase in mitochondrial DNA copy number in the tissues of gamma-irradiated mice. Cell. Mol. Biol. Lett., 2005, 10(4), 721-732.
[PMID: 16341280]
[88]
Kobashigawa, S.; Suzuki, K.; Yamashita, S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem. Biophys. Res. Commun., 2011, 414(4), 795-800.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.006] [PMID: 22005465]
[89]
Kwon, M.J.; Kim, J-H.; Kim, T.; Lee, S.B. Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacol. Res., 2017, 119, 169-177.
[http://dx.doi.org/10.1016/j.phrs.2017.02.003] [PMID: 28167240]
[90]
Wileman, T.; Kane, L.P.; Carson, G.R.; Terhorst, C. Depletion of cellular calcium accelerates protein degradation in the endoplasmic reticulum. J. Biol. Chem., 1991, 266(7), 4500-4507.
[http://dx.doi.org/10.1016/S0021-9258(20)64351-4] [PMID: 1825655]
[91]
Torres, M.; Encina, G.; Soto, C.; Hetz, C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Commun. Integr. Biol., 2011, 4(3), 258-261.
[http://dx.doi.org/10.4161/cib.4.3.15019] [PMID: 21980554]
[92]
Grzybowska, E.A. Calcium-binding proteins with disordered structure and their role in secretion, storage, and cellular signaling. Biomolecules, 2018, 8(2), E42.
[http://dx.doi.org/10.3390/biom8020042] [PMID: 29921816]
[93]
Bezprozvanny, I. Calcium signaling and neurodegenerative diseases. Trends Mol. Med., 2009, 15(3), 89-100.
[http://dx.doi.org/10.1016/j.molmed.2009.01.001] [PMID: 19230774]
[94]
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, 6, 260-271.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[95]
Ruiz, A.; Matute, C.; Alberdi, E. Endoplasmic reticulum Ca(2+) release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity. Cell Calcium, 2009, 46(4), 273-281.
[http://dx.doi.org/10.1016/j.ceca.2009.08.005] [PMID: 19747726]
[96]
Atlante, A.; Calissano, P.; Bobba, A.; Azzariti, A.; Marra, E.; Passarella, S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem., 2000, 275(47), 37159-37166.
[http://dx.doi.org/10.1074/jbc.M002361200] [PMID: 10980192]
[97]
Luetjens, C.M.; Bui, N.T.; Sengpiel, B.; Münstermann, G.; Poppe, M.; Krohn, A.J.; Bauerbach, E.; Krieglstein, J.; Prehn, J.H. Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J. Neurosci., 2000, 20(15), 5715-5723.
[http://dx.doi.org/10.1523/JNEUROSCI.20-15-05715.2000] [PMID: 10908611]
[98]
Tadic, V.; Prell, T.; Lautenschlaeger, J.; Grosskreutz, J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 147.
[http://dx.doi.org/10.3389/fncel.2014.00147] [PMID: 24910594]
[99]
Guivernau, B.; Bonet, J.; Valls-Comamala, V.; Bosch-Morató, M.; Godoy, J.A.; Inestrosa, N.C.; Perálvarez-Marín, A.; Fernández-Busquets, X.; Andreu, D.; Oliva, B.; Muñoz, F.J. Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances NMDAR-mediated toxicity. J. Neurosci., 2016, 36(46), 11693-11703.
[http://dx.doi.org/10.1523/JNEUROSCI.1081-16.2016] [PMID: 27852777]
[100]
Renner, M.; Lacor, P.N.; Velasco, P.T.; Xu, J.; Contractor, A.; Klein, W.L.; Triller, A. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron, 2010, 66(5), 739-754.
[http://dx.doi.org/10.1016/j.neuron.2010.04.029] [PMID: 20547131]
[101]
Hipp, M.S.; Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol., 2019, 20(7), 421-435.
[http://dx.doi.org/10.1038/s41580-019-0101-y] [PMID: 30733602]
[102]
Shrivastava, A.N.; Aperia, A.; Melki, R.; Triller, A. Physico-pathologic mechanisms involved in neurodegeneration: Misfolded protein-plasma membrane interactions. Neuron, 2017, 95(1), 33-50.
[http://dx.doi.org/10.1016/j.neuron.2017.05.026] [PMID: 28683268]
[103]
Seneci, P. Chapter 6 - Targeting assembly and disassembly of protein aggregates: A raggle-taggle bunch with high hopes. In: Chemical Modulators of Protein Misfolding and Neurodegenerative Disease; Seneci, P., Ed.; Academic Press: San Diego, 2015; pp. 173-228.
[http://dx.doi.org/10.1016/B978-0-12-801944-3.00006-0]
[104]
Hipp, M.S.; Park, S.H.; Hartl, F.U. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol., 2014, 24(9), 506-514.
[http://dx.doi.org/10.1016/j.tcb.2014.05.003] [PMID: 24946960]
[105]
Szumiel, I.; Sochanowicz, B.; Buraczewska, I. Ca2+ mobilization is related to the lethal effect of X-irradiation in L5178Y cells. Int. J. Radiat. Biol., 1990, 58(1), 125-131.
[http://dx.doi.org/10.1080/09553009014551481] [PMID: 1973430]
[106]
Uckun, F.M.; Tuel-Ahlgren, L.; Song, C.W.; Waddick, K.; Myers, D.E.; Kirihara, J.; Ledbetter, J.A.; Schieven, G.L. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death. Proc. Natl. Acad. Sci. USA, 1992, 89(19), 9005-9009.
[http://dx.doi.org/10.1073/pnas.89.19.9005] [PMID: 1409597]
[107]
Hallahan, D.E.; Bleakman, D.; Virudachalam, S.; Lee, D.; Grdina, D.; Kufe, D.W.; Weichselbaum, R.R. The role of intracellular calcium in the cellular response to ionizing radiation. Radiat. Res., 1994, 138(3), 392-400.
[http://dx.doi.org/10.2307/3578688] [PMID: 8184014]
[108]
Leach, J.K.; Van Tuyle, G.; Lin, P.S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res., 2001, 61(10), 3894-3901.
[PMID: 11358802]
[109]
Tong, J.X.; Vogelbaum, M.A.; Drzymala, R.E.; Rich, K.M. Radiation-induced apoptosis in dorsal root ganglion neurons. J. Neurocytol., 1997, 26(11), 771-777.
[http://dx.doi.org/10.1023/A:1018566431912] [PMID: 9426173]
[110]
Tong, J.; Li, J.; Zhang, Q-S.; Yang, J-K.; Zhang, L.; Liu, H-Y.; Liu, Y.Z.; Yuan, J.W.; Su, X.M.; Zhang, X.X.; Jiao, B.H. Delayed cognitive deficits can be alleviated by calcium antagonist nimodipine by downregulation of apoptosis following whole brain radiotherapy. Oncol. Lett., 2018, 16(2), 2525-2532.
[http://dx.doi.org/10.3892/ol.2018.8968] [PMID: 30013647]
[111]
Zhao, L.; Chen, Q.; Diaz Brinton, R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med. (Maywood), 2002, 227(7), 509-519.
[http://dx.doi.org/10.1177/153537020222700716] [PMID: 12094016]
[112]
Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol., 2019, 116, 135-170.
[http://dx.doi.org/10.1016/bs.apcsb.2019.01.001] [PMID: 31036290]
[113]
Haas, E.; Bhattacharya, I.; Brailoiu, E. Damjanović M.; Brailoiu, G.C.; Gao, X.; Mueller-Guerre, L.; Marjon, N.A.; Gut, A.; Minotti, R.; Meyer, M.R.; Amann, K.; Ammann, E.; Perez-Dominguez, A.; Genoni, M.; Clegg, D.J.; Dun, N.J.; Resta, T.C.; Prossnitz, E.R.; Barton, M. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res., 2009, 104(3), 288-291.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.190892] [PMID: 19179659]
[114]
Mosselman, S.; Polman, J.; Dijkema, R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett., 1996, 392(1), 49-53.
[http://dx.doi.org/10.1016/0014-5793(96)00782-X] [PMID: 8769313]
[115]
Tremblay, G.B.; Tremblay, A.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Labrie, F.; Giguère, V. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol. Endocrinol., 1997, 11(3), 353-365.
[PMID: 9058381]
[116]
Kuiper, G.G.; Enmark, E.; Pelto-Huikko, M.; Nilsson, S.; Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA, 1996, 93(12), 5925-5930.
[http://dx.doi.org/10.1073/pnas.93.12.5925] [PMID: 8650195]
[117]
Cowley, S.M.; Hoare, S.; Mosselman, S.; Parker, M.G. Estrogen receptors alpha and beta form heterodimers on DNA. J. Biol. Chem., 1997, 272(32), 19858-19862.
[http://dx.doi.org/10.1074/jbc.272.32.19858] [PMID: 9242648]
[118]
Beato, M.; Arnemann, J.; Chalepakis, G.; Slater, E.; Willmann, T. Gene regulation by steroid hormones. J. Steroid Biochem., 1987, 27(1-3), 9-14.
[http://dx.doi.org/10.1016/0022-4731(87)90288-3] [PMID: 2826895]
[119]
Berry, M.; Metzger, D.; Chambon, P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J., 1990, 9(9), 2811-2818.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07469.x] [PMID: 2118104]
[120]
Mendelsohn, M.E.; Karas, R.H. Molecular and cellular basis of cardiovascular gender differences. Science, 2005, 308(5728), 1583-1587.
[http://dx.doi.org/10.1126/science.1112062] [PMID: 15947175]
[121]
Sader, M.A.; Celermajer, D.S. Endothelial function, vascular reactivity and gender differences in the cardiovascular system. Cardiovasc. Res., 2002, 53(3), 597-604.
[http://dx.doi.org/10.1016/S0008-6363(01)00473-4] [PMID: 11861030]
[122]
Ueda, K.; Karas, R.H. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system. Steroids, 2013, 78(6), 589-596.
[http://dx.doi.org/10.1016/j.steroids.2012.12.006] [PMID: 23276634]
[123]
Gillies, G.E.; McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol. Rev., 2010, 62(2), 155-198.
[http://dx.doi.org/10.1124/pr.109.002071] [PMID: 20392807]
[124]
Garcia-Segura, L.M.; Azcoitia, I.; DonCarlos, L.L. Neuroprotection by estradiol. Prog. Neurobiol., 2001, 63(1), 29-60.
[http://dx.doi.org/10.1016/S0301-0082(00)00025-3] [PMID: 11040417]
[125]
Raz, L.; Khan, M.M.; Mahesh, V.B.; Vadlamudi, R.K.; Brann, D.W. Rapid estrogen signaling in the brain. Neurosignals, 2008, 16(2-3), 140-153.
[http://dx.doi.org/10.1159/000111559] [PMID: 18253054]
[126]
Gjorevski, N.; Nelson, C.M. Integrated morphodynamic signalling of the mammary gland. Nat. Rev. Mol. Cell Biol., 2011, 12(9), 581-593.
[http://dx.doi.org/10.1038/nrm3168] [PMID: 21829222]
[127]
Clarke, R.; Cook, K.L.; Hu, R.; Facey, C.O.; Tavassoly, I.; Schwartz, J.L.; Baumann, W.T.; Tyson, J.J.; Xuan, J.; Wang, Y.; Wärri, A.; Shajahan, A.N. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res., 2012, 72(6), 1321-1331.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3213] [PMID: 22422988]
[128]
Tong, B.C.; Wu, A.J.; Li, M.; Cheung, K.H. Calcium signaling in Alzheimer’s disease & therapies. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11)(11 Pt B), 1745-1760.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.018] [PMID: 30059692]
[129]
Chandran, R.; Kumar, M.; Kesavan, L.; Jacob, R.S.; Gunasekaran, S.; Lakshmi, S.; Sadasivan, C.; Omkumar, R.V. Cellular calcium signaling in the aging brain. J. Chem. Neuroanat., 2019, 95, 95-114.
[http://dx.doi.org/10.1016/j.jchemneu.2017.11.008] [PMID: 29129748]
[130]
Agranoff, B.W.; Siegel, G.J. Basic neurochemistry: Molecular, cellular, and medical aspects; Raven Press, 1994.
[131]
Sattler, R.; Tymianski, M. Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. (Berl.), 2000, 78(1), 3-13.
[http://dx.doi.org/10.1007/s001090000077] [PMID: 10759025]
[132]
Friedman, L.K. Calcium: a role for neuroprotection and sustained adaptation. Mol. Interv., 2006, 6(6), 315-329.
[http://dx.doi.org/10.1124/mi.6.6.5] [PMID: 17200459]
[133]
Youn, H.D.; Sun, L.; Prywes, R.; Liu, J.O. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science, 1999, 286(5440), 790-793.
[http://dx.doi.org/10.1126/science.286.5440.790] [PMID: 10531067]
[134]
Szado, T.; Vanderheyden, V.; Parys, J.B.; De Smedt, H.; Rietdorf, K.; Kotelevets, L.; Chastre, E.; Khan, F.; Landegren, U.; Söderberg, O.; Bootman, M.D.; Roderick, H.L. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2427-2432.
[http://dx.doi.org/10.1073/pnas.0711324105] [PMID: 18250332]
[135]
Morissette, M.; Le Saux, M.; D’Astous, M.; Jourdain, S.; Al Sweidi, S.; Morin, N.; Estrada-Camarena, E.; Mendez, P.; Garcia-Segura, L.M.; Di Paolo, T. Contribution of estrogen receptors alpha and beta to the effects of estradiol in the brain. J. Steroid Biochem. Mol. Biol., 2008, 108(3-5), 327-338.
[http://dx.doi.org/10.1016/j.jsbmb.2007.09.011] [PMID: 17936613]
[136]
Smith, C.C.; Vedder, L.C.; McMahon, L.L. Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3-CA1 synapses. Psychoneuroendocrinology, 2009, 34(Suppl. 1), S130-S142.
[http://dx.doi.org/10.1016/j.psyneuen.2009.06.003] [PMID: 19596521]
[137]
Liu, F.; Day, M.; Muñiz, L.C.; Bitran, D.; Arias, R.; Revilla-Sanchez, R.; Grauer, S.; Zhang, G.; Kelley, C.; Pulito, V.; Sung, A.; Mervis, R.F.; Navarra, R.; Hirst, W.D.; Reinhart, P.H.; Marquis, K.L.; Moss, S.J.; Pangalos, M.N.; Brandon, N.J. Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat. Neurosci., 2008, 11(3), 334-343.
[http://dx.doi.org/10.1038/nn2057] [PMID: 18297067]
[138]
Aguirre, C.; Jayaraman, A.; Pike, C.; Baudry, M. Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J. Neurochem., 2010, 115(5), 1277-1287.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07038.x] [PMID: 20977477]
[139]
Wong, M.; Moss, R.L. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J. Neurosci., 1992, 12(8), 3217-3225.
[http://dx.doi.org/10.1523/JNEUROSCI.12-08-03217.1992] [PMID: 1353794]
[140]
Weaver, C.E., Jr; Park-Chung, M.; Gibbs, T.T.; Farb, D.H. 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res., 1997, 761(2), 338-341.
[http://dx.doi.org/10.1016/S0006-8993(97)00449-6] [PMID: 9252035]
[141]
Weiss, H.R.; Doshi, D.; Sinha, A.K.; Liu, X.; Chi, O.Z. 17Beta-estradiol blocks NMDA-induced increases in regional cerebral O(2) consumption. Brain Res., 2002, 951(2), 177-182.
[http://dx.doi.org/10.1016/S0006-8993(02)03158-X] [PMID: 12270495]
[142]
Bryant, D.N.; Dorsa, D.M. Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience, 2010, 170(4), 1261-1269.
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.019] [PMID: 20732393]
[143]
Ciriza, I.; Carrero, P.; Azcoitia, I.; Lundeen, S.G.; Garcia-Segura, L.M. Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: differences with the effect of estradiol. J. Neurobiol., 2004, 61(2), 209-221.
[http://dx.doi.org/10.1002/neu.20043] [PMID: 15389604]
[144]
Zhang, H.; Xie, M.; Schools, G.P.; Feustel, P.F.; Wang, W.; Lei, T.; Kimelberg, H.K.; Zhou, M. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model. Brain Res., 2009, 1247, 196-211.
[http://dx.doi.org/10.1016/j.brainres.2008.10.015] [PMID: 18992727]
[145]
O’Neill, K.; Chen, S.; Diaz Brinton, R. Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer’s disease. Exp. Neurol., 2004, 188(2), 268-278.
[http://dx.doi.org/10.1016/j.expneurol.2004.01.014] [PMID: 15246826]
[146]
Huang, Y.; Huang, Y.L.; Lai, B.; Zheng, P.; Zhu, Y.C.; Yao, T. Raloxifene acutely reduces glutamate-induced intracellular calcium increase in cultured rat cortical neurons via inhibition of high-voltage-activated calcium current. Neuroscience, 2007, 147(2), 334-341.
[http://dx.doi.org/10.1016/j.neuroscience.2007.04.037] [PMID: 17543470]
[147]
Armagan, G.; Kanit, L.; Terek, C.M.; Sozmen, E.Y.; Yalcin, A. The levels of glutathione and nitrite-nitrate and the expression of Bcl-2 mRNA in ovariectomized rats treated by raloxifene against kainic acid. Int. J. Neurosci., 2009, 119(2), 227-239.
[http://dx.doi.org/10.1080/00207450802330959] [PMID: 19125376]
[148]
Kurata, K.; Takebayashi, M.; Kagaya, A.; Morinobu, S.; Yamawaki, S. Effect of beta-estradiol on voltage-gated Ca(2+) channels in rat hippocampal neurons: a comparison with dehydroepiandrosterone. Eur. J. Pharmacol., 2001, 416(3), 203-212.
[http://dx.doi.org/10.1016/S0014-2999(01)00880-9] [PMID: 11290370]
[149]
Mermelstein, P.G.; Becker, J.B.; Surmeier, D.J. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J. Neurosci., 1996, 16(2), 595-604.
[http://dx.doi.org/10.1523/JNEUROSCI.16-02-00595.1996] [PMID: 8551343]
[150]
Zhao, L.; Brinton, R.D. Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res., 2007, 1172, 48-59.
[http://dx.doi.org/10.1016/j.brainres.2007.06.092] [PMID: 17803971]
[151]
Huang, G.Z.; Woolley, C.S. Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron, 2012, 74(5), 801-808.
[http://dx.doi.org/10.1016/j.neuron.2012.03.035] [PMID: 22681685]
[152]
Mermelstein, P.G. Membrane-localised oestrogen receptor alpha and beta influence neuronal activity through activation of metabotropic glutamate receptors. J. Neuroendocrinol., 2009, 21(4), 257-262.
[http://dx.doi.org/10.1111/j.1365-2826.2009.01838.x] [PMID: 19207809]
[153]
Grove-Strawser, D.; Boulware, M.I.; Mermelstein, P.G. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience, 2010, 170(4), 1045-1055.
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.012] [PMID: 20709161]
[154]
Sonoda, J.; Laganière, J.; Mehl, I.R.; Barish, G.D.; Chong, L.W.; Li, X.; Scheffler, I.E.; Mock, D.C.; Bataille, A.R.; Robert, F.; Lee, C.H.; Giguère, V.; Evans, R.M. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev., 2007, 21(15), 1909-1920.
[http://dx.doi.org/10.1101/gad.1553007] [PMID: 17671090]
[155]
Hong, E.J.; Levasseur, M.P.; Dufour, C.R.; Perry, M.C.; Giguère, V. Loss of estrogen-related receptor α promotes hepatocarcinogenesis development via metabolic and inflammatory disturbances. Proc. Natl. Acad. Sci. USA, 2013, 110(44), 17975-17980.
[http://dx.doi.org/10.1073/pnas.1315319110] [PMID: 24127579]
[156]
Murray, J.; Auwerx, J.; Huss, J.M. Impaired myogenesis in estrogen-related receptor γ (ERRγ)-deficient skeletal myocytes due to oxidative stress. FASEB J., 2013, 27(1), 135-150.
[http://dx.doi.org/10.1096/fj.12-212290] [PMID: 23038752]
[157]
Kim, J.H.; Choi, Y.K.; Byun, J.K.; Kim, M.K.; Kang, Y.N.; Kim, S.H.; Lee, S.; Jang, B.K.; Park, K.G. Estrogen-related receptor γ is upregulated in liver cancer and its inhibition suppresses liver cancer cell proliferation via induction of p21 and p27. Exp. Mol. Med., 2016, 48(3), e213.
[http://dx.doi.org/10.1038/emm.2015.115] [PMID: 26940882]
[158]
Wu, Y.M.; Chen, Z.J.; Jiang, G.M.; Zhang, K.S.; Liu, Q.; Liang, S.W.; Zhou, Y.; Huang, H.B.; Du, J.; Wang, H.S. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways. Oncotarget, 2016, 7(11), 12568-12581.
[http://dx.doi.org/10.18632/oncotarget.7276] [PMID: 26871469]
[159]
Sandhir, R.; Sethi, N.; Aggarwal, A.; Khera, A. Coenzyme Q10 treatment ameliorates cognitive deficits by modulating mitochondrial functions in surgically induced menopause. Neurochem. Int., 2014, 74, 16-23.
[http://dx.doi.org/10.1016/j.neuint.2014.04.011] [PMID: 24780430]
[160]
Patki, G.; Allam, F.H.; Atrooz, F.; Dao, A.T.; Solanki, N.; Chugh, G.; Asghar, M.; Jafri, F.; Bohat, R.; Alkadhi, K.A.; Salim, S. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS One, 2013, 8(9), e74522.
[http://dx.doi.org/10.1371/journal.pone.0074522] [PMID: 24040270]
[161]
Pourganji, M.; Hosseini, M.; Soukhtanloo, M.; Zabihi, H.; Hadjzadeh, M.A. Protective role of endogenous ovarian hormones against learning and memory impairments and brain tissues oxidative damage induced by lipopolysaccharide. Iran. Red Crescent Med. J., 2014, 16(3), e13954.
[http://dx.doi.org/10.5812/ircmj.13954] [PMID: 24829769]
[162]
Rao, A.K.; Dietrich, A.K.; Ziegler, Y.S.; Nardulli, A.M. 17β-Estradiol-mediated increase in Cu/Zn superoxide dismutase expression in the brain: a mechanism to protect neurons from ischemia. J. Steroid Biochem. Mol. Biol., 2011, 127(3-5), 382-389.
[http://dx.doi.org/10.1016/j.jsbmb.2011.06.008] [PMID: 21704159]
[163]
Yang, S.H.; Sarkar, S.N.; Liu, R.; Perez, E.J.; Wang, X.; Wen, Y.; Yan, L.J.; Simpkins, J.W. Estrogen receptor beta as a mitochondrial vulnerability factor. J. Biol. Chem., 2009, 284(14), 9540-9548.
[http://dx.doi.org/10.1074/jbc.M808246200] [PMID: 19189968]
[164]
Siriphorn, A.; Chompoopong, S.; Floyd, C.L. 17β-estradiol protects Schwann cells against H2O2-induced cytotoxicity and increases transplanted Schwann cell survival in a cervical hemicontusion spinal cord injury model. J. Neurochem., 2010, 115(4), 864-872.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06770.x] [PMID: 20456002]
[165]
Prokai, L.; Prokai-Tatrai, K.; Perjesi, P.; Zharikova, A.D.; Perez, E.J.; Liu, R.; Simpkins, J.W. Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11741-11746.
[http://dx.doi.org/10.1073/pnas.2032621100] [PMID: 14504383]
[166]
Stirone, C.; Duckles, S.P.; Krause, D.N.; Procaccio, V. Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol. Pharmacol., 2005, 68(4), 959-965.
[http://dx.doi.org/10.1124/mol.105.014662] [PMID: 15994367]
[167]
Razmara, A.; Duckles, S.P.; Krause, D.N.; Procaccio, V. Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res., 2007, 1176, 71-81.
[http://dx.doi.org/10.1016/j.brainres.2007.08.036] [PMID: 17889838]
[168]
Fitzpatrick, J.L.; Mize, A.L.; Wade, C.B.; Harris, J.A.; Shapiro, R.A.; Dorsa, D.M. Estrogen-mediated neuroprotection against beta-amyloid toxicity requires expression of estrogen receptor alpha or beta and activation of the MAPK pathway. J. Neurochem., 2002, 82(3), 674-682.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01000.x] [PMID: 12153491]
[169]
Tsialtas, I.; Georgantopoulos, A.; Karipidou, M.E.; Kalousi, F.D.; Karra, A.G.; Leonidas, D.D.; Psarra, A.G. Anti-apoptotic and antioxidant activities of the mitochondrial estrogen receptor beta in N2A neuroblastoma cells. Int. J. Mol. Sci., 2021, 22(14), 7620.
[http://dx.doi.org/10.3390/ijms22147620] [PMID: 34299239]
[170]
Razmara, A.; Sunday, L.; Stirone, C.; Wang, X.B.; Krause, D.N.; Duckles, S.P.; Procaccio, V. Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J. Pharmacol. Exp. Ther., 2008, 325(3), 782-790.
[http://dx.doi.org/10.1124/jpet.107.134072] [PMID: 18354059]
[171]
Culmsee, C.; Vedder, H.; Ravati, A.; Junker, V.; Otto, D.; Ahlemeyer, B.; Krieg, J.C.; Krieglstein, J. Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons: evidence for a receptor-independent antioxidative mechanism. J. Cereb. Blood Flow Metab., 1999, 19(11), 1263-1269.
[http://dx.doi.org/10.1097/00004647-199911000-00011] [PMID: 10566973]
[172]
Brambilla, R. Neuroinflammation, the thread connecting neurological disease: Cluster: “Neuroinflammatory mechanisms in neurodegenerative disorders”. Acta Neuropathol., 2019, 137(5), 689-691.
[http://dx.doi.org/10.1007/s00401-019-02009-9] [PMID: 30968314]
[173]
Qiu, A.W.; Liu, Z.; Guo, J.; Peng, Y.P. Relationship between neuroinflammation and neurodegenerative diseases. Sheng Li Ke Xue Jin Zhan, 2011, 42(5), 353-358.
[PMID: 22242402]
[174]
Simpkins, J.W.; Singh, M.; Brock, C.; Etgen, A.M. Neuroprotection and estrogen receptors. Neuroendocrinology, 2012, 96(2), 119-130.
[http://dx.doi.org/10.1159/000338409] [PMID: 22538356]
[175]
Murphy, A.J.; Guyre, P.M.; Pioli, P.A. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J. Immunol., 2010, 184(9), 5029-5037.
[http://dx.doi.org/10.4049/jimmunol.0903463] [PMID: 20351193]
[176]
Liu, T. Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[177]
Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci., 2015, 8, 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[178]
Dresselhaus, E.C.; Meffert, M.K. Cellular specificity of NF-κB function in the nervous system. Front. Immunol., 2019, 10, 1043.
[http://dx.doi.org/10.3389/fimmu.2019.01043] [PMID: 31143184]
[179]
Jover-Mengual, T.; Zukin, R.S.; Etgen, A.M. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology, 2007, 148(3), 1131-1143.
[http://dx.doi.org/10.1210/en.2006-1137] [PMID: 17138646]
[180]
Choi, Y.C.; Lee, J.H.; Hong, K.W.; Lee, K.S. 17 Beta-estradiol prevents focal cerebral ischemic damages via activation of Akt and CREB in association with reduced PTEN phosphorylation in rats. Fundam. Clin. Pharmacol., 2004, 18(5), 547-557.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00284.x] [PMID: 15482376]
[181]
Xing, D.; Oparil, S.; Yu, H.; Gong, K.; Feng, W.; Black, J.; Chen, Y.F.; Nozell, S. Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS One, 2012, 7(6), e36890.
[http://dx.doi.org/10.1371/journal.pone.0036890] [PMID: 22723832]
[182]
Tiwari-Woodruff, S.; Morales, L.B.; Lee, R.; Voskuhl, R.R. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14813-14818.
[http://dx.doi.org/10.1073/pnas.0703783104] [PMID: 17785421]
[183]
Spence, R.D.; Voskuhl, R.R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol., 2012, 33(1), 105-115.
[http://dx.doi.org/10.1016/j.yfrne.2011.12.001] [PMID: 22209870]
[184]
Yates, M.A.; Li, Y.; Chlebeck, P.J.; Offner, H. GPR30, but not estrogen receptor-alpha, is crucial in the treatment of experimental autoimmune encephalomyelitis by oral ethinyl estradiol. BMC Immunol., 2010, 11(1), 20.
[http://dx.doi.org/10.1186/1471-2172-11-20] [PMID: 20403194]
[185]
Wang, C.; Dehghani, B.; Li, Y.; Kaler, L.J.; Proctor, T.; Vandenbark, A.A.; Offner, H. Membrane estrogen receptor regulates experimental autoimmune encephalomyelitis through up-regulation of programmed death 1. J. Immunol., 2009, 182(5), 3294-3303.
[http://dx.doi.org/10.4049/jimmunol.0803205] [PMID: 19234228]
[186]
Blasko, E.; Haskell, C.A.; Leung, S.; Gualtieri, G.; Halks-Miller, M.; Mahmoudi, M.; Dennis, M.K.; Prossnitz, E.R.; Karpus, W.J.; Horuk, R. Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J. Neuroimmunol., 2009, 214(1-2), 67-77.
[http://dx.doi.org/10.1016/j.jneuroim.2009.06.023] [PMID: 19664827]
[187]
Spence, R.D.; Wisdom, A.J.; Cao, Y.; Hill, H.M.; Mongerson, C.R.; Stapornkul, B.; Itoh, N.; Sofroniew, M.V.; Voskuhl, R.R. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. J. Neurosci., 2013, 33(26), 10924-10933.
[http://dx.doi.org/10.1523/JNEUROSCI.0886-13.2013] [PMID: 23804112]
[188]
Joutsen, J.; Sistonen, L. Tailoring of proteostasis networks with heat shock factors. Cold Spring Harb. Perspect. Biol., 2019, 11(4), a034066.
[http://dx.doi.org/10.1101/cshperspect.a034066] [PMID: 30420555]
[189]
Whitesell, L.; Lindquist, S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets, 2009, 13(4), 469-478.
[http://dx.doi.org/10.1517/14728220902832697] [PMID: 19335068]
[190]
Riar, A.K.; Burstein, S.R.; Palomo, G.M.; Arreguin, A.; Manfredi, G.; Germain, D. Sex specific activation of the ERα axis of the mitochondrial UPR (UPRmt) in the G93A-SOD1 mouse model of familial ALS. Hum. Mol. Genet., 2017, 26(7), 1318-1327.
[http://dx.doi.org/10.1093/hmg/ddx049] [PMID: 28186560]
[191]
Mori, K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem., 2009, 146(6), 743-750.
[http://dx.doi.org/10.1093/jb/mvp166] [PMID: 19861400]
[192]
Aldridge, J.E.; Horibe, T.; Hoogenraad, N.J. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS One, 2007, 2(9), e874.
[http://dx.doi.org/10.1371/journal.pone.0000874] [PMID: 17849004]
[193]
Chung, M.T.; Lee, Y.M.; Shen, H.H.; Cheng, P.Y.; Huang, Y.C.; Lin, Y.J.; Huang, Y.Y.; Lam, K.K. Activation of autophagy is involved in the protective effect of 17β-oestradiol on endotoxaemia-induced multiple organ dysfunction in ovariectomized rats. J. Cell. Mol. Med., 2017, 21(12), 3705-3717.
[http://dx.doi.org/10.1111/jcmm.13280] [PMID: 28714586]
[194]
Felzen, V.; Hiebel, C.; Koziollek-Drechsler, I.; Reißig, S.; Wolfrum, U.; Kögel, D.; Brandts, C.; Behl, C.; Morawe, T. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis., 2015, 6(7), e1812.
[http://dx.doi.org/10.1038/cddis.2015.181] [PMID: 26158518]
[195]
Ruddy, S.C.; Lau, R.; Cabrita, M.A.; McGregor, C.; McKay, B.C.; Murphy, L.C.; Wright, J.S.; Durst, T.; Pratt, M.A. Preferential estrogen receptor β ligands reduce Bcl-2 expression in hormone-resistant breast cancer cells to increase autophagy. Mol. Cancer Ther., 2014, 13(7), 1882-1893.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1066] [PMID: 24785256]
[196]
Yang, Z.M.; Yang, M.F.; Yu, W.; Tao, H.M. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors: implication for treating osteosarcoma. J. Int. Med. Res., 2019, 47(10), 4644-4655.
[http://dx.doi.org/10.1177/0300060519871373] [PMID: 31526167]
[197]
Zeng, M.; Chen, B.; Qing, Y.; Xie, W.; Dang, W.; Zhao, M.; Zhou, J. Estrogen receptor β signaling induces autophagy and downregulates Glut9 expression. Nucleosides Nucleotides Nucleic Acids, 2014, 33(7), 455-465.
[http://dx.doi.org/10.1080/15257770.2014.885045] [PMID: 24972010]
[198]
Wei, Y.; Huang, J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J. Steroid Biochem. Mol. Biol., 2019, 191, 105380.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105380] [PMID: 31078693]
[199]
Barbati, C.; Pierdominici, M.; Gambardella, L.; Malchiodi Albedi, F.; Karas, R.H.; Rosano, G.; Malorni, W.; Ortona, E. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration. PLoS One, 2012, 7(7), e42339.
[http://dx.doi.org/10.1371/journal.pone.0042339] [PMID: 22860116]
[200]
Li, L.; Chen, J.; Sun, S.; Zhao, J.; Dong, X.; Wang, J. Effects of Estradiol on Autophagy and Nrf-2/ARE Signals after Cerebral Ischemia. Cell. Physiol. Biochem., 2017, 41(5), 2027-2036.
[http://dx.doi.org/10.1159/000475433] [PMID: 28419990]
[201]
LeBlanc, E.S.; Neiss, M.B.; Carello, P.E.; Samuels, M.H.; Janowsky, J.S. Hot flashes and estrogen therapy do not influence cognition in early menopausal women. Menopause, 2007, 14(2), 191-202.
[http://dx.doi.org/10.1097/01.gme.0000230347.28616.1c] [PMID: 17194963]
[202]
Schmidt, R.; Fazekas, F.; Reinhart, B.; Kapeller, P.; Fazekas, G.; Offenbacher, H.; Eber, B.; Schumacher, M.; Freidl, W. Estrogen replacement therapy in older women: a neuropsychological and brain MRI study. J. Am. Geriatr. Soc., 1996, 44(11), 1307-1313.
[http://dx.doi.org/10.1111/j.1532-5415.1996.tb01400.x] [PMID: 8909345]
[203]
Compton, J.; van Amelsvoort, T.; Murphy, D. HRT and its effect on normal ageing of the brain and dementia. Br. J. Clin. Pharmacol., 2001, 52(6), 647-653.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01492.x] [PMID: 11736875]
[204]
Kampen, D.L.; Sherwin, B.B. Estrogen use and verbal memory in healthy postmenopausal women. Obstet. Gynecol., 1994, 83(6), 979-983.
[http://dx.doi.org/10.1097/00006250-199406000-00017] [PMID: 8190445]
[205]
Dubal, D.B.; Wise, P.M. Estrogen and neuroprotection: from clinical observations to molecular mechanisms. Dialogues Clin. Neurosci., 2002, 4(2), 149-161.
[http://dx.doi.org/10.31887/DCNS.2002.4.2/ddubal] [PMID: 22034440]
[206]
Resnick, S.M.; Maki, P.M. Effects of hormone replacement therapy on cognitive and brain aging. Ann. N. Y. Acad. Sci., 2001, 949(1), 203-214.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb04023.x] [PMID: 11795355]
[207]
Henderson, V.W.; Paganini-Hill, A.; Miller, B.L.; Elble, R.J.; Reyes, P.F.; Shoupe, D.; McCleary, C.A.; Klein, R.A.; Hake, A.M.; Farlow, M.R. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology, 2000, 54(2), 295-301.
[http://dx.doi.org/10.1212/WNL.54.2.295] [PMID: 10668686]
[208]
Wang, P.N.; Liao, S.Q.; Liu, R.S.; Liu, C.Y.; Chao, H.T.; Lu, S.R.; Yu, H.Y.; Wang, S.J.; Liu, H.C. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology, 2000, 54(11), 2061-2066.
[http://dx.doi.org/10.1212/WNL.54.11.2061] [PMID: 10851363]
[209]
Mulnard, R.A.; Cotman, C.W.; Kawas, C.; van Dyck, C.H.; Sano, M.; Doody, R.; Koss, E.; Pfeiffer, E.; Jin, S.; Gamst, A.; Grundman, M.; Thomas, R.; Thal, L.J. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease a randomized controlled trial. JAMA, 2000, 283(8), 1007-1015.
[http://dx.doi.org/10.1001/jama.283.8.1007] [PMID: 10697060]
[210]
Simpkins, J.W.; Perez, E.; Wang, X.; Yang, S.; Wen, Y.; Singh, M. The potential for estrogens in preventing Alzheimer’s disease and vascular dementia. Ther. Adv. Neurol. Disord., 2009, 2(1), 31-49.
[http://dx.doi.org/10.1177/1756285608100427] [PMID: 19890493]
[211]
Caldwell, B.M.; Watson, R.I. An evaluation of psychologic effects of sex hormone administration in aged women. I. Results of therapy after six months. J. Gerontol., 1952, 7(2), 228-244.
[http://dx.doi.org/10.1093/geronj/7.2.228] [PMID: 14927905]
[212]
Kawas, C.; Resnick, S.; Morrison, A.; Brookmeyer, R.; Corrada, M.; Zonderman, A.; Bacal, C.; Lingle, D.D.; Metter, E. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology, 1997, 48(6), 1517-1521.
[http://dx.doi.org/10.1212/WNL.48.6.1517] [PMID: 9191758]
[213]
Robinson, D.; Friedman, L.; Marcus, R.; Tinklenberg, J.; Yesavage, J. Estrogen replacement therapy and memory in older women. J. Am. Geriatr. Soc., 1994, 42(9), 919-922.
[http://dx.doi.org/10.1111/j.1532-5415.1994.tb06580.x] [PMID: 8064097]
[214]
Shaywitz, S.E.; Shaywitz, B.A.; Pugh, K.R.; Fulbright, R.K.; Skudlarski, P.; Mencl, W.E.; Constable, R.T.; Naftolin, F.; Palter, S.F.; Marchione, K.E.; Katz, L.; Shankweiler, D.P.; Fletcher, J.M.; Lacadie, C.; Keltz, M.; Gore, J.C. Effect of estrogen on brain activation patterns in postmenopausal women during working memory tasks. JAMA, 1999, 281(13), 1197-1202.
[http://dx.doi.org/10.1001/jama.281.13.1197] [PMID: 10199429]
[215]
Song, Y-J.; Li, S-R.; Li, X-W.; Chen, X.; Wei, Z-X.; Liu, Q-S.; Cheng, Y. The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: A meta-analysis. Front. Neurosci., 2020, 14, 157.
[http://dx.doi.org/10.3389/fnins.2020.00157] [PMID: 32210745]
[216]
Ohkura, T.; Isse, K.; Akazawa, K.; Hamamoto, M.; Yaoi, Y.; Hagino, N. Evaluation of estrogen treatment in female patients with dementia of the Alzheimer type. Endocr. J., 1994, 41(4), 361-371.
[http://dx.doi.org/10.1507/endocrj.41.361] [PMID: 8528351]
[217]
Schneider, L.S.; Farlow, M.R.; Henderson, V.W.; Pogoda, J.M. Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurol., 1996, 46(6), 1580-1584.
[http://dx.doi.org/10.1212/WNL.46.6.1580] [PMID: 8649552]
[218]
Di Paolo, T. Modulation of brain dopamine transmission by sex steroids. Rev. Neurosci., 1994, 5(1), 27-41.
[http://dx.doi.org/10.1515/REVNEURO.1994.5.1.27] [PMID: 8019704]
[219]
Blanchet, P.J.; Fang, J.; Hyland, K.; Arnold, L.A.; Mouradian, M.M.; Chase, T.N. Short-term effects of high-dose 17beta-estradiol in postmenopausal PD patients: a crossover study. Neurol., 1999, 53(1), 91-95.
[http://dx.doi.org/10.1212/WNL.53.1.91] [PMID: 10408542]
[220]
Strijks, E.; Kremer, J.A.; Horstink, M.W. Effects of female sex steroids on Parkinson’s disease in postmenopausal women. Clin. Neuropharmacol., 1999, 22(2), 93-97.
[http://dx.doi.org/10.1097/00002826-199903000-00005] [PMID: 10202604]
[221]
Trapp, B.D.; Nave, K.A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci., 2008, 31(1), 247-269.
[http://dx.doi.org/10.1146/annurev.neuro.30.051606.094313] [PMID: 18558855]
[222]
Sicotte, N.L.; Liva, S.M.; Klutch, R.; Pfeiffer, P.; Bouvier, S.; Odesa, S.; Wu, T.C.; Voskuhl, R.R. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol., 2002, 52(4), 421-428.
[http://dx.doi.org/10.1002/ana.10301] [PMID: 12325070]
[223]
Soldan, S.S.; Retuerto, A.I.A.; Sicotte, N.L.; Voskuhl, R.R. Immune Modulation in Multiple Sclerosis Patients Treated with the Pregnancy Hormone Estriol., 2003, 171(11), 6267-6274.
[224]
Koller, W.C.; Barr, A.; Biary, N. Estrogen treatment of dyskinetic disorders. Neurology, 1982, 32(5), 547-549.
[http://dx.doi.org/10.1212/WNL.32.5.547] [PMID: 7200210]
[225]
Rooney, J.P.K.; Visser, A.E.; D’Ovidio, F.; Vermeulen, R.; Beghi, E.; Chio, A.; Veldink, J.H.; Logroscino, G.; van den Berg, L.H.; Hardiman, O. A case-control study of hormonal exposures as etiologic factors for ALS in women: Euro-MOTOR. Neurology, 2017, 89(12), 1283-1290.
[http://dx.doi.org/10.1212/WNL.0000000000004390] [PMID: 28835399]
[226]
Rudnicki, S.A. Estrogen replacement therapy in women with amyotrophic lateral sclerosis. J. Neurol. Sci., 1999, 169(1-2), 126-127.
[http://dx.doi.org/10.1016/S0022-510X(99)00234-8] [PMID: 10540020]
[227]
Brufsky, A.M.; Dickler, M.N. Estrogen receptor-positive breast cancer: Exploiting signaling pathways implicated in endocrine resistance. Oncologist, 2018, 23(5), 528-539.
[http://dx.doi.org/10.1634/theoncologist.2017-0423] [PMID: 29352052]
[228]
Dhingra, K. Selective estrogen receptor modulation: the search for an ideal hormonal therapy for breast cancer. Cancer Invest., 2001, 19(6), 649-659.
[http://dx.doi.org/10.1081/CNV-100104293] [PMID: 11486708]
[229]
Martini, P.G.; Katzenellenbogen, B.S. Modulation of estrogen receptor activity by selective coregulators. J. Steroid Biochem. Mol. Biol., 2003, 85(2-5), 117-122.
[http://dx.doi.org/10.1016/S0960-0760(03)00207-3] [PMID: 12943695]
[230]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.012] [PMID: 29289555]
[231]
Liu, J.L.; Tian, D.S.; Li, Z.W.; Qu, W.S.; Zhan, Y.; Xie, M.J.; Yu, Z.Y.; Wang, W.; Wu, G. Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res., 2010, 1316, 101-111.
[http://dx.doi.org/10.1016/j.brainres.2009.12.055] [PMID: 20044983]
[232]
Valdes, J.J.; Weeks, O.I. Lithium: a potential estrogen signaling modulator. J. Appl. Biomed., 2009, 7(4), 175-188.
[http://dx.doi.org/10.32725/jab.2009.020]
[233]
Zanni, G.; Di Martino, E.; Omelyanenko, A.; Andäng, M.; Delle, U.; Elmroth, K.; Blomgren, K. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro. Oncotarget, 2015, 6(35), 37083-37097.
[http://dx.doi.org/10.18632/oncotarget.5191] [PMID: 26397227]
[234]
Kale, A.; Piskin, Ö.; Bas, Y.; Aydin, B.G.; Can, M.; Elmas, Ö.; Büyükuysal, Ç. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J. Radiat. Res. (Tokyo), 2018, 59(4), 404-410.
[http://dx.doi.org/10.1093/jrr/rry032] [PMID: 29688418]
[235]
Chatterjee, J.; Langhnoja, J.; Pillai, P.P.; Mustak, M.S. Neuroprotective effect of quercetin against radiation-induced endoplasmic reticulum stress in neurons. J. Biochem. Mol. Toxicol., 2019, 33(2), e22242.
[http://dx.doi.org/10.1002/jbt.22242] [PMID: 30368985]
[236]
Mansour, S.Z.; Moawed, F.S.M.; Elmarkaby, S.M. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or γ-radiation. J. Photochem. Photobiol. B, 2017, 175, 149-155.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.034] [PMID: 28888167]
[237]
A Rashed L, F Al-Saeed H, M El-Shawwa M. Neuroprotective effects of chrysin on adult male albino rats exposed to acrylamide and radiation. Azhar Med. J., 2016, 45(3), 493-504.
[http://dx.doi.org/10.12816/0033118]
[238]
Patni, S.; Sisodia, R.; Shrivastava, P. Modulation of radiation induced oxidative damage in brain of Swiss albino mice by flaxseed oil. Asian J. Exp. Sci., 2012, 26(2), 61-70.
[239]
Ismail, A.F.; Salem, A.A.; Eassawy, M.M. Modulation of gamma-irradiation and carbon tetrachloride induced oxidative stress in the brain of female rats by flaxseed oil. J. Photochem. Photobiol. B, 2016, 161, 91-99.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.031] [PMID: 27232147]
[240]
Xie, Y.; Zhao, Q.Y.; Li, H.Y.; Zhou, X.; Liu, Y.; Zhang, H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol. Biochem. Behav., 2014, 126, 181-186.
[http://dx.doi.org/10.1016/j.pbb.2014.08.005] [PMID: 25159739]
[241]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Najafi, M.; Nouruzi, F.; Shabeeb, D.; Musa, A.E. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr. Radiopharm., 2019, 12(1), 23-28.
[http://dx.doi.org/10.2174/1874471011666180831101459] [PMID: 30173659]
[242]
Li, J.; Feng, L.; Xing, Y.; Wang, Y.; Du, L.; Xu, C.; Cao, J.; Wang, Q.; Fan, S.; Liu, Q.; Fan, F. Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1. Int. J. Mol. Sci., 2014, 15(4), 5928-5939.
[http://dx.doi.org/10.3390/ijms15045928] [PMID: 24722566]
[243]
El-Missiry, M.A.; Othman, A.I.; El-Sawy, M.R.; Lebede, M.F. Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus. Int. J. Radiat. Biol., 2018, 94(9), 798-808.
[http://dx.doi.org/10.1080/09553002.2018.1492755] [PMID: 29939076]
[244]
Gakova, N.; Mishurova, E.; Kropachova, K. [Effects of flavobion on nucleic acids in tissues of rats irradiated with gamma rays]. Biull. Eksp. Biol. Med., 1992, 113(3), 275-277. [Effects of flavobion on nucleic acids in tissues of rats irradiated with gamma rays]
[PMID: 1384778]
[245]
Ogle, W.O.; Speisman, R.B.; Ormerod, B.K. Potential of treating age-related depression and cognitive decline with nutraceutical approaches: a mini-review. Gerontology, 2013, 59(1), 23-31.
[http://dx.doi.org/10.1159/000342208] [PMID: 22947921]
[246]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Najafi, M.; Nouruzi, F.; Shabeeb, D.; Musa, A.E. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr. Radiopharm., 2019, 12(1), 23-28.
[http://dx.doi.org/10.2174/1874471011666180831101459] [PMID: 30173659]
[247]
Shi, C.; Xu, J.; Yew, D.T.W. Effects of phytoestrogen in brain and neurodegenerative diseases. Neuroembryology Aging, 2006, 4(3), 162-164.
[http://dx.doi.org/10.1159/000109348]
[248]
Bustamante-Barrientos, F.A.; Méndez-Ruette, M.; Ortloff, A.; Luz-Crawford, P.; Rivera, F.J.; Figueroa, C.D.; Molina, L.; Bátiz, L.F. The impact of estrogen and estrogen-like molecules in neurogenesis and neurodegeneration: Beneficial or harmful? Front. Cell. Neurosci., 2021, 15, 636176.
[http://dx.doi.org/10.3389/fncel.2021.636176] [PMID: 33762910]
[249]
Engler-Chiurazzi, E.B.; Brown, C.M.; Povroznik, J.M.; Simpkins, J.W. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog. Neurobiol., 2017, 157, 188-211.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.008] [PMID: 26891883]
[250]
Guptarak, J.; Wiktorowicz, J.E.; Sadygov, R.G.; Zivadinovic, D.; Paulucci-Holthauzen, A.A.; Vergara, L.; Nesic, O. The cancer drug tamoxifen: a potential therapeutic treatment for spinal cord injury. J. Neurotrauma, 2014, 31(3), 268-283.
[http://dx.doi.org/10.1089/neu.2013.3108] [PMID: 24004276]
[251]
Tian, D.S.; Liu, J.L.; Xie, M.J.; Zhan, Y.; Qu, W.S.; Yu, Z.Y.; Tang, Z.P.; Pan, D.J.; Wang, W. Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J. Neurochem., 2009, 109(6), 1658-1667.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06077.x] [PMID: 19457130]
[252]
Ismailoğlu, O.; Oral, B.; Görgülü, A.; Sütçü, R.; Demir, N. Neuroprotective effects of tamoxifen on experimental spinal cord injury in rats. J. Clin. Neurosci., 2010, 17(10), 1306-1310.
[http://dx.doi.org/10.1016/j.jocn.2010.01.049] [PMID: 20630763]
[253]
Franco Rodríguez, N.E.; Dueñas Jiménez, J.M.; De la Torre Valdovinos, B.; López Ruiz, J.R.; Hernández Hernández, L.; Dueñas Jiménez, S.H. Tamoxifen favoured the rat sensorial cortex regeneration after a penetrating brain injury. Brain Res. Bull., 2013, 98, 64-75.
[http://dx.doi.org/10.1016/j.brainresbull.2013.07.007] [PMID: 23886572]
[254]
Gonzalez, G.A.; Hofer, M.P.; Syed, Y.A.; Amaral, A.I.; Rundle, J.; Rahman, S.; Zhao, C.; Kotter, M.R.N. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci. Rep., 2016, 6(1), 31599.
[http://dx.doi.org/10.1038/srep31599] [PMID: 27554391]
[255]
Kimelberg, H.K.; Feustel, P.J.; Jin, Y.; Paquette, J.; Boulos, A.; Keller, R.W., Jr; Tranmer, B.I. Acute treatment with tamoxifen reduces ischemic damage following middle cerebral artery occlusion. Neuroreport, 2000, 11(12), 2675-2679.
[http://dx.doi.org/10.1097/00001756-200008210-00014] [PMID: 10976942]
[256]
Latourelle, J.C.; Dybdahl, M.; Destefano, A.L.; Myers, R.H.; Lash, T.L. Risk of Parkinson’s disease after tamoxifen treatment. BMC Neurol., 2010, 10(1), 23.
[http://dx.doi.org/10.1186/1471-2377-10-23] [PMID: 20385012]
[257]
Sun, L.M.; Chen, H.J.; Liang, J.A.; Kao, C.H. Long-term use of tamoxifen reduces the risk of dementia: a nationwide population-based cohort study. QJM, 2016, 109(2), 103-109.
[http://dx.doi.org/10.1093/qjmed/hcv072] [PMID: 25852154]
[258]
Breckenridge, L.M.; Bruns, G.L.; Todd, B.L.; Feuerstein, M. Cognitive limitations associated with tamoxifen and aromatase inhibitors in employed breast cancer survivors. Psychooncology, 2012, 21(1), 43-53.
[http://dx.doi.org/10.1002/pon.1860] [PMID: 20967847]
[259]
Van Dyk, K.; Crespi, C.M.; Bower, J.E.; Castellon, S.A.; Petersen, L.; Ganz, P.A. The cognitive effects of endocrine therapy in survivors of breast cancer: A prospective longitudinal study up to 6 years after treatment. Cancer, 2019, 125(5), 681-689.
[http://dx.doi.org/10.1002/cncr.31858] [PMID: 30485399]
[260]
Hermelink, K.; Henschel, V.; Untch, M.; Bauerfeind, I.; Lux, M.P.; Munzel, K. Short-term effects of treatment-induced hormonal changes on cognitive function in breast cancer patients: results of a multicenter, prospective, longitudinal study. Cancer, 2008, 113(9), 2431-2439.
[http://dx.doi.org/10.1002/cncr.23853] [PMID: 18823033]
[261]
Novick, A.M.; Scott, A.T.; Neill Epperson, C.; Schneck, C.D. Neuropsychiatric effects of tamoxifen: Challenges and opportunities. Front. Neuroendocrinol., 2020, 59, 100869.
[http://dx.doi.org/10.1016/j.yfrne.2020.100869] [PMID: 32822707]
[262]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: a current overview. Front. Pharmacol., 2012, 2, 94.
[http://dx.doi.org/10.3389/fphar.2011.00094] [PMID: 22291649]
[263]
Rezghi, M.; Farahani, A.M.; Asadi, F.; Mitra, S.; Dash, R.; Mozaffarpour, S.A.; Memariani, Z. Application of natural products in radiotherapy-induced dermatitis: A comprehensive review. ‎. Trad. Integrat. Med., 2021, 6(3)
[http://dx.doi.org/10.18502/tim.v6i3.7314]
[264]
Sato, T.; Kinoshita, M.; Yamamoto, T.; Ito, M.; Nishida, T.; Takeuchi, M.; Saitoh, D.; Seki, S.; Mukai, Y. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One, 2015, 10(2), e0117020.
[http://dx.doi.org/10.1371/journal.pone.0117020] [PMID: 25651298]
[265]
Jazvinšćak Jembrek, M.; Vuković L.; Puhović J.; Erhardt, J.; Oršolić N. Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons. J. Mol. Neurosci., 2012, 47(2), 286-299.
[http://dx.doi.org/10.1007/s12031-012-9737-1] [PMID: 22415355]
[266]
Qu, L.; Liang, X.; Gu, B.; Liu, W. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy. Neural Regen. Res., 2014, 9(12), 1195-1203.
[http://dx.doi.org/10.4103/1673-5374.135328] [PMID: 25206782]
[267]
Yang, E.J.; Kim, G.S.; Kim, J.A.; Song, K.S. Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. Pharmacogn. Mag., 2013, 9(36), 302-308.
[http://dx.doi.org/10.4103/0973-1296.117824] [PMID: 24124281]
[268]
Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 1998, 139(10), 4252-4263.
[http://dx.doi.org/10.1210/endo.139.10.6216] [PMID: 9751507]
[269]
Mani, R.; Natesan, V.; Arumugam, R. Neuroprotective effect of chrysin on hyperammonemia mediated neuroinflammatory responses and altered expression of astrocytic protein in the hippocampus. Biomed. Pharmacother., 2017, 88, 762-769.
[http://dx.doi.org/10.1016/j.biopha.2017.01.081] [PMID: 28157652]
[270]
Zhang, Y.; Zhao, J.; Afzal, O.; Kazmi, I.; Al-Abbasi, F.A.; Altamimi, A.S.A.; Yang, Z. Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J. Biochem. Mol. Toxicol., 2021, 35(2), e22634.
[http://dx.doi.org/10.1002/jbt.22634] [PMID: 32991785]
[271]
Bowers, J.L.; Tyulmenkov, V.V.; Jernigan, S.C.; Klinge, C.M. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology, 2000, 141(10), 3657-3667.
[http://dx.doi.org/10.1210/endo.141.10.7721] [PMID: 11014220]
[272]
Ban, J.Y.; Cho, S.O.; Choi, S.H.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J. Pharmacol. Sci., 2008, 106(1), 68-77.
[http://dx.doi.org/10.1254/jphs.FP0071206] [PMID: 18202548]
[273]
Lin, T.K.; Chen, S.D.; Chuang, Y.C.; Lin, H.Y.; Huang, C.R.; Chuang, J.H.; Wang, P.W.; Huang, S.T.; Tiao, M.M.; Chen, J.B.; Liou, C.W. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int. J. Mol. Sci., 2014, 15(1), 1625-1646.
[http://dx.doi.org/10.3390/ijms15011625] [PMID: 24451142]
[274]
Farabegoli, F.; Barbi, C.; Lambertini, E.; Piva, R. (-)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells. Cancer Detect. Prev., 2007, 31(6), 499-504.
[http://dx.doi.org/10.1016/j.cdp.2007.10.018] [PMID: 18061364]
[275]
Lee, J.W.; Lee, Y.K.; Ban, J.O.; Ha, T.Y.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr., 2009, 139(10), 1987-1993.
[http://dx.doi.org/10.3945/jn.109.109785] [PMID: 19656855]
[276]
Romeo, L.; Intrieri, M.; D’Agata, V.; Mangano, N.G.; Oriani, G.; Ontario, M.L.; Scapagnini, G. The major green tea polyphenol, (-)- epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J. Am. Coll. Nutr., 2009, 28(sup4)(Suppl.), 492S-499S.
[http://dx.doi.org/10.1080/07315724.2009.10718116] [PMID: 20234037]
[277]
Lappano, R.; Todd, L.A.; Stanic, M.; Cai, Q.; Maggiolini, M.; Marincola, F.; Pietrobon, V. Multifaceted interplay between hormones, growth factors and hypoxia in the tumor microenvironment. Cancers (Basel), 2022, 14(3), 539.
[http://dx.doi.org/10.3390/cancers14030539] [PMID: 35158804]
[278]
Wang, S.F.; Chang, Y.L.; Tzeng, Y.D.; Wu, C.L.; Wang, Y.Z.; Tseng, L.M.; Chen, S.; Lee, H.C. Mitochondrial stress adaptation promotes resistance to aromatase inhibitor in human breast cancer cells via ROS/calcium up-regulated amphiregulin-estrogen receptor loop signaling. Cancer Lett., 2021, 523, 82-99.
[http://dx.doi.org/10.1016/j.canlet.2021.09.043] [PMID: 34610415]
[279]
Velloso, F.J.; Bianco, A.F.; Farias, J.O.; Torres, N.E.; Ferruzo, P.Y.; Anschau, V.; Jesus-Ferreira, H.C.; Chang, T.H.; Sogayar, M.C.; Zerbini, L.F.; Correa, R.G. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. OncoTargets Ther., 2017, 10, 5491-5524.
[http://dx.doi.org/10.2147/OTT.S142154] [PMID: 29200866]
[280]
Rau, S.W.; Dubal, D.B.; Böttner, M.; Gerhold, L.M.; Wise, P.M. Estradiol attenuates programmed cell death after stroke-like injury. J. Neurosci., 2003, 23(36), 11420-11426.
[http://dx.doi.org/10.1523/JNEUROSCI.23-36-11420.2003] [PMID: 14673006]
[281]
Simpkins, J.W.; Rajakumar, G.; Zhang, Y.Q.; Simpkins, C.E.; Greenwald, D.; Yu, C.J.; Bodor, N.; Day, A.L. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J. Neurosurg., 1997, 87(5), 724-730.
[http://dx.doi.org/10.3171/jns.1997.87.5.0724] [PMID: 9347981]
[282]
Sandstrom, N.J.; Rowan, M.H. Acute pretreatment with estradiol protects against CA1 cell loss and spatial learning impairments resulting from transient global ischemia. Horm. Behav., 2007, 51(3), 335-345.
[http://dx.doi.org/10.1016/j.yhbeh.2006.12.002] [PMID: 17239878]
[283]
O’Donnell, M.E.; Lam, T.I.; Tran, L.Q.; Foroutan, S.; Anderson, S.E. Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J. Cereb. Blood Flow Metab., 2006, 26(10), 1234-1249.
[http://dx.doi.org/10.1038/sj.jcbfm.9600278] [PMID: 16421506]
[284]
Paganini-Hill, A.; Ross, R.K.; Henderson, B.E. Postmenopausal oestrogen treatment and stroke: a prospective study. BMJ, 1988, 297(6647), 519-522.
[http://dx.doi.org/10.1136/bmj.297.6647.519] [PMID: 3139181]
[285]
Falkeborn, M.; Persson, I.; Terént, A.; Adami, H.O.; Lithell, H.; Bergström, R. Hormone replacement therapy and the risk of stroke. Follow-up of a population-based cohort in Sweden. Arch. Intern. Med., 1993, 153(10), 1201-1209.
[http://dx.doi.org/10.1001/archinte.1993.00410100035005] [PMID: 8388207]
[286]
Finucane, F.F.; Madans, J.H.; Bush, T.L.; Wolf, P.H.; Kleinman, J.C. Decreased risk of stroke among postmenopausal hormone users. Results from a national cohort. Arch. Intern. Med., 1993, 153(1), 73-79.
[http://dx.doi.org/10.1001/archinte.1993.00410010097008] [PMID: 8422201]
[287]
Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; Kotchen, J.M.; Ockene, J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 2002, 288(3), 321-333.
[http://dx.doi.org/10.1001/jama.288.3.321] [PMID: 12117397]
[288]
Strom, J.O.; Theodorsson, A.; Theodorsson, E. Dose-related neuroprotective versus neurodamaging effects of estrogens in rat cerebral ischemia: a systematic analysis. J. Cereb. Blood Flow Metab., 2009, 29(8), 1359-1372.
[http://dx.doi.org/10.1038/jcbfm.2009.66] [PMID: 19458604]
[289]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[290]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[291]
Calabrese, V.; Copani, A.; Testa, D.; Ravagna, A.; Spadaro, F.; Tendi, E.; Nicoletti, V.G.; Giuffrida, S.A.M. Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J. Neurosci. Res., 2000, 60(5), 613-622.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000601)60:5<613::AID-JNR6>3.0.CO;2-8] [PMID: 10820432]
[292]
Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.; Serra, A.; Calabrese, E.J.; Calabrese, V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing, 2015, 12(1), 20.
[http://dx.doi.org/10.1186/s12979-015-0046-8] [PMID: 26543490]
[293]
Conolly, R.B.; Lutz, W.K. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol. Sci., 2004, 77(1), 151-157.
[http://dx.doi.org/10.1093/toxsci/kfh007] [PMID: 14600281]
[294]
Holladay, S.D.; Ehrich, M.; Gogal, R.M., Jr Commentary on hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit. Rev. Toxicol., 2005, 35(2-3), 299-302.
[http://dx.doi.org/10.1080/10408440590917062] [PMID: 15839380]
[295]
Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev., 2007, 28(5), 521-574.
[http://dx.doi.org/10.1210/er.2007-0001] [PMID: 17640948]
[296]
Polan, M.L.; Daniele, A.; Kuo, A. Gonadal steroids modulate human monocyte interleukin-1 (IL-1) activity. Fertil. Steril., 1988, 49(6), 964-968.
[http://dx.doi.org/10.1016/S0015-0282(16)59945-2] [PMID: 2967196]
[297]
Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; Cuzzocrea, S.; Pennisi, G.; Calabrese, V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun. Ageing, 2013, 10(1), 41.
[http://dx.doi.org/10.1186/1742-4933-10-41] [PMID: 24498895]
[298]
Pennisi, M.; Crupi, R.; Di Paola, R.; Ontario, M.L.; Bella, R.; Calabrese, E.J.; Crea, R.; Cuzzocrea, S.; Calabrese, V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J. Neurosci. Res., 2017, 95(7), 1360-1372.
[http://dx.doi.org/10.1002/jnr.23986] [PMID: 27862176]
[299]
Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.; Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J. Cell Commun. Signal., 2014, 8(4), 369-384.
[http://dx.doi.org/10.1007/s12079-014-0253-7] [PMID: 25381162]
[300]
Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Aspects Med., 2011, 32(4-6), 279-304.
[http://dx.doi.org/10.1016/j.mam.2011.10.007] [PMID: 22020114]
[301]
Strom, J.O.; Theodorsson, A.; Theodorsson, E. Hormesis and female sex hormones. Pharmaceuticals (Basel), 2011, 4(5), 726-740.
[http://dx.doi.org/10.3390/ph4050726] [PMID: 29674603]
[302]
Amini, P.; Saffar, H.; Nourani, M.R.; Motevaseli, E.; Najafi, M.; Ali Taheri, R.; Qazvini, A. Curcumin mitigates radiation-induced lung pneumonitis and fibrosis in rats. Int. J. Mol. Cell. Med., 2018, 7(4), 212-219.
[PMID: 31516880]
[303]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[304]
Du, L.; Feng, X.; Xiang, X.; Jin, Y. Wound healing effect of an in situ forming hydrogel loading curcumin-phospholipid complex. Curr. Drug Deliv., 2016, 13(1), 76-82.
[http://dx.doi.org/10.2174/1567201813666151202195437] [PMID: 26634789]
[305]
Sun, Y.; Du, L.; Liu, Y.; Li, X.; Li, M.; Jin, Y.; Qian, X. Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-β-cyclodextrin for melanoma treatment. Int. J. Pharm., 2014, 469(1), 31-39.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.039] [PMID: 24746691]
[306]
Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B, 2018, 8(3), 440-448.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[307]
Hu, Y.; Li, M.; Zhang, M.; Jin, Y. Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. Int. J. Pharm., 2018, 551(1-2), 212-222.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.031] [PMID: 30227240]
[308]
Hu, S.; Maiti, P.; Ma, Q.; Zuo, X.; Jones, M.R.; Cole, G.M.; Frautschy, S.A. Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother., 2015, 15(6), 629-637.
[http://dx.doi.org/10.1586/14737175.2015.1044981] [PMID: 26035622]
[309]
Chen, T.; Zhuang, B.; Huang, Y.; Liu, Y.; Yuan, B.; Wang, W.; Yuan, T.; Du, L.; Jin, Y. Inhaled curcumin mesoporous polydopamine nanoparticles against radiation pneumonitis. Acta Pharm. Sin. B, 2021.
[http://dx.doi.org/10.1016/j.apsb.2021.10.027]
[310]
Rattanatantikul, T.; Maiprasert, M.; Sugkraroek, P.; Bumrungpert, A. Efficacy and safety of nutraceutical on menopausal symptoms in post-menopausal women: A randomized, double-blind, placebo-controlled clinical trial. J. Diet. Suppl., 2020, 1-15.
[PMID: 33331798]
[311]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[312]
Riplinger, L.; Piera-Jiménez, J.; Dooling, J.P. Patient identification techniques - approaches, implications, and findings. Yearb. Med. Inform., 2020, 29(1), 81-86.
[http://dx.doi.org/10.1055/s-0040-1701984] [PMID: 32823300]
[313]
Popp, F.A. Properties of biophotons and their theoretical implications. Indian J. Exp. Biol., 2003, 41(5), 391-402.
[PMID: 15244259]
[314]
Thomas, P.; Dong, J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 175-179.
[http://dx.doi.org/10.1016/j.jsbmb.2006.09.017] [PMID: 17088055]
[315]
Tacyildiz, N.; Ozyoruk, D.; Yavuz, G.; Unal, E.; Dincaslan, H.; Dogu, F.; Sahin, K.; Kucuk, O. Soy isoflavones ameliorate the adverse effects of chemotherapy in children. Nutr. Cancer, 2010, 62(7), 1001-1005.
[http://dx.doi.org/10.1080/01635581.2010.509841] [PMID: 20924976]
[316]
Ahmad, I.U.; Forman, J.D.; Sarkar, F.H.; Hillman, G.G.; Heath, E.; Vaishampayan, U.; Cher, M.L.; Andic, F.; Rossi, P.J.; Kucuk, O. Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutr. Cancer, 2010, 62(7), 996-1000.
[http://dx.doi.org/10.1080/01635581.2010.509839] [PMID: 20924975]
[317]
Landauer, M.R.; Srinivasan, V.; Seed, T.M. Genistein treatment protects mice from ionizing radiation injury. J. Appl. Toxicol., 2003, 23(6), 379-385.
[http://dx.doi.org/10.1002/jat.904] [PMID: 14635262]
[318]
Davis, T.A.; Clarke, T.K.; Mog, S.R.; Landauer, M.R. Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival. Int. J. Radiat. Biol., 2007, 83(3), 141-151.
[http://dx.doi.org/10.1080/09553000601132642] [PMID: 17378522]
[319]
Para, A.E.; Bezjak, A.; Yeung, I.W.; Van Dyk, J.; Hill, R.P. Effects of genistein following fractionated lung irradiation in mice. Radiother. Oncol., 2009, 92(3), 500-510.
[http://dx.doi.org/10.1016/j.radonc.2009.04.005] [PMID: 19433340]
[320]
Rosen, E.M.; Day, R.; Singh, V.K. New approaches to radiation protection. Front. Oncol., 2015, 4, 381.
[http://dx.doi.org/10.3389/fonc.2014.00381] [PMID: 25653923]
[321]
Maggiolini, M.; Statti, G.; Vivacqua, A.; Gabriele, S.; Rago, V.; Loizzo, M.; Menichini, F.; Amdò, S. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells. J. Steroid Biochem. Mol. Biol., 2002, 82(4-5), 315-322.
[http://dx.doi.org/10.1016/S0960-0760(02)00230-3] [PMID: 12589938]
[322]
Wang, K.L.; Hsia, S.M.; Chan, C.J.; Chang, F.Y.; Huang, C.Y.; Bau, D.T.; Wang, P.S. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets, 2013, 17(4), 337-349.
[http://dx.doi.org/10.1517/14728222.2013.756869] [PMID: 23327692]
[323]
Poschner, S.; Maier-Salamon, A.; Zehl, M.; Wackerlig, J.; Dobusch, D.; Pachmann, B.; Sterlini, K.L.; Jäger, W. The impacts of genistein and daidzein on estrogen conjugations in human breast cancer cells: A targeted metabolomics approach. Front. Pharmacol., 2017, 8, 699.
[http://dx.doi.org/10.3389/fphar.2017.00699] [PMID: 29051735]
[324]
Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol., 2010, 21(2), 263-268.
[http://dx.doi.org/10.1093/annonc/mdp499] [PMID: 19889614]
[325]
El-Bakoush, A.; Olajide, O.A. Formononetin inhibits neuroinflammation and increases estrogen receptor beta (ERβ) protein expression in BV2 microglia. Int. Immunopharmacol., 2018, 61, 325-337.
[http://dx.doi.org/10.1016/j.intimp.2018.06.016] [PMID: 29913427]
[326]
Chen, J.; Zeng, J.; Xin, M.; Huang, W.; Chen, X. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm. Metab. Res., 2011, 43(10), 681-686.
[http://dx.doi.org/10.1055/s-0031-1286306] [PMID: 21932171]
[327]
Puranik, N.V.; Srivastava, P.; Bhatt, G.; John Mary, D.J.S.; Limaye, A.M.; Sivaraman, J. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. Sci. Rep., 2019, 9(1), 7450.
[http://dx.doi.org/10.1038/s41598-019-43768-5] [PMID: 31092862]
[328]
Wang, L.M.; Xie, K.P.; Huo, H.N.; Shang, F.; Zou, W.; Xie, M.J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERα in human breast cancer MCF-7 cells. APJCP, 2012, 13(4), 1431-1437.
[PMID: 22799344]
[329]
Long, X.; Fan, M.; Bigsby, R.M.; Nephew, K.P. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol. Cancer Ther., 2008, 7(7), 2096-2108.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2350] [PMID: 18645020]
[330]
Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol. Res., 2019, 27(6), 629-634.
[http://dx.doi.org/10.3727/096504018X15228018559434] [PMID: 29739490]
[331]
Hong, J.; Fristiohady, A.; Nguyen, C.H.; Milovanovic, D.; Huttary, N.; Krieger, S.; Hong, J.; Geleff, S.; Birner, P.; Jäger, W.; Özmen, A.; Krenn, L.; Krupitza, G. Apigenin and luteolin attenuate the breaching of MDA-MB231 breast cancer spheroids through the Lymph endothelial barrier in vitro. Front. Pharmacol., 2018, 9, 220.
[http://dx.doi.org/10.3389/fphar.2018.00220] [PMID: 29593542]
[332]
Zhang, B.; Su, J.P.; Bai, Y.; Li, J.; Liu, Y.H. Inhibitory effects of O-methylated isoflavone glycitein on human breast cancer SKBR-3 cells. Int. J. Clin. Exp. Pathol., 2015, 8(7), 7809-7817.
[PMID: 26339345]
[333]
Zan, L.; Chen, Q.; Zhang, L.; Li, X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered, 2019, 10(1), 374-382.
[http://dx.doi.org/10.1080/21655979.2019.1657327] [PMID: 31431131]
[334]
Zeng, X.; Xu, Z.; Gu, J.; Huang, H.; Gao, G.; Zhang, X.; Li, J.; Jin, H.; Jiang, G.; Sun, H.; Huang, C. Induction of miR-137 by Isorhapontigenin (ISO) directly targets Sp1 protein translation and mediates its anticancer activity both in vitro and in vivo. Mol. Cancer Ther., 2016, 15(3), 512-522.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0606] [PMID: 26832795]
[335]
Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.H.; Kim, S.Y. A stilbenoid isorhapontigenin as a potential anti-cancer agent against breast cancer through inhibiting sphingosine kinases/tubulin stabilization. Cancers (Basel), 2019, 11(12), E1947.
[http://dx.doi.org/10.3390/cancers11121947] [PMID: 31817453]
[336]
Pan, C.; Hu, Y.; Li, J.; Wang, Z.; Huang, J.; Zhang, S.; Ding, L. Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer. PLoS One, 2014, 9(8), e104459.
[http://dx.doi.org/10.1371/journal.pone.0104459] [PMID: 25127034]
[337]
Moon, D.; McCormack, D.; McDonald, D.; McFadden, D. Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J. Surg. Res., 2013, 180(2), 208-215.
[http://dx.doi.org/10.1016/j.jss.2012.04.027] [PMID: 22572619]
[338]
Carreau, C.; Flouriot, G.; Bennetau-Pelissero, C.; Potier, M. Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERalpha transcriptional activation in human breast cancer cells. J. Steroid Biochem. Mol. Biol., 2008, 110(1-2), 176-185.
[http://dx.doi.org/10.1016/j.jsbmb.2008.03.032] [PMID: 18457947]
[339]
Mali, A.V.; Joshi, A.A.; Hegde, M.V.; Kadam, S.S. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition. Cancer Biol. Med., 2018, 15(2), 137-156.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0012] [PMID: 29951338]
[340]
Jin, J.S.; Lee, J.H.; Hattori, M. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha. Molecules, 2013, 18(1), 1122-1127.
[http://dx.doi.org/10.3390/molecules18011122] [PMID: 23325100]
[341]
Bergman Jungeström, M.; Thompson, L.U.; Dabrosin, C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin. Cancer Res., 2007, 13(3), 1061-1067.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1651] [PMID: 17289903]
[342]
Wang, C.; Li, C.; Zhou, H.; Huang, J. High-throughput screening assays for estrogen receptor by using coumestrol, a natural fluorescence compound. J. Biomol. Screen., 2014, 19(2), 253-258.
[http://dx.doi.org/10.1177/1087057113502673] [PMID: 24019253]
[343]
Lee, Y.H.; Yuk, H.J.; Park, K.H.; Bae, Y.S. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem., 2013, 141(1), 381-388.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.053] [PMID: 23768371]
[344]
Nehybova, T.; Smarda, J.; Daniel, L.; Brezovsky, J.; Benes, P. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling. J. Steroid Biochem. Mol. Biol., 2015, 152, 76-83.
[http://dx.doi.org/10.1016/j.jsbmb.2015.04.019] [PMID: 25934092]
[345]
Nehybová, T.; Šmarda, J.; Daniel, L.; Stiborek, M.; Kanický, V. Spasojevič I.; Preisler, J.; Damborský, J.; Beneš, P. Wedelolactone acts as proteasome inhibitor in breast cancer cells. Int. J. Mol. Sci., 2017, 18(4), E729.
[http://dx.doi.org/10.3390/ijms18040729] [PMID: 28353647]
[346]
Xin, D.; Wang, H.; Yang, J.; Su, Y.F.; Fan, G.W.; Wang, Y.F.; Zhu, Y.; Gao, X. -.M. Phytoestrogens from psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine, 2010, 17(2), 126-131.
[http://dx.doi.org/10.1016/j.phymed.2009.05.015] [PMID: 19577453]
[347]
Wang, X.; Xu, C.; Hua, Y.; Cheng, K.; Zhang, Y.; Liu, J.; Han, Y.; Liu, S.; Zhang, G.; Xu, S.; Yang, Z. Psoralen induced cell cycle arrest by modulating Wnt/β-catenin pathway in breast cancer cells. Sci. Rep., 2018, 8(1), 14001.
[http://dx.doi.org/10.1038/s41598-018-32438-7] [PMID: 30228287]
[348]
Nanashima, N.; Horie, K.; Maeda, H. Phytoestrogenic activity of blackcurrant anthocyanins is partially mediated through estrogen receptor beta. Molecules, 2017, 23(1), E74.
[http://dx.doi.org/10.3390/molecules23010074] [PMID: 29286333]
[349]
Mazzoni, L.; Giampieri, F.; Alvarez Suarez, J.M.; Gasparrini, M.; Mezzetti, B.; Forbes Hernandez, T.Y.; Battino, M.A. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct., 2019, 10(11), 7103-7120.
[http://dx.doi.org/10.1039/C9FO01721F] [PMID: 31621765]
[350]
Dayoub, O.; Le Lay, S.; Soleti, R.; Clere, N.; Hilairet, G.; Dubois, S.; Gagnadoux, F.; Boursier, J.; Martínez, M.C.; Andriantsitohaina, R. Estrogen receptor α/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Sci. Rep., 2017, 7(1), 9378.
[http://dx.doi.org/10.1038/s41598-017-09933-4] [PMID: 28839227]
[351]
Herrera-Sotero, M.Y.; Cruz-Hernández, C.D.; Oliart-Ros, R.M.; Chávez-Servia, J.L.; Guzmán-Gerónimo, R.I.; González-Covarrubias, V.; Cruz-Burgos, M.; Rodríguez-Dorantes, M. Anthocyanins of blue corn and tortilla arrest cell cycle and induce apoptosis on breast and prostate cancer cells. Nutr. Cancer, 2020, 72(5), 768-777.
[http://dx.doi.org/10.1080/01635581.2019.1654529] [PMID: 31448633]
[352]
Kim, H.I.; Quan, F.S.; Kim, J.E.; Lee, N.R.; Kim, H.J.; Jo, S.J.; Lee, C.M.; Jang, D.S.; Inn, K.S. Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina. Biochem. Biophys. Res. Commun., 2014, 451(2), 282-287.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.115] [PMID: 25088993]
[353]
Zhang, X.; Li, T.; Gong, E.S.; Liu, R.H. Antiproliferative Activity of Ursolic Acid in MDA-MB-231 Human Breast Cancer Cells through Nrf2 Pathway Regulation. J. Agric. Food Chem., 2020, 68(28), 7404-7415.
[http://dx.doi.org/10.1021/acs.jafc.0c03202] [PMID: 32551573]
[354]
Billam, M.; Witt, A.E.; Davidson, N.E. The silent estrogen receptor--can we make it speak? Cancer Biol. Ther., 2009, 8(6), 485-496.
[http://dx.doi.org/10.4161/cbt.8.6.7582] [PMID: 19411863]
[355]
Kim, H.Y.; Choi, T.W.; Kim, H.J.; Kim, S.M.; Park, K.R.; Jang, H.J.; Lee, E.H.; Kim, C.Y.; Jung, S.H.; Shim, B.S.; Ahn, K.S. A methylene chloride fraction of Saururus chinensis induces apoptosis through the activation of caspase-3 in prostate and breast cancer cells. Phytomedicine, 2011, 18(7), 567-574.
[http://dx.doi.org/10.1016/j.phymed.2010.10.013] [PMID: 21111586]
[356]
Raj, M.V.; Selvakumar, K.; Krishnamoorthy, G.; Revathy, S.; Elumalai, P.; Arunakaran, J. Impact of lycopene on epididymal androgen and estrogen receptors’ expression in polychlorinated biphenyls-exposed rat. Reprod. Sci., 2014, 21(1), 89-101.
[http://dx.doi.org/10.1177/1933719113492213] [PMID: 23749762]
[357]
Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci., 2014, 105(3), 252-257.
[http://dx.doi.org/10.1111/cas.12349] [PMID: 24397737]
[358]
Wu, K.H.; Ho, C.T.; Chen, Z.F.; Chen, L.C.; Whang-Peng, J.; Lin, T.N.; Ho, Y.S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J. Food Drug Anal., 2018, 26(1), 221-231.
[http://dx.doi.org/10.1016/j.jfda.2017.03.009] [PMID: 29389559]
[359]
Sirianni, R.; Chimento, A.; De Luca, A.; Casaburi, I.; Rizza, P.; Onofrio, A.; Iacopetta, D.; Puoci, F.; Andò, S.; Maggiolini, M.; Pezzi, V. Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol. Nutr. Food Res., 2010, 54(6), 833-840.
[http://dx.doi.org/10.1002/mnfr.200900111] [PMID: 20013881]
[360]
Han, J.; Talorete, T.P.; Yamada, P.; Isoda, H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 2009, 59(1), 45-53.
[http://dx.doi.org/10.1007/s10616-009-9191-2] [PMID: 19353300]
[361]
Chen, J.; Zhao, X.; Ye, Y.; Wang, Y.; Tian, J. Estrogen receptor beta-mediated proliferative inhibition and apoptosis in human breast cancer by calycosin and formononetin. Cell. Physiol. Biochem., 2013, 32(6), 1790-1797.
[http://dx.doi.org/10.1159/000356612] [PMID: 24355881]
[362]
Wu, G.; Niu, M.; Qin, J.; Wang, Y.; Tian, J. Inactivation of Rab27B-dependent signaling pathway by calycosin inhibits migration and invasion of ER-negative breast cancer cells. Gene, 2019, 709, 48-55.
[http://dx.doi.org/10.1016/j.gene.2019.04.005] [PMID: 31002890]
[363]
Won, Y. -.S.; Lee, J-.H.; Kwon, S-.J.; Kim, J-.Y.; Park, K-.H.; Lee, M-.K.; Seo, K-.II. α-Mangostin-induced apoptosis is mediated by estrogen receptor α in human breast cancer cells. Food Chem. Toxicol., 2014, 66, 158-165.
[http://dx.doi.org/10.1016/j.fct.2014.01.040] [PMID: 24480042]
[364]
Mersereau, J.E.; Levy, N.; Staub, R.E.; Baggett, S.; Zogovic, T.; Chow, S.; Ricke, W.A.; Tagliaferri, M.; Cohen, I.; Bjeldanes, L.F.; Leitman, D.C. Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol. Cell. Endocrinol., 2008, 283(1-2), 49-57.
[http://dx.doi.org/10.1016/j.mce.2007.11.020] [PMID: 18177995]
[365]
Yang, E.J.; Park, G.H.; Song, K.S. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology, 2013, 39, 114-123.
[http://dx.doi.org/10.1016/j.neuro.2013.08.012] [PMID: 24012889]
[366]
Kim, S.; Park, T.I. Naringenin: a partial agonist on estrogen receptor in T47D-KBluc breast cancer cells. Int. J. Clin. Exp. Med., 2013, 6(10), 890-899.
[PMID: 24260594]
[367]
Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[368]
Duan, X.; Li, Y.; Xu, F.; Ding, H. Study on the neuroprotective effects of Genistein on Alzheimer’s disease. Brain Behav., 2021, 11(5), e02100.
[http://dx.doi.org/10.1002/brb3.2100] [PMID: 33704934]
[369]
Qian, Y.; Cao, L.; Guan, T.; Chen, L.; Xin, H.; Li, Y.; Zheng, R.; Yu, D. Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NF-kappaB, JNK and ERK signaling pathway. Pharm. Biol., 2015, 53(8), 1124-1132.
[http://dx.doi.org/10.3109/13880209.2014.962057] [PMID: 25715966]
[370]
Wu, X.; Tong, B.; Yang, Y.; Luo, J.; Yuan, X.; Wei, Z.; Yue, M.; Xia, Y.; Dai, Y. Arctigenin functions as a selective agonist of estrogen receptor β to restrict mTORC1 activation and consequent Th17 differentiation. Oncotarget, 2016, 7(51), 83893-83906.
[http://dx.doi.org/10.18632/oncotarget.13338] [PMID: 27863380]
[371]
Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomed., 2019, 9(6), 574-586.
[PMID: 31763216]
[372]
Mansour, H.H.; Tawfik, S.S. Early treatment of radiation-induced heart damage in rats by caffeic acid phenethyl ester. Eur. J. Pharmacol., 2012, 692(1-3), 46-51.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.037] [PMID: 22771294]
[373]
Fan, Z.L.; Wang, Z.Y.; Zuo, L.L.; Tian, S.Q. Protective effect of anthocyanins from lingonberry on radiation-induced damages. Int. J. Environ. Res. Public Health, 2012, 9(12), 4732-4743.
[http://dx.doi.org/10.3390/ijerph9124732] [PMID: 23249859]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy