Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Aptamer-based Advances in Skin Cancer Research

Author(s): Adrianna Maria Piasek, Paulina Musolf and Anna Sobiepanek*

Volume 30, Issue 8, 2023

Published on: 17 June, 2022

Page: [953 - 973] Pages: 21

DOI: 10.2174/0929867329666220408112735

Price: $65

Abstract

Cancer diseases have been one of the biggest health threats for the last two decades. Approximately 9% of all diagnosed cancers are skin cancers, including melanoma and non-melanoma. In all cancer cases, early diagnosis is essential to achieve efficient treatment. New solutions and advanced techniques for rapid diagnosis are constantly being sought. Aptamers are single-stranded RNA or DNA synthetic sequences or peptides, which offer novel possibilities to this area of research by specifically binding selected molecules, the so-called cancer biomarkers. Nowadays, they are widely used as diagnostic probes in imaging and targeted therapy. In this review, we have summarized the recently made advances in diagnostics and treatment of skin cancers, which have been achieved by combining aptamers with basic or modern technologies.

Keywords: Skin cancers, biomarkers, aptamers, biophysical methods, imaging methods, diagnostic, probes.

[1]
Ritchie, H.; Roser, M. Causes of Death. Our world in data; , 2018. Available from: https://ourworldindata.org/causes-of-death
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[http://dx.doi.org/10.1038/nrc1299] [PMID: 14993899]
[4]
Zalewska, A.M.; Sobiepanek, A.; Kobiela, T. Zastosowanie metabolitów pozyskiwanych z mikroalg w biomedycynie, a w szczególności w diagnostyce i terapii chorób nowotworowych. In: Zagadnienia aktualnie poruszane przez młodych naukowców; Creativetime: New York, USA, 2021; pp. 12-17.
[5]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[6]
Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T. UV-induced skin damage. Toxicology, 2003, 189(1-2), 21-39.
[http://dx.doi.org/10.1016/S0300-483X(03)00150-1] [PMID: 12821280]
[7]
Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol. Physiol., 2014, 27(6), 316-332.
[http://dx.doi.org/10.1159/000360092] [PMID: 24994069]
[8]
Hochberg, M.; Kohen, R.; Enk, C.D. Role of antioxidants in prevention of pyrimidine dimer formation in UVB irradiated human HaCaT keratinocytes. Biomed. Pharmacother., 2006, 60(5), 233-237.
[http://dx.doi.org/10.1016/j.biopha.2006.04.008] [PMID: 16765564]
[9]
Sobiepanek, A.; Milner-Krawczyk, M.; Bobecka-Wesołowska, K.; Kobiela, T. The effect of delphinidin on the mechanical properties of keratinocytes exposed to UVB radiation. J. Photochem. Photobiol. B, 2016, 164, 264-270.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.09.038] [PMID: 27716574]
[10]
Farjadmand, F.; Karimpour-Razkenari, E.; Nabavi, S.M.; Ardekani, M.R.S.; Saeedi, M. Plant Polyphenols: Natural and potent UV-Protective agents for the prevention and treatment of skin disorders. Mini Rev. Med. Chem., 2021, 21(5), 576-585.
[http://dx.doi.org/10.2174/1389557520666201109121246] [PMID: 33167833]
[11]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[12]
Sobiepanek, A.; Paone, A.; Cutruzzolà, F.; Kobiela, T. Biophysical characterization of melanoma cell phenotype markers during metastatic progression. Eur. Biophys. J., 2021, 50(3-4), 523-542.
[http://dx.doi.org/10.1007/s00249-021-01514-8] [PMID: 33730175]
[13]
Shanbhag, P.P.; Jog, S.V.; Chogale, M.M.; Gaikwad, S.S. Theranostics for cancer therapy. Curr. Drug Deliv., 2013, 10(3), 357-362.
[http://dx.doi.org/10.2174/1567201811310030013]
[14]
Yarden, Y.; Caldes, C. Basic cancer research: Why it is essential for the future of cancer therapy. Bull. Cancer, 2014, 101(9), E25-E26.
[http://dx.doi.org/10.1684/bdc.2014.2024] [PMID: 25295602]
[15]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[16]
Sobiepanek, A.; Kobiela, T. Application of biosensors in cancer research. Rev. Res. Cancer Treat., 2018, 4(1), 4-12.
[17]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[18]
Bragazzi, N.L.; Amicizia, D.; Panatto, D.; Tramalloni, D.; Valle, I.; Gasparini, R. Quartz-Crystal Microbalance (QCM) for public health. In: Advances in Protein Chemistry and Structural Biology; Elsevier, 2015; 101, pp. 149-211.
[http://dx.doi.org/10.1016/bs.apcsb.2015.08.002]
[19]
MacDonald, H.; Bonnet, H.; Van der Heyden, A.; Defrancq, E.; Spinelli, N.; Coche-Guérente, L.; Dejeu, J. Influence of aptamer surface coverage on small target recognition: A SPR and QCM-D comparative study. J. Phys. Chem. C, 2019, 123(22), 13561-13568.
[http://dx.doi.org/10.1021/acs.jpcc.9b00845]
[20]
Devi, S.; Sharma, N.; Ahmed, T.; Huma, Z. I.; Kour, S.; Sahoo, B.; Singh, A. K.; Macesic, N.; Lee, S. J.; Gupta, M. K. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J. Biol. Sci., 2021, 2021, S1319562X21004009.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.031]
[21]
Jarczewska, M.; Górski, Ł.; Malinowska, E. Application of DNA aptamers as sensing layers for electrochemical detection of potassium ions. Sens. Actuators B Chem., 2016, 226, 37-43.
[http://dx.doi.org/10.1016/j.snb.2015.11.139]
[22]
Graham, H.K.; Eckersley, A.; Ozols, M.; Mellody, K.T.; Sherratt, M.J. Human skin: Composition, structure and visualisation methods. In: Skin Biophysics; Limbert, G., Ed.; Studies in Mechanobiology, Tissue Engineering and Biomaterials; Springer International Publishing: Cham, 2019; 22, pp. 1-18.
[http://dx.doi.org/10.1007/978-3-030-13279-8_1]
[23]
Sobiepanek, A.; Baran, J.; Milner-Krawczyk, M.; Kobiela, T. Different types of surface modification used for improving the adhesion and interactions of skin cells. OAJBS, 2020, 2(1), 000161.
[http://dx.doi.org/10.38125/OAJBS.000161]
[24]
Musolf, P.; Baran, J.; Ścieżyńska, A.; Staniszewska, M.; Sobiepanek, A. Rola mastocytów w nadzorze odpornościowym procesow fizjologicznych i patologicznych skóry. In: Zagadnienia aktualnie poruszane przez młodych naukowców; Creativetime: New York, USA; , 2021; 19, pp. 78-83.
[25]
Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Adv. Dermatol. Allergol., 2016, XXXIII(1), 1-5.
[http://dx.doi.org/10.5114/pdia.2015.48037]
[26]
Gallo, R.L. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol., 2017, 137(6), 1213-1214.
[http://dx.doi.org/10.1016/j.jid.2016.11.045] [PMID: 28395897]
[27]
Mayer, J.E.; Swetter, S.M.; Fu, T.; Geller, A.C. Screening, early detection, education, and trends for melanoma: Current status (2007-2013) and future directions: Part I. Epidemiology, high-risk groups, clinical strategies, and diagnostic technology. J. Am. Acad. Dermatol., 2014, 71(4), 599.e1-599.e12.
[http://dx.doi.org/10.1016/j.jaad.2014.05.046] [PMID: 25219716]
[28]
Rusetska, N.; Kowalski, K.; Zalewski, K.; Zięba, S.; Bidziński, M.; Goryca, K.; Kotowicz, B.; Fuksiewicz, M.; Kopczynski, J.; Bakuła-Zalewska, E.; Kowalik, A.; Kowalewska, M. CXCR4/ACKR3/CXCL12 axis in the lymphatic metastasis of vulvar squamous cell carcinoma. J. Clin. Pathol., 2021, 2021, jclinpath-2020-206917.
[http://dx.doi.org/10.1136/jclinpath-2020-206917]
[29]
Hasan, Z.; Riffat, F. Epidemiology and aetiology of non-melanoma skin cancer. In: Non-melanoma Skin Cancer of the Head and Neck; Riffat, F.; Palme, C.E.; Veness, M., Eds.; Springer: New Delhi, 2015; pp. 1-9.
[http://dx.doi.org/10.1007/978-81-322-2497-6_1]
[30]
Veness, M.; Howle, J. Merkel cell carcinoma, adnexal carcinoma and basal cell carcinoma. In: Non-melanoma Skin Cancer of the Head and Neck; Riffat, F.; Palme, C.E.; Veness, M., Eds.; Springer: New Delhi, 2015; pp. 67-82.
[http://dx.doi.org/10.1007/978-81-322-2497-6_6]
[31]
Ryan, R.J.H.; Akin, C.; Castells, M.; Wills, M.; Selig, M.K.; Nielsen, G.P.; Ferry, J.A.; Hornick, J.L. Mast cell sarcoma: A rare and potentially under-recognized diagnostic entity with specific therapeutic implications. Mod. Pathol., 2013, 26(4), 533-543.
[http://dx.doi.org/10.1038/modpathol.2012.199] [PMID: 23196796]
[32]
Monnier, J.; Georgin-Lavialle, S.; Canioni, D.; Lhermitte, L.; Soussan, M.; Arock, M.; Bruneau, J.; Dubreuil, P.; Bodemer, C.; Chandesris, M-O.; Lortholary, O.; Hermine, O.; Damaj, G. Mast cell sarcoma: New cases and literature review. Oncotarget, 2016, 7(40), 66299-66309.
[http://dx.doi.org/10.18632/oncotarget.11812] [PMID: 27602777]
[33]
Sobiepanek, A.; Milner-Krawczyk, M.; Lekka, M.; Kobiela, T. AFM and QCM-D as tools for the distinction of melanoma cells with a different metastatic potential. Biosens. Bioelectron., 2017, 93, 274-281.
[http://dx.doi.org/10.1016/j.bios.2016.08.088] [PMID: 27591901]
[34]
Sobiepanek, A.; Kowalska, P.D.; Soszyńska, M.; Kobiela, T.; Ścieżyńska, A. A short guide on the selection of melanocytes and melanoma cells’ isolation procedures for cancer research. Rev. Res. Cancer Treat., 2020, 6(1), 67-78.
[35]
Ścieżyńska, A.; Sobiepanek, A.; Kowalska, P.D.; Soszyńska, M.; Łuszczyński, K.; Grzywa, T.M.; Krześniak, N.; Góźdź, A.; Włodarski, P.K.; Galus, R.; Kobiela, T.; Malejczyk, J. A novel and effective method for human primary skin melanocytes and metastatic melanoma cell isolation. Cancers (Basel), 2021, 13(24), 6244.
[http://dx.doi.org/10.3390/cancers13246244] [PMID: 34944864]
[36]
Forman, S.B.; Ferringer, T.C.; Peckham, S.J.; Dalton, S.R.; Sasaki, G.T.; Libow, L.F.; Elston, D.M. Is superficial spreading melanoma still the most common form of malignant melanoma? J. Am. Acad. Dermatol., 2008, 58(6), 1013-1020.
[http://dx.doi.org/10.1016/j.jaad.2007.10.650] [PMID: 18485983]
[37]
Dummer, R.; Siano, M.; Hunger, R.E.; Lindenblatt, N.; Braun, R.; Michielin, O.; Mihic-Probst, D.; von Moos, R.; Najafi, Y.; Guckenberger, M.; Arnold, A. The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Med. Wkly., 2016, 146, w14279.
[http://dx.doi.org/10.4414/smw.2016.14279] [PMID: 26901103]
[38]
Elder, D.E. Melanoma progression. Pathology, 2016, 48(2), 147-154.
[http://dx.doi.org/10.1016/j.pathol.2015.12.002] [PMID: 27020387]
[39]
Clark, W.H., Jr; Elder, D.E.; Guerry, D., IV; Epstein, M.N.; Greene, M.H.; Van Horn, M. A study of tumor progression: The precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol., 1984, 15(12), 1147-1165.
[http://dx.doi.org/10.1016/S0046-8177(84)80310-X] [PMID: 6500548]
[40]
Damsky, W.E.; Theodosakis, N.; Bosenberg, M. Melanoma metastasis: New concepts and evolving paradigms. In: Oncogene; Elsevier, 2014; 33, pp. (19)2413-2422.
[http://dx.doi.org/10.1038/onc.2013.194] [PMID: 23728340]
[41]
Kulms, D.; Meier, F. In vitro models of melanoma.Skin Tissue Models for Regenerative Medicine; Elsevier, 2018, pp. 57-75.
[http://dx.doi.org/10.1016/B978-0-12-810545-0.00003-6]
[42]
Hearing, V.J.; Leong, S.P.L. From melanocytes to melanoma. The progression to malignancy. Melanoma Res., 2006, 16(5), 469-470.
[http://dx.doi.org/10.1097/01.cmr.0000222604.65556.22]
[43]
Bosserhoff, A.; Strizzi, L. Clinicopathologic Overview of Melanoma. In: Melanoma Development; Bosserhoff, A.K., Ed.; Springer International Publishing: Cham, 2017; pp. 1-5.
[http://dx.doi.org/10.1007/978-3-319-41319-8_1]
[44]
Guerry, D.I.V.; Synnestvedt, M.; Elder, D.E.; Schultz, D. Lessons from tumor progression: The invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent. J. Invest. Dermatol., 1993, 100(3), 342S-345S.
[http://dx.doi.org/10.1038/jid.1993.60] [PMID: 8440920]
[45]
McDermott, N.C.; Hayes, D.P.; al-Sader, M.H.; Hogan, J.M.; Walsh, C.B.; Kay, E.W.; Leader, M.B. Identification of vertical growth phase in malignant melanoma. A study of interobserver agreement. Am. J. Clin. Pathol., 1998, 110(6), 753-757.
[http://dx.doi.org/10.1093/ajcp/110.6.753] [PMID: 9844587]
[46]
Hsu, M-Y.; Shih, D-T.; Meier, F.E.; Van Belle, P.; Hsu, J-Y.; Elder, D.E.; Buck, C.A.; Herlyn, M. Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am. J. Pathol., 1998, 153(5), 1435-1442.
[http://dx.doi.org/10.1016/S0002-9440(10)65730-6] [PMID: 9811334]
[47]
Sandru, A.; Voinea, S.; Panaitescu, E.; Blidaru, A. Survival rates of patients with metastatic malignant melanoma. J. Med. Life, 2014, 7(4), 572-576.
[PMID: 25713625]
[48]
Gajda, M.; Kaminska-Winciorek, G. Do not let to be late: Overview of reasons for melanoma delayed diagnosis. Asian Pac. J. Cancer Prev., 2014, 15(9), 3873-3877.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3873] [PMID: 24935566]
[49]
Roesch, A.; Volkenandt, M. Melanoma. In: Braun-Falco’s Dermatology; Springer: Heidelberg, 2009; pp. 1416-1432.
[http://dx.doi.org/10.1007/978-3-540-29316-3_99]
[50]
Prieto, V.G.; Shea, C.R. Pathology of Melanoma. In: Genetics of Melanoma; Springer, 2016.
[http://dx.doi.org/10.1007/978-1-4939-3554-3_4]
[51]
Darragh, C.T.; Clayton, A.S. Melanoma in situ. In: A Practical Guide to Skin Cancer; Springer: Cham, 2018; pp. 97-116.
[http://dx.doi.org/10.1007/978-3-319-74903-7_5]
[52]
Ziółkowski, R.; Jarczewska, M.; Górski, Ł.; Malinowska, E. From small molecules toward whole cells detection: Application of electrochemical aptasensors in modern medical diagnostics. Sensors (Basel), 2021, 21(3), 724.
[http://dx.doi.org/10.3390/s21030724] [PMID: 33494499]
[53]
Hori, S.I.; Herrera, A.; Rossi, J.J.; Zhou, J. Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel), 2018, 10(1), 9.
[http://dx.doi.org/10.3390/cancers10010009] [PMID: 29301363]
[54]
Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life (Basel), 2021, 11(3), 193.
[http://dx.doi.org/10.3390/life11030193] [PMID: 33671039]
[55]
Gold, L.; Janjic, N.; Jarvis, T.; Schneider, D.; Walker, J.J.; Wilcox, S.K.; Zichi, D. Aptamers and the RNA world, past and present. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a003582-a003582.
[http://dx.doi.org/10.1101/cshperspect.a003582] [PMID: 21441582]
[56]
Ruiz Ciancio, D.; Vargas, M.R.; Thiel, W.H.; Bruno, M.A.; Giangrande, P.H.; Mestre, M.B. Aptamers as diagnostic tools in cancer. Pharmaceuticals (Basel), 2018, 11(3), 86.
[http://dx.doi.org/10.3390/ph11030086] [PMID: 30208607]
[57]
Chandola, C.; Kalme, S.; Casteleijn, M.G.; Urtti, A.; Neerathilingam, M. Application of aptamers in diagnostics, drug-delivery and imaging. J. Biosci., 2016, 41(3), 535-561.
[http://dx.doi.org/10.1007/s12038-016-9632-y] [PMID: 27581942]
[58]
Coker-Gurkan, A.; Obakan-Yerlikaya, P.; Arisan, E-D. Applications of aptamers in cancer therapy. In: Cancer Management and Therapy; Hamza, A.; Salem, N., Eds.; InTechOpen, London, UK; , 2018.
[http://dx.doi.org/10.5772/intechopen.75603]
[59]
Marshall, M.L.; Wagstaff, K.M. Internalized functional DNA aptamers as alternative cancer therapies. Front. Pharmacol., 2020, 11, 1115.
[http://dx.doi.org/10.3389/fphar.2020.01115] [PMID: 32848740]
[60]
Ravichandran, G.; Rengan, A.K. Aptamer-mediated nanotheranostics for cancer treatment: A review. ACS Appl. Nano Mater., 2020, 3(10), 9542-9559.
[http://dx.doi.org/10.1021/acsanm.0c01785]
[61]
Tertis, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens. Bioelectron., 2019, 137, 123-132.
[http://dx.doi.org/10.1016/j.bios.2019.05.012] [PMID: 31085401]
[62]
Cerchia, L.; de Franciscis, V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol., 2010, 28(10), 517-525.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.005] [PMID: 20719399]
[63]
Scarano, S.; Dausse, E.; Crispo, F.; Toulmé, J-J.; Minunni, M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal. Chim. Acta, 2015, 897, 1-9.
[http://dx.doi.org/10.1016/j.aca.2015.07.009] [PMID: 26514999]
[64]
Senkara-Barwijuk, E.; Kobiela, T.; Lebed, K.; Lekka, M. Reaction pathway and free energy profile determined for specific recognition of oligosaccharide moiety of carboxypeptidase Y. Biosens. Bioelectron., 2012, 36(1), 103-109.
[http://dx.doi.org/10.1016/j.bios.2012.04.014] [PMID: 22541811]
[65]
Formisano, N.; Jolly, P.; Bhalla, N.; Cromhout, M.; Flanagan, S.P.; Fogel, R.; Limson, J.L.; Estrela, P. Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sens. Actuators B Chem., 2015, 220, 369-375.
[http://dx.doi.org/10.1016/j.snb.2015.05.049]
[66]
Dougherty, C.A.; Cai, W.; Hong, H. Applications of aptamers in targeted imaging: State of the art. Curr. Top. Med. Chem., 2015, 15(12), 1138-1152.
[http://dx.doi.org/10.2174/1568026615666150413153400] [PMID: 25866268]
[67]
Sekar, R.B.; Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol., 2003, 160(5), 629-633.
[http://dx.doi.org/10.1083/jcb.200210140] [PMID: 12615908]
[68]
Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev., 2013, 113(4), 2842-2862.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[69]
Hofmann, U.B.; Westphal, J.R.; Van Muijen, G.N.P.; Ruiter, D.J. Matrix metalloproteinases in human melanoma. J. Invest. Dermatol., 2000, 115(3), 337-344.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00068.x] [PMID: 10951266]
[70]
O’Grady, A.; Dunne, C.; O’Kelly, P.; Murphy, G.M.; Leader, M.; Kay, E. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in non-melanoma skin cancer: Implications for tumour progression. Histopathology, 2007, 51(6), 793-804.
[http://dx.doi.org/10.1111/j.1365-2559.2007.02885.x] [PMID: 18042068]
[71]
Kryza, D.; Debordeaux, F.; Azéma, L.; Hassan, A.; Paurelle, O.; Schulz, J.; Savona-Baron, C.; Charignon, E.; Bonazza, P.; Taleb, J.; Fernandez, P.; Janier, M.; Toulmé, J.J. Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One, 2016, 11(2), e0149387.
[http://dx.doi.org/10.1371/journal.pone.0149387] [PMID: 26901393]
[72]
Hoejberg, L.; Bastholt, L.; Johansen, J.S.; Christensen, I.J.; Gehl, J.; Schmidt, H. Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res., 2012, 22(4), 287-293.
[http://dx.doi.org/10.1097/CMR.0b013e3283550aa5] [PMID: 22617301]
[73]
Roy, D.; Pascher, A.; Juratli, M.A.; Sporn, J.C. The potential of aptamer-mediated liquid biopsy for early detection of cancer. Int. J. Mol. Sci., 2021, 22(11), 5601.
[http://dx.doi.org/10.3390/ijms22115601] [PMID: 34070509]
[74]
Zamay, A.S.; Zamay, G.S.; Kolovskaya, O.S.; Zamay, T.N.; Berezovski, M.V. Aptamer-based methods for detection of circulating tumor cells and their potential for personalized diagnostics. In: Isolation and Molecular Characterization of Circulating Tumor Cells; Magbanua, M.J.M.; Park, J.W., Eds.; Advances in Experimental Medicine and Biology;; Springer International Publishing: Cham, 2017; 994, pp. 67-81.
[http://dx.doi.org/10.1007/978-3-319-55947-6_3]
[75]
Kim, J-H.; Kim, E.; Lee, M.Y. Exosomes as diagnostic biomarkers in cancer. Mol. Cell. Toxicol., 2018, 14(2), 113-122.
[http://dx.doi.org/10.1007/s13273-018-0014-4]
[76]
Kashefi-Kheyrabadi, L.; Kim, J.; Chakravarty, S.; Park, S.; Gwak, H.; Kim, S-I.; Mohammadniaei, M.; Lee, M-H.; Hyun, K-A.; Jung, H-I. Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosens. Bioelectron., 2020, 169, 112622.
[http://dx.doi.org/10.1016/j.bios.2020.112622] [PMID: 32977087]
[77]
Musumeci, D.; Platella, C.; Riccardi, C.; Moccia, F.; Montesarchio, D. Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel), 2017, 9(12), 174.
[http://dx.doi.org/10.3390/cancers9120174] [PMID: 29261171]
[78]
Wang, Y-M.; Wu, Z.; Liu, S-J.; Chu, X. Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal. Chem., 2015, 87(13), 6470-6474.
[http://dx.doi.org/10.1021/acs.analchem.5b01634] [PMID: 26044187]
[79]
Calzada, V.; Moreno, M.; Newton, J.; González, J.; Fernández, M.; Gambini, J.P.; Ibarra, M.; Chabalgoity, A.; Deutscher, S.; Quinn, T.; Cabral, P.; Cerecetto, H. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorg. Med. Chem., 2017, 25(3), 1163-1171.
[http://dx.doi.org/10.1016/j.bmc.2016.12.026] [PMID: 28089349]
[80]
Zhao, B.; Wu, P.; Zhang, H.; Cai, C. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens. Bioelectron., 2015, 68, 763-770.
[http://dx.doi.org/10.1016/j.bios.2015.02.004] [PMID: 25682505]
[81]
Wang, X.; Lan, H.; Li, J.; Su, Y.; Xu, L. Muc1 promotes migration and lung metastasis of melanoma cells. Am. J. Cancer Res., 2015, 5(9), 2590-2604.
[PMID: 26609470]
[82]
Marzagalli, M.; Montagnani Marelli, M.; Casati, L.; Fontana, F.; Moretti, R.M.; Limonta, P. Estrogen receptor β in melanoma: From molecular insights to potential clinical utility. Front. Endocrinol. (Lausanne), 2016, 7, 140.
[http://dx.doi.org/10.3389/fendo.2016.00140] [PMID: 27833586]
[83]
Ma, J.; Han, H.; Liu, D.; Li, W.; Feng, H.; Xue, X.; Wu, X.; Niu, G.; Zhang, G.; Zhao, Y.; Liu, C.; Tao, H.; Gao, B. HER2 as a promising target for cytotoxicity T cells in human melanoma therapy. PLoS One, 2013, 8(8), e73261.
[http://dx.doi.org/10.1371/journal.pone.0073261] [PMID: 24015299]
[84]
Ojima, A.; Matsui, T.; Maeda, S.; Takeuchi, M.; Inoue, H.; Higashimoto, Y.; Yamagishi, S. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Lab. Invest., 2014, 94(4), 422-429.
[http://dx.doi.org/10.1038/labinvest.2014.5] [PMID: 24514068]
[85]
Nakamura, N.; Matsui, T.; Nishino, Y.; Sotokawauchi, A.; Higashimoto, Y.; Yamagishi, S.I. Long-term local injection of RAGE-aptamer suppresses the growth of malignant melanoma in nude mice. J. Oncol., 2019, 2019, 7387601.
[http://dx.doi.org/10.1155/2019/7387601] [PMID: 31565056]
[86]
Li, H.; Liu, J.; Xiao, X.; Sun, S.; Zhang, H.; Zhang, Y.; Zhou, W.; Zhang, B.; Roy, M.; Liu, H.; Ye, M.; Wang, Z.; Liu-Smith, F.; Liu, J. A novel aptamer LL4A specifically targets vemurafenib-resistant melanoma through binding to the CD63 protein. Mol. Ther. Nucleic Acids, 2019, 18, 727-738.
[http://dx.doi.org/10.1016/j.omtn.2019.10.005] [PMID: 31726389]
[87]
Chang, P-L.; Harkins, L.; Hsieh, Y-H.; Hicks, P.; Sappayatosok, K.; Yodsanga, S.; Swasdison, S.; Chambers, A.F.; Elmets, C.A.; Ho, K-J. Osteopontin expression in normal skin and non-melanoma skin tumors. J. Histochem. Cytochem., 2008, 56(1), 57-66.
[http://dx.doi.org/10.1369/jhc.7A7325.2007] [PMID: 17938278]
[88]
Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Malik, M.T. AS1411-functionalized delivery nanosystems for targeted cancer therapy. Explor. Med., 2021, 2, 146-166.
[http://dx.doi.org/10.37349/emed.2021.00039]
[89]
Lopes-Nunes, J.; Lifante, J.; Shen, Y.; Ximendes, E.C.; Jaque, D.; Iglesias-de la Cruz, M.C.; Cruz, C. Biological studies of an ICG-tagged aptamer as drug delivery system for malignant melanoma. Eur. J. Pharm. Biopharm., 2020, 154, 228-235.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.018] [PMID: 32707287]
[90]
Powell Gray, B.; Song, X.; Hsu, D.S.; Kratschmer, C.; Levy, M.; Barry, A.P.; Sullenger, B.A. An aptamer for broad cancer targeting and therapy. Cancers (Basel), 2020, 12(11), 3217.
[http://dx.doi.org/10.3390/cancers12113217] [PMID: 33142831]
[91]
Zhang, S.; Gupta, S.; Fitzgerald, T.J.; Bogdanov, A.A. Jr Dual radiosensitization and anti-STAT3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics, 2018, 2(1), 1-11.
[http://dx.doi.org/10.7150/ntno.22335] [PMID: 29291159]
[92]
Zeng, Y.B.; Yu, Z.C.; He, Y.N.; Zhang, T.; Du, L.B.; Dong, Y.M.; Chen, H.W.; Zhang, Y.Y.; Wang, W.Q. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol. Sin., 2018, 39(2), 261-274.
[http://dx.doi.org/10.1038/aps.2017.166] [PMID: 29388568]
[93]
Kolovskaya, O.S.; Zamay, T.N.; Belyanina, I.V.; Karlova, E.; Garanzha, I.; Aleksandrovsky, A.S.; Kirichenko, A.; Dubynina, A.V.; Sokolov, A.E.; Zamay, G.S.; Glazyrin, Y.E.; Zamay, S.; Ivanchenko, T.; Chanchikova, N.; Tokarev, N.; Shepelevich, N.; Ozerskaya, A.; Badrin, E.; Belugin, K.; Belkin, S.; Zabluda, V.; Gargaun, A.; Berezovski, M.V.; Kichkailo, A.S. Aptamer-targeted plasmonic photothermal therapy of cancer. Mol. Ther. Nucleic Acids, 2017, 9, 12-21.
[http://dx.doi.org/10.1016/j.omtn.2017.08.007] [PMID: 29246290]
[94]
Viraka Nellore, B.P.; Pramanik, A.; Chavva, S.R.; Sinha, S.S.; Robinson, C.; Fan, Z.; Kanchanapally, R.; Grennell, J.; Weaver, I.; Hamme, A.T.; Ray, P.C. Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discuss., 2014, 175, 257-271.
[http://dx.doi.org/10.1039/C4FD00074A] [PMID: 25277344]
[95]
Kalinowska, D.; Grabowska-Jadach, I.; Liwinska, M.; Drozd, M.; Pietrzak, M.; Dybko, A.; Brzozka, Z. Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens. Bioelectron., 2019, 126, 214-221.
[http://dx.doi.org/10.1016/j.bios.2018.10.069] [PMID: 30423478]
[96]
Li, L.; Hou, J.; Liu, X.; Guo, Y.; Wu, Y.; Zhang, L.; Yang, Z. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials, 2014, 35(12), 3840-3850.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.019] [PMID: 24486214]
[97]
Ara, M.N.; Matsuda, T.; Hyodo, M.; Sakurai, Y.; Ohga, N.; Hida, K.; Harashima, H. Construction of an aptamer modified liposomal system targeted to tumor endothelial cells. Biol. Pharm. Bull., 2014, 37(11), 1742-1749.
[http://dx.doi.org/10.1248/bpb.b14-00338] [PMID: 25366480]
[98]
Sobiepanek, A.; Galus, R.; Kobiela, T. Application of the tape stripping method in the research on the skin condition and its diseases. Rev. Res. Cancer Treat., 2019, 5, 4-14.
[99]
Préat, V.; Dujardin, N. Topical delivery of nucleic acids in the skin. STP Pharm. Sci., 2001, 11(1), 57-68.
[100]
Lenn, J.D.; Neil, J.; Donahue, C.; Demock, K.; Tibbetts, C.V.; Cote-Sierra, J.; Smith, S.H.; Rubenstein, D.; Therrien, J-P.; Pendergrast, P.S.; Killough, J.; Brown, M.B.; Williams, A.C. RNA aptamer delivery through intact human skin. J. Invest. Dermatol., 2018, 138(2), 282-290.
[http://dx.doi.org/10.1016/j.jid.2017.07.851] [PMID: 28942363]
[101]
Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Daraba, O.M.; Gherghel, D.; Vochita, G.; Popa, M. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers (Basel), 2019, 11(9), 1515.
[http://dx.doi.org/10.3390/polym11091515] [PMID: 31540426]
[102]
Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Mihai, C.T.; Bacaita, S.E.; Popa, M. Formulations based on drug loaded aptamer-conjugated liposomes as a viable strategy for the topical treatment of basal cell carcinoma-in vitro tests. Pharmaceutics, 2021, 13(6), 866.
[http://dx.doi.org/10.3390/pharmaceutics13060866] [PMID: 34208362]
[103]
Rata, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Popa, M.; Mihai, C-T.; Solcan, C.; Ochiuz, L.; Vochita, G. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil - An innovative concept for the skin cancer therapy. Mater. Sci. Eng. C, 2021, 119, 111591.
[http://dx.doi.org/10.1016/j.msec.2020.111591] [PMID: 33321636]
[104]
Quirico, L.; Orso, F.; Esposito, C.L.; Bertone, S.; Coppo, R.; Conti, L.; Catuogno, S.; Cavallo, F.; de Franciscis, V.; Taverna, D. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int. J. Biol. Sci., 2020, 16(7), 1238-1251.
[http://dx.doi.org/10.7150/ijbs.39768] [PMID: 32174798]
[105]
Taghdisi, S.M.; Danesh, N.M.; Lavaee, P.; Emrani, A.S.; Hassanabad, K.Y.; Ramezani, M.; Abnous, K. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater. Sci. Eng. C, 2016, 61, 753-761.
[http://dx.doi.org/10.1016/j.msec.2016.01.009] [PMID: 26838906]
[106]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[107]
Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on aptamer research. Int. J. Mol. Sci., 2019, 20(10), 2511.
[http://dx.doi.org/10.3390/ijms20102511] [PMID: 31117311]
[108]
Chandola, C.; Neerathilingam, M. Aptamers for Targeted Delivery: Current Challenges and Future Opportunities. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine; Tyagi, R.; Garg, N.; Shukla, R.; Singh Bisen, P., Eds.; InTechOpen, London, UK , 2020.
[http://dx.doi.org/10.5772/intechopen.84217]
[109]
Hidding, J. Therapeutic battle: Antibodies vs. aptamers. Nanoscience master programe, 2016, NS109, 1-20.
[110]
Yoon, S.; Rossi, J.J. Future strategies for the discovery of therapeutic aptamers. Expert Opin. Drug Discov., 2017, 12(4), 317-319.
[http://dx.doi.org/10.1080/17460441.2017.1290077] [PMID: 28276706]
[111]
Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 2020, 12(7), 646.
[http://dx.doi.org/10.3390/pharmaceutics12070646] [PMID: 32659966]
[112]
Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[113]
Wu, Y.; Belmonte, I.; Sykes, K.S.; Xiao, Y.; White, R.J. Perspective on the future role of aptamers in analytical chemistry. Anal. Chem., 2019, 91(24), 15335-15344.
[http://dx.doi.org/10.1021/acs.analchem.9b03853] [PMID: 31714748]
[114]
Hu, M.; Zhang, K. The application of aptamers in cancer research: An up-to-date review. Future Oncol., 2013, 9(3), 369-376.
[http://dx.doi.org/10.2217/fon.12.201] [PMID: 23469972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy