Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Aromatic or Hetero-aromatic Directly Attached Tri and Tetrasubstituted Methanes: New Chemical Entities as Anti-Infectives

Author(s): Deblina Roy, Ritesh P. Thakare, Sidharth Chopra* and Gautam Panda*

Volume 30, Issue 8, 2023

Published on: 08 November, 2022

Page: [974 - 998] Pages: 25

DOI: 10.2174/0929867329666220823111812

Price: $65

Abstract

Tri and Tetra-substituted Methanes (TRSMs) are a significant structural motif in many approved drugs and prodrugs. There is increasing use of TRSM units in medicinal chemistry, and many derivatives are specifically designed to make drug–target interactions through new chemical space around TRSM moiety. In this perspective, we describe synthetic challenges for accessing a range of functionalized selective TRSMs and their molecular mechanism of action, especially as anti-infectives. Natural anti-infectives like (+)-Bionectin A, B, (+)-Gliocladine C, Balanocarpol having TRSMs selectively and effectively bind to target proteins in comparison to planar motif having more sp2 carbons perhaps due to conformation which reduces the penalty for conformational entropy with the enhancement of three-dimensionality. Properties of repurposed TRSMs like Almitrine, Ifenprodil, Baricitinib and Remdesivir with their recent progress in COVID-19 therapeutics with their mode of action are also delineated. This perspective is expected to deliver a user guide and reference source for scientists, researchers and academicians in pursuing newly designed TRSMs as therapeutics.

Keywords: Tri and Tetra-substituted Methanes, Anti-infectives, Almitrine, Ifenprodil, Baricitinib and Remdesivir

« Previous
[1]
Nair, V.; Thomas, S.; Mathew, S.C.; Abhilash, K.G. Recent advances in the chemistry of triaryl- and triheteroarylmethanes. Tetrahedron, 2006, 62(29), 6731-6747.
[http://dx.doi.org/10.1016/j.tet.2006.04.081]
[2]
Shagufta, S.; Srivastava, A.K.; Sharma, R.; Mishra, R.; Balapure, A.K.; Murthy, P.S.; Panda, G. Substituted phenanthrenes with basic amino side chains: A new series of anti-breast cancer agents. Bioorg. Med. Chem., 2006, 14(5), 1497-1505.
[http://dx.doi.org/10.1016/j.bmc.2005.10.002] [PMID: 16249093]
[3]
(a) Shagufta; Kumar, A.; Panda, G.; Siddiqi, M.I. CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents. J. Mol. Model., 2007, 13(1), 99-109.
[http://dx.doi.org/10.1007/s00894-006-0124-0] [PMID: 16858589];
(b) Panda, G.; Parai, M.K.; Das, S.K. Shagufta; Sinha, M.; Chaturvedi, V.; Srivastava, A.K.; Manju, Y.S.; Gaikwad, A.N.; Sinha, S. Effect of substituents on diarylmethanes for antitubercular activity. Eur. J. Med. Chem., 2007, 42(3), 410-419.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.020] [PMID: 17112639]
[4]
Srivastava, N. Sangita; Ray, S.; Singh, M.M.; Dwivedi, A.; Kumar, A. Diaryl naphthyl methanes a novel class of anti-implantation agents. Bioorg. Med. Chem., 2004, 12(5), 1011-1021.
[http://dx.doi.org/10.1016/j.bmc.2003.12.015] [PMID: 14980614]
[5]
Al-Qawasmeh, R.A.; Lee, Y.; Cao, M.Y.; Gu, X.; Vassilakos, A.; Wright, J.A.; Young, A. Triaryl methane derivatives as antiproliferative agents. Bioorg. Med. Chem. Lett., 2004, 14(2), 347-350.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.004] [PMID: 14698156]
[6]
(a) Terrier, M.; Boubaker, T.; Xiao, L.; Farrell, P.G. Steric effects on the intrinsic reactivity of nitrotriphenylmethanes. J. Org. Chem., 1992, 57(14), 3924-3929.
[http://dx.doi.org/10.1021/jo00040a037];
(b) Muthyala, R.; Katritzky, A.R.; Lan, X. A synthetic study on the preparation of triarylmethanes. Dyes Pigments, 1994, 25(4), 303-324.
[http://dx.doi.org/10.1016/0143-7208(94)87017-9]
[7]
Recanatini, M.; Cavalli, A.; Valenti, P. Nonsteroidal aromatase inhibitors: Recent advances. Med. Res. Rev., 2002, 22(3), 282-304.
[http://dx.doi.org/10.1002/med.10010] [PMID: 11933021]
[8]
Bhatnagar, A.S.; Häusler, A.; Schieweck, K.; Lang, M.; Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol., 1990, 37(6), 1021-1027.
[http://dx.doi.org/10.1016/0960-0760(90)90460-3] [PMID: 2149502]
[9]
Baker, L.A.; Sun, L.; Crooks, R.M. Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine). Dendrimers. Bull. Korean Chem. Soc., 2002, 23(5), 647-654.
[http://dx.doi.org/10.5012/bkcs.2002.23.5.647]
[10]
Köster, H.; Beck, S.; Coull, J.M.; Dunne, T.; Gildea, B.D.; Kissinger, C.; O’Keeffe, T. Oligonucleotide synthesis and multiplex DNA sequencing using chemiluminescent detection. Nucleic Acids Symp. Ser., 1991, 24(24), 318-321.
[PMID: 1841371]
[11]
(a) Ramage, R.; Wahl, F.O. 4-(17-tetrabenzo [a,c,g,i] fluorenylmethyl)-41′,4″-Dimethoxytrityl Chloride: A hydrophobic 5′-protecting group for the separation of synthetic oligonucleotides. Tetrahedron Lett., 1993, 34(44), 7133-7136.
[http://dx.doi.org/10.1016/S0040-4039(00)61618-0];
(b) Letsinger, R.L.; Finnan, J.L. Selective deprotection by reductive cleavage with radical anions. J. Am. Chem. Soc., 1975, 97(24), 7197-7198.
[http://dx.doi.org/10.1021/ja00857a058]
[12]
Shchepinov, M.S.; Chalk, R.; Southern, E.M. Trityl tags for encoding in combinatorial synthesis. Tetrahedron, 2000, 56(17), 2713-2724.
[http://dx.doi.org/10.1016/S0040-4020(00)00223-4]
[13]
(a) Breslow, R.; Kaplan, L.; LaFollette, D. Carbonium ions with multiple neighboring groups. II. Physical studies. J. Am. Chem. Soc., 1968, 90(15), 4056-4064.
[http://dx.doi.org/10.1021/ja01017a024];
(b) Fisher, E.F.; Caruthers, M.H. Color coded triarylmethyl protecting groups useful for deoxypolynucleotide synthesis. Nucleic Acids Res., 1983, 11(5), 1589-1599.
[http://dx.doi.org/10.1093/nar/11.5.1589] [PMID: 6828388];
(c) Fourrey, J.L.; Varenne, J.; Blonski, C.; Dousset, P.; Shire, D. 1,1-Bis-(4-ethoxyphenyl)-1′-pyrenyl ethyl (bmpm): A new fluorescent 5′ protecting group for the purification of unmodified and modified oligonucleotides. Tetrahedron Lett., 1987, 28(43), 5157-5160.
[http://dx.doi.org/10.1016/S0040-4039(00)95616-8];
(d) Meier, H.; Kim, S. Methylium Ions with OPV Chains − New NIR Dyes. Eur. J. Org. Chem., 2001, 2001(6), 1163-1167.
[http://dx.doi.org/10.1002/1099-0690(200103)2001:6<1163:AID-EJOC1163>3.0.CO;2-K]
[14]
Talele, T.T. Opportunities for Tapping into Three-Dimensional Chemical Space through a Quaternary Carbon. J. Med. Chem., 2020, 63(22), 13291-13315.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00829] [PMID: 32805118]
[16]
O’Neill. Tackling drug-resistant infections globally: final report and recommendations., 2016. Available from: https://amr-review.org/sites/default/files/160518_Final% 20paper_with%20cover.pdf
[17]
WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed., Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
[18]
Taylor, B.L.H.; Harris, M.R.; Jarvo, E.R. Synthesis of enantioenriched triarylmethanes by stereospecific cross-coupling reactions. Angew. Chem. Int. Ed., 2012, 51(31), 7790-7793.
[http://dx.doi.org/10.1002/anie.201202527]
[19]
Matthew, S.C.; Glasspoole, B.W.; Eisenberger, P.; Crudden, C.M. Synthesis of enantiomerically enriched triarylmethanes by enantiospecific Suzuki-Miyaura cross-coupling reactions. J. Am. Chem. Soc., 2014, 136(16), 5828-5831.
[http://dx.doi.org/10.1021/ja412159g] [PMID: 24684649]
[20]
Tsuchida, K.; Senda, Y.; Nakajima, K.; Nishibayashi, Y. Construction of chiral tri- and tetra-arylmethanes bearing quaternary carbon centers: Copper-catalyzed enantioselective propargylation of indoles with propargylic esters. Angew. Chem. Int. Ed., 2016, 55(33), 9728-9732.
[http://dx.doi.org/10.1002/anie.201604182]
[21]
Zhang, S.; Kim, B.S.; Wu, C.; Mao, J.; Walsh, P.J. Palladium-catalysed synthesis of triaryl(heteroaryl)methanes. Nat. Commun., 2017, 8(1), 14641.
[http://dx.doi.org/10.1038/ncomms14641] [PMID: 28290445]
[22]
Saha, S.; Alamsetti, S.K.; Schneider, C. Chiral Brønsted acid-catalyzed Friedel-Crafts alkylation of electron-rich arenes with in situ-generated ortho-quinone methides: Highly enantioselective synthesis of diarylindolylmethanes and triarylmethanes. Chem. Commun. (Camb.), 2015, 51(8), 1461-1464.
[http://dx.doi.org/10.1039/C4CC08559K] [PMID: 25493449]
[23]
Ardea, P.; Anand, R.V. Expedient access to unsymmetrical triarylmethanes through N-heterocyclic carbene catalysed 1,6-conjugate addition of 2-naphthols to para-quinone methides. RSC Advances, 2016, 6(81), 77111-77115.
[http://dx.doi.org/10.1039/C6RA11116E]
[24]
Nambo, M.; Yim, J.; Fowler, K.; Crudden, C. Synthesis of tetraarylmethanes by the triflic acid-promoted formal cross-dehydrogenative coupling of triarylmethanes with arenes. Synlett, 2017, 28(20), 2936-2940.
[http://dx.doi.org/10.1055/s-0036-1588563]
[25]
Roy, D.; Panda, G. A dehydrative arylation and thiolation of tertiary alcohols catalyzed by in situ generated triflic acid - Viable protocol for CeC and CeS bond formation. Tetrahedron, 2018, 74(43), 6270-6277.
[http://dx.doi.org/10.1016/j.tet.2018.09.009]
[26]
Sabacky, M.J.; Johnson, S.M.; Martin, J.C.; Paul, I.C. Steric effects in ortho-substituted triarylmethanes. J. Am. Chem. Soc., 1969, 91(26), 7542-7544.
[http://dx.doi.org/10.1021/ja01054a073]
[27]
Zheng, C.J.; Kim, C.J.; Bae, K.S.; Kim, Y.H.; Kim, W.G. Bionectins A-C, epidithiodioxopiperazines with anti-MRSA activity, from Bionectra byssicola F120. J. Nat. Prod., 2006, 69(12), 1816-1819.
[http://dx.doi.org/10.1021/np060348t] [PMID: 17190469]
[28]
Yang, Y.H.; Yang, D.S.; Li, G.H.; Pu, X.J.; Mo, M.H.; Zhao, P.J. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J. Antibiot. (Tokyo), 2019, 72(10), 752-758.
[http://dx.doi.org/10.1038/s41429-019-0209-5] [PMID: 31324892]
[29]
Dong, J.Y.; He, H.P.; Shen, Y.M.; Zhang, K.Q. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J. Nat. Prod., 2005, 68(10), 1510-1513.
[http://dx.doi.org/10.1021/np0502241] [PMID: 16252916]
[30]
Arora, P.; Wani, Z.A.; Nalli, Y.; Ali, A.; Riyaz-Ul-Hassan, S. Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhizaglabra Linn. Microb. Ecol., 2016, 72(4), 802-812.
[http://dx.doi.org/10.1007/s00248-016-0805-x] [PMID: 27357141]
[31]
Zhao, P.; Xue, Y.; Li, J.; Li, X.; Zu, X.; Zhao, Z.; Quan, C.; Gao, W.; Feng, S. Non-lipopeptide fungi-derived peptide antibiotics developed since 2000. Biotechnol. Lett., 2019, 41(6-7), 651-673.
[http://dx.doi.org/10.1007/s10529-019-02677-3] [PMID: 31020454]
[32]
Song, H.C.; Shen, W.Y.; Dong, J.Y. Nematicidal metabolites from Gliocladium roseum YMF1.00133. Appl. Biochem. Microbiol., 2016, 52(3), 324-330.
[http://dx.doi.org/10.1134/S0003683816030169]
[33]
Atun, S.; Aznam, N.; Arianingrum, R.; Takaya, Y.; Masatake, N. Resveratrol derivatives from stem bark of hopea and their biological activity test. J. Physiol. Sci., 2008, 19(2), 7-21.
[34]
Dai, J.R.; Hallock, Y.F.; Cardellina, J.H., II; Boyd, M.R. HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato. J. Nat. Prod., 1998, 61(3), 351-353.
[http://dx.doi.org/10.1021/np970519h] [PMID: 9544565]
[35]
Sahidin, I.; Waahyuni, W.; Malaka, M.H.; Imran, I. Antibacterial and cytotoxic potencies of stilbene oligomers from stem barks of baoti (Dryobalanops lanceolata) growing in Kendari, Indonesia. Asian J. Pharm. Clin. Res., 2017, 10(8), 139-143.
[36]
Alsterholm, M.; Karami, N.; Faergemann, J. Antimicrobial activity of topical skin pharmaceuticals - an in vitro study. Acta Derm. Venereol., 2010, 90(3), 239-245.
[http://dx.doi.org/10.2340/00015555-0840] [PMID: 20526539]
[37]
Frosini, S-M.; Bond, R. Activity in vitro of clotrimazole against canine methicillin-resistant and susceptible Staphylococcus pseudintermedius. Antibiotics (Basel), 2017, 6(4), 29.
[http://dx.doi.org/10.3390/antibiotics6040029]
[38]
Schaller, K. In vitro antibacterial activity of different clotrimazole formulations. Chemotherapy, 1982, 28(Suppl. 1), 32-36.
[http://dx.doi.org/10.1159/000238149] [PMID: 7160238]
[39]
Owen, M.K.; Clenney, T.L. Management of vaginitis. Am. Fam. Phys., 2004, 70(11), 2125-2132.
[PMID: 15606061]
[40]
duBouchet, L.; Spence, M.R.; Rein, M.F.; Danzig, M.R.; McCormack, W.M. Multicenter comparison of clotrimazole vaginal tablets, oral metronidazole, and vaginal suppositories containing sulfanilamide, aminacrine hydrochloride, and allantoin in the treatment of symptomatic trichomoniasis. Sex. Transm. Dis., 1997, 24(3), 156-160.
[http://dx.doi.org/10.1097/00007435-199703000-00006] [PMID: 9132982]
[41]
(a) Singh, S.; Jain, S.; Muthu, M.S.; Tiwari, S.; Tilak, R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. AAPS PharmSciTech, 2008, 9(2), 660-667.
[http://dx.doi.org/10.1208/s12249-008-9083-3] [PMID: 18500560];
(b) Tonglairoum, P.; Ngawhirunpat, T.; Rojanarata, T.; Kaomongkolgit, R.; Opanasopit, P. Fast-acting clotrimazole composited PVP/HPβCD nanofibers for oral candidiasis application. Pharm. Res., 2014, 31(8), 1893-1906.
[http://dx.doi.org/10.1007/s11095-013-1291-1] [PMID: 24554117];
(c) Bilensoy, E.; Rouf, M.A.; Vural, I.; Hincal, A.A. Thermosensitive vaginal gel formulation for the controlled release of clotrimazole via complexation to beta-cyclodextrin. J. Control. Release, 2006, 116(2), e107-e109.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.075] [PMID: 17718942];
(d) Vanić, Ž.; Škalko-Basnet, N. Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver? Eur. J. Pharm. Sci., 2013, 50(1), 29-41.
[http://dx.doi.org/10.1016/j.ejps.2013.04.035] [PMID: 23684936];
(e) Santos, S.S.; Lorenzoni, A.; Pegoraro, N.S.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of clotrimazole. Colloids Surf. B Biointerfaces, 2014, 116, 270-276.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.011] [PMID: 24503350]
[42]
García Rafanell, J.; Dronda, M.A.; Merlos, M.; Forn, J.; Torres, J.M.; Zapatero, M.I.; Basi, N. In vitro and in vivo studies with flutrimazole, a new imidazole derivative with antifungal activity. Arzneimittelforschung, 1992, 42(6), 836-840.
[PMID: 1418042]
[43]
Alomar, A.; Videla, S.; Delgadillo, J.; Gich, I.; Izquierdo, I.; Forn, J. Flutrimazole 1% dermal cream in the treatment of dermatomycoses: A multicentre, double-blind, randomized, comparative clinical trial with bifonazole 1% cream. Efficacy of flutrimazole 1% dermal cream in dermatomycoses. Dermatology, 1995, 190(4), 295-300.
[http://dx.doi.org/10.1159/000246720] [PMID: 7655109]
[44]
Haberfeld, H., Ed.; Austria-Codex; Österreichischer Apothekerverlag. Canesten Bifonazol-Crème: Vienna, 2015.
[45]
Berg, D.; Regel, E.; Harenberg, H.E.; Plempel, M. Bifonazole and clotrimazole. Their mode of action and the possible reason for the fungicidal behaviour of bifonazole. Arzneimittelforschung, 1984, 34(2), 139-146.
[PMID: 6372801]
[46]
Lackner, T.E.; Clissold, S.P. Bifonazole, A review of its antimicrobial activity and therapeutic use in superficial mycoses. Drugs, 1989, 38(2), 204-225.
[http://dx.doi.org/10.2165/00003495-198938020-00004] [PMID: 2670516]
[47]
El Hage, S.; Lajoie, B.; Feuillolay, C.; Roques, C.; Baziard, G. Synthesis, antibacterial and antifungal activities of bifonazole derivatives. Arch. Pharm. (Weinheim), 2011, 344(6), 402-410.
[http://dx.doi.org/10.1002/ardp.201000304] [PMID: 21433056]
[48]
de Almeida, R.F.M.; Santos, F.C.; Marycz, K.; Alicka, M.; Krasowska, A.; Suchodolski, J.; Panek, J.J.; Jezierska, A.; Starosta, R. New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Sci. Rep., 2019, 9(1), 16214.
[http://dx.doi.org/10.1038/s41598-019-52525-7] [PMID: 31700024]
[49]
Pirson, P.; Leclef, B.; Trouet, A. Activity of ketoconazole derivatives against Leishmania mexicana amazonensis within mouse peritoneal macrophages. Ann. Trop. Med. Parasitol., 1990, 84(2), 133-139.
[http://dx.doi.org/10.1080/00034983.1990.11812446] [PMID: 2383093]
[50]
Bedaquiline, Fumarate The American Society of Health-System Pharmacists. Archived from the original on 20 December 2016. Retrieved 8 December, 2016.
[51]
Ahmad, N.; Ahuja, S.D.; Akkerman, O.W.; Alffenaar, J.C.; Anderson, L.F.; Baghaei, P.; Bang, D.; Barry, P.M.; Bastos, M.L.; Behera, D.; Benedetti, A.; Bisson, G.P.; Boeree, M.J.; Bonnet, M.; Brode, S.K.; Brust, J.C.M.; Cai, Y.; Caumes, E.; Cegielski, J.P.; Centis, R.; Chan, P.C.; Chan, E.D.; Chang, K.C.; Charles, M.; Cirule, A.; Dalcolmo, M.P.; D’Ambrosio, L.; de Vries, G.; Dheda, K.; Esmail, A.; Flood, J.; Fox, G.J.; Fréchet-Jachym, M.; Fregona, G.; Gayoso, R.; Gegia, M.; Gler, M.T.; Gu, S.; Guglielmetti, L.; Holtz, T.H.; Hughes, J.; Isaakidis, P.; Jarlsberg, L.; Kempker, R.R.; Keshavjee, S.; Khan, F.A.; Kipiani, M.; Koenig, S.P.; Koh, W.J.; Kritski, A.; Kuksa, L.; Kvasnovsky, C.L.; Kwak, N.; Lan, Z.; Lange, C.; Laniado-Laborín, R.; Lee, M.; Leimane, V.; Leung, C.C.; Leung, E.C.; Li, P.Z.; Lowenthal, P.; Maciel, E.L.; Marks, S.M.; Mase, S.; Mbuagbaw, L.; Migliori, G.B.; Milanov, V.; Miller, A.C.; Mitnick, C.D.; Modongo, C.; Mohr, E.; Monedero, I.; Nahid, P.; Ndjeka, N.; O’Donnell, M.R.; Padayatchi, N.; Palmero, D.; Pape, J.W.; Podewils, L.J.; Reynolds, I.; Riekstina, V.; Robert, J.; Rodriguez, M.; Seaworth, B.; Seung, K.J.; Schnippel, K.; Shim, T.S.; Singla, R.; Smith, S.E.; Sotgiu, G.; Sukhbaatar, G.; Tabarsi, P.; Tiberi, S.; Trajman, A.; Trieu, L.; Udwadia, Z.F.; van der Werf, T.S.; Veziris, N.; Viiklepp, P.; Vilbrun, S.C.; Walsh, K.; Westenhouse, J.; Yew, W.W.; Yim, J.J.; Zetola, N.M.; Zignol, M.; Menzies, D. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet, 2018, 392(10150), 821-834.
[http://dx.doi.org/10.1016/S0140-6736(18)31644-1] [PMID: 30215381]
[52]
WHO. Rapid Communication: Key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). 2022. Available from: https://www.who.int/publications/i/item/WHO-UCN-TB-2022-2
[53]
Deoghare, S. Bedaquiline: A new drug approved for treatment of multidrug-resistant tuberculosis. Indian J. Pharmacol., 2013, 45(5), 536-537.
[http://dx.doi.org/10.4103/0253-7613.117765] [PMID: 24130398]
[54]
Guo, H.; Courbon, G.M.; Bueler, S.A.; Mai, J.; Liu, J.; Rubinstein, J.L. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature, 2021, 589(7840), 143-147.
[http://dx.doi.org/10.1038/s41586-020-3004-3]
[55]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[56]
Guillemont, J.; Meyer, C.; Poncelet, A.; Bourdrez, X.; Andries, K. Diarylquinolines, synthesis pathways and quantitative structure--activity relationship studies leading to the discovery of TMC207. Future Med. Chem., 2011, 3(11), 1345-1360.
[http://dx.doi.org/10.4155/fmc.11.79] [PMID: 21879841]
[57]
van Heeswijk, R.P.G.; Dannemann, B.; Hoetelmans, R.M.W. Bedaquiline: A review of human pharmacokinetics and drug–drug interactions. J. Antimicrob. Chemother., 2014, 69(9), 2310-2318.
[http://dx.doi.org/10.1093/jac/dku171]
[58]
Pearlstein, R.A.; Vaz, R.J.; Kang, J.; Chen, X.L.; Preobrazhenskaya, M.; Shchekotikhin, A.E.; Korolev, A.M.; Lysenkova, L.N.; Miroshnikova, O.V.; Hendrix, J.; Rampe, D. Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg. Med. Chem. Lett., 2003, 13(10), 1829-1835.
[http://dx.doi.org/10.1016/S0960-894X(03)00196-3] [PMID: 12729675]
[59]
Mycobacterial inhibitors. US Patent US,7498,343,B2 2003.
[60]
Gemma, S.; Campiani, G.; Butini, S.; Kukreja, G.; Joshi, B.P.; Persico, M.; Catalanotti, B.; Novellino, E.; Fattorusso, E.; Nacci, V.; Savini, L.; Taramelli, D.; Basilico, N.; Morace, G.; Yardley, V.; Fattorusso, C. Design and synthesis of potent antimalarial agents based on clotrimazole scaffold: Exploring an innovative pharmacophore. J. Med. Chem., 2007, 50(4), 595-598.
[http://dx.doi.org/10.1021/jm061429p] [PMID: 17263523]
[61]
Sandra, G.; Giuseppe, C.; Stefania, B.; Gagan, K.; Salvatore, S.C.; Bhupendra, P.J.; Marco, P. Clotrimazole scaffold as an innovative pharmacophore towards potent antimalarial agents: Design, synthesis, and biological and structure–activity relationship studies. J. Med. Chem., 2008, 51, 1278-1294.
[62]
(a) Giordanetto, F.; Karlsson, O.; Lindberg, J.; Larsson, L.O.; Linusson, A.; Evertsson, E.; Morgan, D.G.; Inghardt, T. Discovery of cyclopentane- and cyclohexane-trans-1,3-diamines as potent melanin-concentrating hormone receptor 1 antagonists. Bioorg. Med. Chem. Lett., 2007, 17(15), 4232-4241.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.034] [PMID: 17532215];
(b) Kumar, P.R.; Raju, S.; Goud, P.S.; Sailaja, M.; Sarma, M.R.; Reddy, G.O.; Kumar, M.P.; Reddy, V.V.; Suresh, T.; Hegde, P. Synthesis and biological evaluation of thiophene [3,2-b] pyrrole derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem., 2004, 12(5), 1221-1230.
[http://dx.doi.org/10.1016/j.bmc.2003.11.003] [PMID: 14980634];
(c) Bonini, C.; Chiummiento, L.; Bonis, M.D.; Funicello, M.; Lupattelli, P.; Suanno, G.; Berti, F.; Campaner, P. Synthesis, biological activity and modelling studies of two novel anti HIV PR inhibitors with a thiophene containing hydroxyethylamino core. Tetrahedron, 2005, 61(27), 6580-6589.
[http://dx.doi.org/10.1016/j.tet.2005.04.048];
(d) Brault, L.; Migianu, E.; Néguesque, A.; Battaglia, E.; Bagrel, D.; Kirsch, G. New thiophene analogues of kenpaullone: Synthesis and biological evaluation in breast cancer cells. Eur. J. Med. Chem., 2005, 40(8), 757-763.
[http://dx.doi.org/10.1016/j.ejmech.2005.02.010] [PMID: 16122578]
[63]
Parai, M.K.; Panda, G.; Chaturvedi, V.; Manju, Y.K.; Sinha, S. Thiophene containing triarylmethanes as antitubercular agents. Bioorg. Med. Chem. Lett., 2008, 18(1), 289-292.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.083] [PMID: 17997304]
[64]
Kashyap, V.K.; Gupta, R.K.; Shrivastava, R.; Srivastava, B.S.; Srivastava, R.; Parai, M.K.; Singh, P.; Bera, S.; Panda, G. In vivo activity of thiophene-containing trisubstituted methanes against acute and persistent infection of non-tubercular Mycobacterium fortuitum in a murine infection model. J. Antimicrob. Chemother., 2012, 67(5), 1188-1197.
[http://dx.doi.org/10.1093/jac/dkr592] [PMID: 22311937]
[65]
Singh, P.; Manna, S.K.; Jana, A.K.; Saha, T.; Mishra, P.; Bera, S.; Parai, M.K.; Kumar, M.S.L.; Mondal, S.; Trivedi, P.; Chaturvedi, V.; Singh, S.; Sinha, S.; Panda, G. Thiophene containing trisubstituted methanes [TRSMs] as identified lead against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2015, 95, 357-368.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.036] [PMID: 25828928]
[66]
Singh, P.; Kumar, S.K.; Maurya, V.K.; Mehta, B.K.; Ahmad, H.; Dwivedi, A.K.; Chaturvedi, V.; Thakur, T.S.; Sinha, S. S-enantiomer of the antitubercular compound S006-830 complements activity of frontline TB drugs and targets biogenesis of Mycobacterium tuberculosis cell envelope. ACS Omega, 2017, 2(11), 8453-8465.
[http://dx.doi.org/10.1021/acsomega.7b01281] [PMID: 30023583]
[67]
Lepesheva, G.I.; Hargrove, T.Y.; Rachakonda, G.; Wawrzak, Z.; Pomel, S.; Cojean, S.; Nde, P.N.; Nes, W.D.; Locuson, C.W.; Calcutt, M.W.; Waterman, M.R.; Daniels, J.S.; Loiseau, P.M.; Villalta, F. VFV as a new effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis. J. Infect. Dis., 2015, 212(9), 1439-1448.
[http://dx.doi.org/10.1093/infdis/jiv228] [PMID: 25883390]
[68]
(a) Kulkarni, M.M.; Reddy, N.; Gude, T.; McGwire, B.S. Voriconazole suppresses the growth of Leishmania species in vitro. Parasitol. Res., 2013, 112(5), 2095-2099.
[http://dx.doi.org/10.1007/s00436-013-3274-x] [PMID: 23392902];
(b) Docampo, R.; Moreno, S.N.J.; Turrens, J.F.; Katzin, A.M.; Gonzalez-Cappa, S.M.; Stoppani, A.O.M. Biochemical and ultrastructural alterations produced by miconazole and econazole in Trypanosoma cruzi. Mol. Biochem. Parasitol., 1981, 3(3), 169-180.
[http://dx.doi.org/10.1016/0166-6851(81)90047-5] [PMID: 6265775]
[69]
Lepesheva, G.I.; Friggeri, L.; Waterman, M.R. CYP51 as drug targets for fungi and protozoan parasites: Past, present and future. Parasitology, 2018, 145(14), 1820-1836.
[http://dx.doi.org/10.1017/S0031182018000562] [PMID: 29642960]
[70]
Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Pepe, G.; Cirilli, R.; Faggi, C.; Di Marco, A.; Battista, M.R.; Summa, V.; Costi, R.; Di Santo, R. Design, synthesis, and biological evaluation of new 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole derivatives as antiprotozoal agents. J. Med. Chem., 2019, 62(3), 1330-1347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01464] [PMID: 30615444]
[71]
Kumar, S.; Das, S.K.; Dey, S.; Maity, P.; Guha, M.; Choubey, V.; Panda, G.; Bandyopadhyay, U. Antiplasmodial activity of [(aryl)arylsulfanylmethyl]Pyridine. Antimicrob. Agents Chemother., 2008, 52(2), 705-715.
[http://dx.doi.org/10.1128/AAC.00898-07] [PMID: 18025110]
[72]
Goyal, M.; Singh, P.; Alam, A.; Das, S.K.; Iqbal, M.S.; Dey, S.; Bindu, S.; Pal, C.; Das, S.K.; Panda, G.; Bandyopadhyay, U. Aryl aryl methyl thio arenes prevent multidrug-resistant malaria in mouse by promoting oxidative stress in parasites. Free Radic. Biol. Med., 2012, 53(1), 129-142.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.028] [PMID: 22588006]
[73]
Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[74]
Debnath, A.; Parsonage, D.; Andrade, R.M.; He, C.; Cobo, E.R.; Hirata, K.; Chen, S.; García-Rivera, G.; Orozco, E.; Martínez, M.B.; Gunatilleke, S.S.; Barrios, A.M.; Arkin, M.R.; Poole, L.B.; McKerrow, J.H.; Reed, S.L. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat. Med., 2012, 18(6), 956-960.
[http://dx.doi.org/10.1038/nm.2758] [PMID: 22610278]
[75]
Lumb, A.B.; Slinger, P. Hypoxic pulmonary vasoconstriction: Physiology and anesthetic implications. Anesthesiology, 2015, 122(4), 932-946.
[http://dx.doi.org/10.1097/ALN.0000000000000569] [PMID: 25587641]
[76]
Papazian, L.; Roch, A.; Bregeon, F.; Thirion, X.; Gaillat, F.; Saux, P.; Fulachier, V.; Jammes, Y.; Auffray, J.P. Inhaled nitric oxide and vasoconstrictors in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 1999, 160(2), 473-479.
[http://dx.doi.org/10.1164/ajrccm.160.2.9809110] [PMID: 10430716]
[77]
Barthélémy, R.; Blot, P.L.; Tiepolo, A.; Le Gall, A.; Mayeur, C.; Gaugain, S.; Morisson, L.; Gayat, E.; Mebazaa, A.; Chousterman, B.G. Efficacy of almitrine in the treatment of hypoxemia in Sars-Cov-2 acute respiratory distress syndrome. Chest, 2020, 158(5), 2003-2006.
[http://dx.doi.org/10.1016/j.chest.2020.05.573] [PMID: 32512007]
[78]
Bendjelid, K.; Giraud, R.; Von Düring, S. Treating hypoxemic COVID-19 “ARDS” patients with almitrine: The earlier the better? Anaesth. Crit. Care Pain Med., 2020, 39(4), 451-452.
[http://dx.doi.org/10.1016/j.accpm.2020.07.003] [PMID: 32653550]
[79]
Practice Update. Almitrine infusion in SARS-CoV-2–induced acute respiratory distress syndrome., Available from: https://www.practiceupdate.com/content/almitrine-infusion-in-sars-cov-2-induced-acute-respiratorydistress%20syndrome/108995
[80]
Reynolds, I.J.; Miller, R.J. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: Interaction with polyamines. Mol. Pharmacol., 1989, 36(5), 758-765.
[PMID: 2555674]
[81]
Korinek, M.; Kapras, V.; Vyklicky, V.; Adamusova, E.; Borovska, J.; Vales, K.; Stuchlik, A.; Horak, M.; Chodounska, H.; Vyklicky, L. Jr Neurosteroid modulation of N-methyl-d-aspartate receptors: Molecular mechanism and behavioral effects. Steroids, 2011, 76(13), 1409-1418.
[http://dx.doi.org/10.1016/j.steroids.2011.09.002]
[82]
Summary of opinion for Olumiant. European Medicines Agency (EMA) 2016.
[83]
NIH. A Study of Baricitinib (LY3009104) in Participants With COVID-19 (COV-BARRIER). Available from: https://clinicaltrials.gov/ct2/show/NCT04421027?term=baricitinib&cond=covid-19&draw=2
[84]
Andre, C. for the ACTT-2 study group members, Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N. Engl. J. Med., 2021, 384(9), 795-807.
[http://dx.doi.org/10.1056/NEJMoa2031994]
[85]
FDA. Coronavirus. (COVID-19) update: FDA authorizes drug combination for treatment of COVID-19; , 2020. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19
[86]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0]
[87]
Yan, V.C.; Muller, F.L. Gilead should ditch remdesivir and focus on its simpler and safer ancestor; , 2020. Available from: https://www.statnews.com/2020/05/14/gilead-should-ditch-remdesivir-and-focus-on-its-simpler-safer-ancestor/
[88]
FDA. FDA Approves First Treatment for COVID-19, 2020.
[89]
Food and Drug Administration. Remdesivir (Veklury) [package insert], 2020. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214787Orig1s000lbl.pdf
[90]
Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M-Y.; Nahass, R.G.; Chen, Y-S.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wei, X.; Gaggar, A.; Brainard, D.M.; Towner, W.J.; Muñoz, J.; Mullane, K.M.; Marty, F.M.; Tashima, K.T.; Diaz, G.; Subramanian, A. GS-US-540-5773 Investigators. Remdesivir for 5 or 10 days in patients with severe Covid-19. N. Engl. J. Med., 2020, 383(19), 1827-1837.
[http://dx.doi.org/10.1056/NEJMoa2015301]
[91]
Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; Chai, L.Y.A.; Roestenberg, M.; Tsang, O.T.Y.; Bernasconi, E.; Le Turnier, P.; Chang, S-C.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wang, H.; Gaggar, A.; Brainard, D.M.; McPhail, M.J.; Bhagani, S.; Ahn, M.Y.; Sanyal, A.J.; Huhn, G.; Marty, F.M. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA, 2020, 324(11), 1048-1057.
[http://dx.doi.org/10.1001/jama.2020.16349]
[92]
Mondal, S.; Verma, A.; Saha, S. Conformationally restricted triarylmethanes: Synthesis, photophysical studies, and applications. Eur. J. Org. Chem., 2019, 5(5), 864-894.
[http://dx.doi.org/10.1002/ejoc.201800971]
[93]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy