Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Black Phosphorous Aptamer-based Platform for Biomarker Detection

Author(s): Ajinkya Nene, Shengyong Geng, Wenhua Zhou*, Xue-Feng Yu, Hongrong Luo and Seeram Ramakrishna

Volume 30, Issue 8, 2023

Published on: 01 April, 2022

Page: [935 - 952] Pages: 18

DOI: 10.2174/0929867329666220225110302

Price: $65

Abstract

Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.

Keywords: Black phosphorous, stability, cardiovascular disorders, bio-sensing, aptamer, biomarkers.

[1]
Rahat Rahman, M.; Rashid, M. M.; Islam, M. M.; Akanda, M. M. Electrical and chemical properties of graphene over composite materials: A technical review. Mater. Sci. Res., 2019, 16(2), 142-163.
[2]
Xue, Y.; Zhang, Q.; Zhang, T.; Fu, L. Black phosphorus: Properties, synthesis, and applications in energy conversion and storage. ChemNanoMat, 2017, 3(6), 352-361.
[http://dx.doi.org/10.1002/cnma.201700030]
[3]
Zhou, W.; Pan, T.; Cui, H.; Zhao, Z.; Chu, P.K.; Yu, X.F. Black phosphorus: Bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angew. Chem. Int. Ed. Engl., 2019, 58(3), 769-774.
[http://dx.doi.org/10.1002/anie.201810878] [PMID: 30444063]
[4]
Nene, A.G.; Takahashi, M.; Somani, P.R.; Aryal, H.R.; Wakita, K.; Umeno, M. Synthesis and characterization of graphene-Fe3O4 nanocomposite. Carbon - Sci.Technol., 2016, 8(1), 13-24.
[5]
Fan, T.; Zhou, Y.; Qiu, M.; Zhang, H. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci., 2018, 11(6), 51-61.
[http://dx.doi.org/10.1142/S1793545818300033]
[6]
Wang, Q.; Lei, Y.; Wang, Y.; Liu, Y.; Song, C.; Zeng, J.; Song, Y.; Duan, X.; Wang, D.; Li, Y. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci., 2020, 13(6), 1593-1616.
[http://dx.doi.org/10.1039/D0EE00450B]
[7]
Sun, J.; Li, X.; Guo, W.; Zhao, M.; Fan, X.; Dong, Y.; Xu, C.; Deng, J.; Fu, Y. Synthesis methods of two-dimensional MoS2: A brief review. Crystals (Basel), 2017, 7(7), 1-11.
[http://dx.doi.org/10.3390/cryst7070198]
[8]
Eftekhari, A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(35), 18299-18325.
[http://dx.doi.org/10.1039/C7TA04268J]
[9]
He, J.; Chai, Y.; Liao, L. Focus on 2D materials beyond graphene. Nanotechnology, 2018, 29(1), 010202.
[http://dx.doi.org/10.1088/1361-6528/aa98b9] [PMID: 29192608]
[10]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10), 768-779.
[http://dx.doi.org/10.1038/nnano.2014.207] [PMID: 25286272]
[11]
Zhang, W.; Wang, Q.; Chen, Y.; Wang, Z.; Wee, A. T. S. Van Der waals stacked 2D layered materials for optoelectronics. 2D Mater, 2016, 3(2), 1-17.
[http://dx.doi.org/10.1088/2053-1583/3/2/022001]
[12]
Luo, Y.; Ren, C.; Wang, S.; Li, S.; Zhang, P.; Yu, J.; Sun, M.; Sun, Z.; Tang, W. Adsorption of transition metals on black phosphorene: A first-principles study. Nanoscale Res. Lett., 2018, 13(1), 282.
[http://dx.doi.org/10.1186/s11671-018-2696-x] [PMID: 30209634]
[13]
Perez-Page, M.; Sahoo, M.; Holmes, S.M. Single layer 2D crystals for electrochemical applications of ion exchange membranes and hydrogen evolution catalysts. Adv. Mater. Interfaces, 2019, 6(7), 1-24.
[http://dx.doi.org/10.1002/admi.201801838]
[14]
Li, D.; Gong, Y.; Chen, Y.; Lin, J.; Khan, Q.; Zhang, Y.; Li, Y.; Zhang, H.; Xie, H. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett., 2020, 12(1), 36.
[http://dx.doi.org/10.1007/s40820-020-0374-x] [PMID: 34138247]
[15]
Choudhuri, I.; Bhauriyal, P.; Pathak, B. Recent advances in graphene-like 2D materials for spintronics applications. Chem. Mater., 2019, 31(20), 8260-8285.
[http://dx.doi.org/10.1021/acs.chemmater.9b02243]
[16]
Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep., 2018, 8(1), 12009.
[http://dx.doi.org/10.1038/s41598-018-30614-3] [PMID: 30104708]
[17]
Wen, W.; Song, Y.; Yan, X.; Zhu, C.; Du, D.; Wang, S.; Asiri, A.M.; Lin, Y. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today, 2018, 21(2), 164-177.
[http://dx.doi.org/10.1016/j.mattod.2017.09.001]
[18]
Das, S.; Pandey, D.; Thomas, J.; Roy, T. The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1), e1802722.
[http://dx.doi.org/10.1002/adma.201802722] [PMID: 30187972]
[19]
Sahoo, R.; Pal, A.; Pal, T. 2D materials for renewable energy storage devices: Outlook and challenges. Chem. Commun. (Camb.), 2016, 52(93), 13528-13542.
[http://dx.doi.org/10.1039/C6CC05357B] [PMID: 27709167]
[20]
Wang, S.; Ukhtary, M.S.; Saito, R. Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. Phys. Rev. Res., 2020, 2(3), 1-7.
[http://dx.doi.org/10.1103/PhysRevResearch.2.033340]
[21]
Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study. Phys. Chem. Chem. Phys., 2018, 20(19), 13394-13399.
[http://dx.doi.org/10.1039/C8CP00808F] [PMID: 29721569]
[22]
Glavin, N.R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P.M. Emerging applications of elemental 2D materials. Adv. Mater., 2020, 32(7), e1904302.
[http://dx.doi.org/10.1002/adma.201904302] [PMID: 31667920]
[23]
Jayakumar, A.; Surendranath, A.; Pv, M. 2D materials for next generation healthcare applications. Int. J. Pharm., 2018, 551(1-2), 309-321.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.041] [PMID: 30240827]
[24]
Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett., 2015, 6(21), 4280-4291.
[http://dx.doi.org/10.1021/acs.jpclett.5b01686] [PMID: 26600394]
[25]
Huang, H.; Xiao, Q.; Wang, J.; Yu, X.F.; Wang, H.; Zhang, H.; Chu, P.K. Black phosphorus: A two-dimensional reductant for in situ nanofabrication. NPJ 2D Mater.Appl., 2017, 1(1), 1-7.
[http://dx.doi.org/10.1038/s41699-017-0022-6]
[26]
Gusmão, R.; Sofer, Z.; Pumera, M. Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. Int. Ed. Engl., 2017, 56(28), 8052-8072.
[http://dx.doi.org/10.1002/anie.201610512] [PMID: 28111875]
[27]
Gaberle, J.; Shluger, A.L. Structure and properties of intrinsic and extrinsic defects in black phosphorus. Nanoscale, 2018, 10(41), 19536-19546.
[http://dx.doi.org/10.1039/C8NR06640J] [PMID: 30320323]
[28]
Yao, M.; Wu, T.; Liu, B.; Li, J.; Long, M. First principle study on interfacial interaction of black phosphorus and CsBr VdW Heterostructure. Phys. Lett. Sect. A Gen. At. Solid State Phys., 2020, 384(25), 126614.
[http://dx.doi.org/10.1016/j.physleta.2020.126614]
[29]
Jang, H.; Wood, J.D.; Ryder, C.R.; Hersam, M.C.; Cahill, D.G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater., 2015, 27(48), 8017-8022.
[http://dx.doi.org/10.1002/adma.201503466] [PMID: 26516073]
[30]
Xiong, K.; Luo, X.; Hwang, J.C.M. Phosphorene FETs - Promising transistors based on a few layers of phosphorus atoms. In: Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP); 2015, 1-3 July; Suzhou, China.
[http://dx.doi.org/10.1109/IMWS-AMP.2015.7324944]
[31]
Xiong, S.; Chen, X.; Liu, Y.; Fan, T.; Wang, Q.; Zhang, H.; Chen, T. Black phosphorus as a versatile nanoplatform: From unique properties to biomedical applications. J. Innovat. Optical Health Sci., 2020, 13(05), 2030008.
[http://dx.doi.org/10.1142/S1793545820300086]
[32]
Liu, X.; Xiao, L.; Weng, J.; Xu, Q.; Li, W.; Zhao, C.; Xu, J.; Zhao, Y. Regulating the reactivity of black phosphorus via protective chemistry. Sci. Adv., 2020, 6(46), 1-11.
[http://dx.doi.org/10.1126/sciadv.abb4359] [PMID: 33177081]
[33]
Anju, S.; Ashtami, J.; Mohanan, P.V. Black phosphorus, a prospective graphene substitute for biomedical applications. Mater. Sci. Eng. C, 2019, 97, 978-993.
[http://dx.doi.org/10.1016/j.msec.2018.12.146] [PMID: 30678986]
[34]
Liu, X.; George, M.N.; Li, L.; Gamble, D.; Miller Ii, A.L.; Gaihre, B.; Waletzki, B.E.; Lu, L. Injectable electrical conductive and phosphate releasing gel with two-dimensional black phosphorus and carbon nanotubes for bone tissue engineering. ACS Biomater. Sci. Eng., 2020, 6(8), 4653-4665.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00612] [PMID: 33455193]
[35]
Lee, H.U.; Park, S.Y.; Lee, S.C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K.S.; Park, H.G.; Kim, H.S.; An, H.R.; Jeong, K.H.; Lee, Y.C.; Lee, J. Black phosphorus (BP) nanodots for potential biomedical applications. Small, 2016, 12(2), 214-219.
[http://dx.doi.org/10.1002/smll.201502756] [PMID: 26584654]
[36]
Pumera, M. Phosphorene and black phosphorus for sensing and biosensing. Trends Analyt. Chem., 2017, 93, 1-6.
[http://dx.doi.org/10.1016/j.trac.2017.05.002]
[37]
Srivastava, T.; Jha, R. Black phosphorus: A new platform for gaseous sensing based on surface plasmon resonance. IEEE Photonics Technol. Lett., 2018, 30(4), 319-322.
[http://dx.doi.org/10.1109/LPT.2017.2787057]
[38]
Laghrib, F.; Saqrane, S.; El Bouabi, Y.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem. J., 2021, 160, 105606.
[http://dx.doi.org/10.1016/j.microc.2020.105606] [PMID: 33052148]
[39]
Bai, L.; Wang, X.; Tang, S.; Kang, Y.; Wang, J.; Yu, Y.; Zhou, Z.K.; Ma, C.; Zhang, X.; Jiang, J.; Chu, P.K.; Yu, X.F. Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater., 2018, 30(40), e1803641.
[http://dx.doi.org/10.1002/adma.201803641] [PMID: 30175521]
[40]
Bian, S.; Wen, M.; Wang, J.; Yang, N.; Chu, P.K.; Yu, X.F. Edge-rich black phosphorus for photocatalytic nitrogen fixation. J. Phys. Chem. Lett., 2020, 11(3), 1052-1058.
[http://dx.doi.org/10.1021/acs.jpclett.9b03507] [PMID: 31952439]
[41]
Liu, D.; Wang, J.; Bian, S.; Liu, Q.; Gao, Y.; Wang, X.; Chu, P.K.; Yu, X.F. Photoelectrochemical synthesis of ammonia with black phosphorus. Adv. Funct. Mater., 2020, 30(24), 1-7.
[http://dx.doi.org/10.1002/adfm.202002731]
[42]
Yasaei, P.; Behranginia, A.; Foroozan, T.; Kim, K.; Khalili-araghi, F.; Salehi-khojin, A. Stable and selective humidity sensing using stack of black phosphorus flakes stable and selective humidity sensing using stack of black phosphorus flakes abstract. ACS Nano, 2015, (10), 9898-9905.
[http://dx.doi.org/10.1021/acsnano.5b03325] [PMID: 26401950]
[43]
Yew, Y.T.; Sofer, Z.; Mayorga-Martinez, C.C.; Pumera, M. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front., 2017, 1(6), 1130-1136.
[http://dx.doi.org/10.1039/C6QM00341A]
[44]
Jakóbczyk, P.; Kowalski, M.; Brodowski, M.; Dettlaff, A.; Dec, B.; Nidzworski, D.; Ryl, J.; Ossowski, T.; Bogdanowicz, R. Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: A novel route towards haemophilus influenzae pathogen biosensing devices. Appl. Surf. Sci., 2021, 539, 148286.
[http://dx.doi.org/10.1016/j.apsusc.2020.148286]
[45]
Wang, Y.; Zhou, Y.; Ren, H.; Wang, Y.; Zhu, X.; Guo, Y.; Li, X. Room-temperature and humidity-resistant trace nitrogen dioxide sensing of few-layer black phosphorus nanosheet by incorporating zinc oxide nanowire. Anal. Chem., 2020, 92(16), 11007-11017.
[http://dx.doi.org/10.1021/acs.analchem.9b05623] [PMID: 32674560]
[46]
Ge, X.; Xia, Z.; Guo, S. Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater., 2019, 29(29), 1-32.
[http://dx.doi.org/10.1002/adfm.201900318]
[47]
Zhu, J.; Xiao, G.; Zuo, X. Two-dimensional black phosphorus: An emerging anode material for lithium-ion batteries. Nano-Micro Lett., 2020, 12(1), 120.
[http://dx.doi.org/10.1007/s40820-020-00453-x] [PMID: 34138144]
[48]
Korotcenkov, G. Black phosphorus-new nanostructured material for humidity sensors: Achievements and limitations. Sensors (Basel), 2019, 19(5), E1010.
[http://dx.doi.org/10.3390/s19051010] [PMID: 30818818]
[49]
Smith, J.B.; Hagaman, D.; Ji, H.F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21), 215602.
[http://dx.doi.org/10.1088/0957-4484/27/21/215602] [PMID: 27087456]
[50]
Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H.M.; Dai, J.; Lau, S.P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 2015, 27(25), 3748-3754.
[http://dx.doi.org/10.1002/adma.201500990] [PMID: 25973767]
[51]
Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10443-10445.
[http://dx.doi.org/10.1002/anie.201705071] [PMID: 28649798]
[52]
Tejeda-Serrano, M.; Lloret, V.; Márkus, B.G.; Simon, F.; Hauke, F.; Hirsch, A.; Doménech-Carbó, A.; Abellán, G.; Leyva-Pérez, A. Few-layer black phosphorous catalyzes radical additions to alkenes faster than low-valence metals. ChemCatChem, 2020, 12(8), 2226-2232.
[http://dx.doi.org/10.1002/cctc.201902276] [PMID: 32421028]
[53]
Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; Zandbergen, H. W.; Palacios, J. J.; Van Der Zant, H. S. J. Isolation and characterization of few-layer black phosphorus. 2D Mater., 2014, 1(2), 025001.
[http://dx.doi.org/10.1088/2053-1583/1/2/025001]
[54]
Del Río Castillo, A.E.; Reyes-Vazquez, C.D.; Rojas- Martinez, L.E.; Thorat, S.B.; Serri, M.; Martinez-Hernandez, A.L.; Velasco-Santos, C.; Pellegrini, V.; Bonaccorso, F. Single-step exfoliation and functionalization of few-layers black phosphorus and its application for polymer composites. FlatChem, 2019, 18, 100131.
[http://dx.doi.org/10.1016/j.flatc.2019.100131]
[55]
Mu, Y.; Si, M.S. The mechanical exfoliation mechanism of black phosphorus to phosphorene: A first-principles study. EPL, 2015, 112(3), 37003.
[http://dx.doi.org/10.1209/0295-5075/112/37003]
[56]
Szydłowska, B.M.; Tywoniuk, B.; Blau, W.J. Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime. ACS Photonics, 2018, 5(9), 3608-3612.
[http://dx.doi.org/10.1021/acsphotonics.8b00469]
[57]
Tiouitchi, G.; Ali, M.A.; Benyoussef, A.; Hamedoun, M.; Lachgar, A.; Kara, A.; Ennaoui, A.; Mahmoud, A.; Boschini, F.; Oughaddou, H.; El Moutaouakil, A.; El Kenz, A.; Mounkachi, O. Efficient production of few-layer black phosphorus by liquid-phase exfoliation. R. Soc. Open Sci., 2020, 7(10), 201210.
[http://dx.doi.org/10.1098/rsos.201210] [PMID: 33204477]
[58]
Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; Zhang, S.; Wang, K.; Moynihan, G.; Pokle, A.; Ramasse, Q.M.; McEvoy, N.; Blau, W.J.; Wang, J.; Abellan, G.; Hauke, F.; Hirsch, A.; Sanvito, S.; O’Regan, D.D.; Duesberg, G.S.; Nicolosi, V.; Coleman, J.N. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun., 2015, 6, 8563.
[http://dx.doi.org/10.1038/ncomms9563] [PMID: 26469634]
[59]
Erande, M.B.; Suryawanshi, S.R.; More, M.A.; Late, D.J. Electrochemically exfoliated black phosphorus nanosheets - prospective field emitters. Eur. J. Inorg. Chem., 2015, 2015(19), 3102-3107.
[http://dx.doi.org/10.1002/ejic.201500145]
[60]
Rabiei Baboukani, A.; Khakpour, I.; Drozd, V.; Allagui, A.; Wang, C. Single-step exfoliation of black phosphorus and deposition of phosphorene: via bipolar electrochemistry for capacitive energy storage application. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(44), 25548-25556.
[http://dx.doi.org/10.1039/C9TA09641H]
[61]
Khurram, M.; Sun, Z.; Zhang, Z.; Yan, Q. Chemical vapor transport growth of bulk black phosphorus single crystals. Inorg. Chem. Front., 2020, 7(15), 2867-2879.
[http://dx.doi.org/10.1039/D0QI00582G]
[62]
Lin, S.; Li, Y.; Qian, J.; Lau, S.P. Emerging opportunities for black phosphorus in energy applications. Mater. Today Energy, 2019, 12, 1-25.
[http://dx.doi.org/10.1016/j.mtener.2018.12.004]
[63]
Huang, Y.; He, K.; Bliznakov, S.; Sutter, E.; Meng, F.; Su, D.; Sutter, P. Degradation of black phosphorus (BP): The role of oxygen and water. Chem. Mater., 2016, 28(22), 8330-8339.
[http://dx.doi.org/10.1021/acs.chemmater.6b03592]
[64]
Encapsulated, F.; Transistors, F. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano, 2015, 9(4), 4138-4145.
[65]
Edmonds, M.T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O’Donnell, K.M.; Koenig, S.P.; Coker, D.F.; Özyilmaz, B.; Neto, A.H.C.; Fuhrer, M.S. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces, 2015, 7(27), 14557-14562.
[http://dx.doi.org/10.1021/acsami.5b01297] [PMID: 26126232]
[66]
Illarionov, Y.Y.; Waltl, M.; Rzepa, G.; Kim, J.S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano, 2016, 10(10), 9543-9549.
[http://dx.doi.org/10.1021/acsnano.6b04814] [PMID: 27704779]
[67]
Sun, J.; Zheng, G.; Lee, H.W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett., 2014, 14(8), 4573-4580.
[http://dx.doi.org/10.1021/nl501617j] [PMID: 25019417]
[68]
Lee, H.U.; Lee, S.C.; Won, J.; Son, B.C.; Choi, S.; Kim, Y.; Park, S.Y.; Kim, H.S.; Lee, Y.C.; Lee, J. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci. Rep., 2015, 5, 8691.
[http://dx.doi.org/10.1038/srep08691] [PMID: 25732720]
[69]
Su, M.; Chen, X.; Tang, L.; Yang, B.; Zou, H.; Liu, J.; Li, Y.; Chen, S.; Fan, D. Black Phosphorus (BP)-graphene guided-wave surface plasmon resonance (GWSPR) biosensor. Nanophotonics, 2020, 9(14), 4265-4272.
[http://dx.doi.org/10.1515/nanoph-2020-0251]
[70]
Doganov, R.A.; O’Farrell, E.C.T.; Koenig, S.P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Watanabe, K.; Taniguchi, T.; Castro Neto, A.H.; Özyilmaz, B. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun., 2015, 6, 6647.
[http://dx.doi.org/10.1038/ncomms7647] [PMID: 25858614]
[71]
Buscema, M.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6), 3347-3352.
[http://dx.doi.org/10.1021/nl5008085] [PMID: 24821381]
[72]
Walia, S.; Balendhran, S.; Ahmed, T.; Singh, M.; El-Badawi, C.; Brennan, M.D.; Weerathunge, P.; Karim, M.N.; Rahman, F.; Rassell, A.; Duckworth, J.; Ramanathan, R.; Collis, G.E.; Lobo, C.J.; Toth, M.; Kotsakidis, J.C.; Weber, B.; Fuhrer, M.; Dominguez-Vera, J.M.; Spencer, M.J.S.; Aharonovich, I.; Sriram, S.; Bhaskaran, M.; Bansal, V. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater., 2017, 29(27), 1-8.
[http://dx.doi.org/10.1002/adma.201700152] [PMID: 28497880]
[73]
Zhu, X.; Zhang, T.; Jiang, D.; Duan, H.; Sun, Z.; Zhang, M.; Jin, H.; Guan, R.; Liu, Y.; Chen, M.; Ji, H.; Du, P.; Yan, W.; Wei, S.; Lu, Y.; Yang, S. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun., 2018, 9(1), 4177.
[http://dx.doi.org/10.1038/s41467-018-06437-1] [PMID: 30301894]
[74]
Kuntz, K.L.; Wells, R.A.; Hu, J.; Yang, T.; Dong, B.; Guo, H.; Woomer, A.H.; Druffel, D.L.; Alabanza, A.; Tománek, D.; Warren, S.C. Control of surface and edge oxidation on phosphorene. ACS Appl. Mater. Interfaces, 2017, 9(10), 9126-9135.
[http://dx.doi.org/10.1021/acsami.6b16111] [PMID: 28218508]
[75]
Miao, J.; Cai, L.; Zhang, S.; Nah, J.; Yeom, J.; Wang, C. Air-stable humidity sensor using few-layer black phosphorus. ACS Appl. Mater. Interfaces, 2017, 9(11), 10019-10026.
[http://dx.doi.org/10.1021/acsami.7b01833] [PMID: 28252279]
[76]
Cai, Y.; Zhang, G.; Zhang, Y.W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C, 2015, 119(24), 13929-13936.
[http://dx.doi.org/10.1021/acs.jpcc.5b02634]
[77]
Zhao, Y.; Wang, H.; Huang, H.; Xiao, Q.; Xu, Y.; Guo, Z.; Xie, H.; Shao, J.; Sun, Z.; Han, W.; Yu, X.F.; Li, P.; Chu, P.K. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. Engl., 2016, 55(16), 5003-5007.
[http://dx.doi.org/10.1002/anie.201512038] [PMID: 26968443]
[78]
Wang, Q.; Li, B.; Zhang, P.; Zhang, W.; Hu, X.; Li, X. 2D Black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light. RSC Advances, 2020, 10(46), 27538-27551.
[http://dx.doi.org/10.1039/D0RA05230B]
[79]
Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of aptamers in virus detection and antiviral therapy. Front. Microbiol., 2019, 10(JULY), 1462.
[http://dx.doi.org/10.3389/fmicb.2019.01462] [PMID: 31333603]
[80]
Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem., 2007, 79(4), 1466-1473.
[http://dx.doi.org/10.1021/ac061879p] [PMID: 17297945]
[81]
Lee, A.Y.; Ha, N.R.; Jung, I.P.; Kim, S.H.; Kim, A.R.; Yoon, M.Y. Development of a ssDNA aptamer for detection of residual benzylpenicillin. Anal. Biochem., 2017, 531, 1-7.
[http://dx.doi.org/10.1016/j.ab.2017.05.013] [PMID: 28522308]
[82]
Majdinasab, M.; Hayat, A.; Marty, J.L. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt. Chem., 2018, 107, 60-77.
[http://dx.doi.org/10.1016/j.trac.2018.07.016]
[83]
Huang, C.; Hu, S.; Zhang, X.; Cui, H.; Wu, L.; Yang, N.; Zhou, W.; Chu, P.K.; Yu, X.F. Sensitive and selective ctDNA detection based on functionalized black phosphorus nanosheets. Biosens. Bioelectron., 2020, 165(165), 112384.
[http://dx.doi.org/10.1016/j.bios.2020.112384] [PMID: 32729509]
[84]
Yan, W.; Wang, X.H.; Yu, J.; Meng, X.; Qiao, P.; Yin, H.; Zhang, Y.; Wang, P. Precise and label-free tumour cell recognition based on a black phosphorus nanoquenching platform. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(35), 5613-5620.
[http://dx.doi.org/10.1039/C8TB01275J] [PMID: 32254970]
[85]
Ding, H.; Tang, Z.; Zhang, L.; Dong, Y. Electrogenerated chemiluminescence of black phosphorus nanosheets and its application in the detection of H2O2. Analyst (Lond.), 2019, 144(4), 1326-1333.
[http://dx.doi.org/10.1039/C8AN01838C] [PMID: 30560255]
[86]
Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P.; Nguyen, L.; Zhong, X.L.; Burke, M.G.; Haigh, S.J.; Walton, A.; McNaughter, P.D.; Tedstone, A.A.; Savjani, N.; Muryn, C.A.; O’Brien, P.; Ganguli, A.K.; Lewis, D.J.; Sabherwal, P. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces, 2016, 8(35), 22860-22868.
[http://dx.doi.org/10.1021/acsami.6b06488] [PMID: 27508925]
[87]
Gao, L.; Teng, R.; Zhang, S.; Zhou, Y.; Luo, M.; Fang, Y.; Lei, L.; Ge, B. Zinc ion-stabilized aptamer-targeted black phosphorus nanosheets for enhanced photothermal/chemotherapy against prostate cancer. Front. Bioeng. Biotechnol., 2020, 8, 769.
[http://dx.doi.org/10.3389/fbioe.2020.00769] [PMID: 32984261]
[88]
Xu, J.; Qiao, X.; Wang, Y.; Sheng, Q.; Yue, T.; Zheng, J.; Zhou, M. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Mikrochim. Acta, 2019, 186(4), 238.
[http://dx.doi.org/10.1007/s00604-019-3339-3] [PMID: 30868260]
[89]
Liu, S.; Luo, J.; Jiang, X.; Li, X.; Yang, M. Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells. Mikrochim. Acta, 2020, 187(7), 397.
[http://dx.doi.org/10.1007/s00604-020-04367-8] [PMID: 32564257]
[90]
Li, S.; Zhang, F.; Wang, J.; Wen, W.; Wang, S. Black phosphorus-Au nanocomposite-based fluorescence immunochromatographic sensor for high-sensitive detection of zearalenone in cereals. Nanophotonics, 2020, 9(8), 2397-2406.
[http://dx.doi.org/10.1515/nanoph-2019-0434]
[91]
Xu, Y.; Ren, F.; Liu, H.; Zhang, H.; Han, Y.; Liu, Z.; Wang, W.; Sun, Q.; Zhao, C.; Li, Z. Cholesterol-modified black phosphorus nanospheres for the first NIR-II fluorescence bioimaging. ACS Appl. Mater. Interfaces, 2019, 11(24), 21399-21407.
[http://dx.doi.org/10.1021/acsami.9b05825] [PMID: 31120234]
[92]
Huang, W.Q.; Wang, F.; Nie, X.; Zhang, Z.; Chen, G.; Xia, L.; Wang, L.H.; Ding, S.G.; Hao, Z.Y.; Zhang, W.J.; Hong, C.Y.; You, Y.Z. Stable black phosphorus nanosheets exhibiting high tumor-accumulating and mitochondria-targeting for efficient photothermal therapy via double functionalization. ACS Appl. Bio Mater., 2020, 3(2), 1176-1186.
[http://dx.doi.org/10.1021/acsabm.9b01052]
[93]
Sun, C.; Wen, L.; Zeng, J.; Wang, Y.; Sun, Q.; Deng, L.; Zhao, C.; Li, Z. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials, 2016, 91, 81-89.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.022] [PMID: 27017578]
[94]
Zhang, H.; Han, Q.; Yin, X.; Wang, Y. Insights into the binding mechanism of two-dimensional black phosphorus nanosheets-protein associations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117662.
[http://dx.doi.org/10.1016/j.saa.2019.117662] [PMID: 31654845]
[95]
Pandey, A.; Nikam, A.N.; Fernandes, G.; Kulkarni, S.; Padya, B.S.; Prassl, R.; Das, S.; Joseph, A.; Deshmukh, P.K.; Patil, P.O.; Mutalik, S. Black phosphorus as multifaceted advanced material nanoplatforms for potential biomedical applications. Nanomaterials (Basel), 2020, 11(1), 1-35.
[http://dx.doi.org/10.3390/nano11010013] [PMID: 33374716]
[96]
Wang, H.; Hu, K.; Li, Z.; Wang, C.; Yu, M.; Li, Z.; Li, Z. Black phosphorus nanosheets passivation using a tripeptide. Small, 2018, 14(35), e1801701.
[http://dx.doi.org/10.1002/smll.201801701] [PMID: 30084541]
[97]
Chen, Y.; Ren, R.; Pu, H.; Chang, J.; Mao, S.; Chen, J. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron., 2017, 89(Pt 1), 505-510.
[http://dx.doi.org/10.1016/j.bios.2016.03.059] [PMID: 27040183]
[98]
Choi, J.R.; Yong, K.W.; Choi, J.Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. Black phosphorus and its biomedical applications. Theranostics, 2018, 8(4), 1005-1026.
[http://dx.doi.org/10.7150/thno.22573] [PMID: 29463996]
[99]
Li, P.; Zhang, D.; Liu, J.; Chang, H.; Sun, Y.; Yin, N. Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces, 2015, 7(44), 24396-24402.
[http://dx.doi.org/10.1021/acsami.5b07712] [PMID: 26501864]
[100]
Mayorga-Martinez, C.C.; Sofer, Z.; Pumera, M. Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. Engl., 2015, 54(48), 14317-14320.
[http://dx.doi.org/10.1002/anie.201505015] [PMID: 26403872]
[101]
Zhang, J.; Ma, Y.; Hu, K.; Feng, Y.; Chen, S.; Yang, X.; Fong-Chuen Loo, J.; Zhang, H.; Yin, F.; Li, Z. Surface coordination of black phosphorus with modified cisplatin. Bioconjug. Chem., 2019, 30(6), 1658-1664.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00128] [PMID: 31070357]
[102]
Wu, L.; Xu, Z.; Meng, Q.; Xiao, Y.; Cao, Q.; Rathi, B.; Liu, H.; Han, G.; Zhang, J.; Yan, J. A new aptamer/black phosphorous interdigital electrode for malachite green detection. Anal. Chim. Acta, 2020, 1099, 39-45.
[http://dx.doi.org/10.1016/j.aca.2019.11.026]
[103]
Jana, D.; Jia, S.; Bindra, A.K.; Xing, P.; Ding, D.; Zhao, Y. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces, 2020, 12(16), 18342-18351.
[http://dx.doi.org/10.1021/acsami.0c02718] [PMID: 32223204]
[104]
Gao, N.; Nie, J.; Wang, H.; Xing, C.; Mei, L.; Xiong, W.; Zeng, X.; Peng, Z. A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy. J. Biomed. Nanotechnol., 2018, 14(11), 1883-1897.
[http://dx.doi.org/10.1166/jbn.2018.2632] [PMID: 30165925]
[105]
Sun, Z.; Xie, H.; Tang, S.; Yu, X.F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P.K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem. Int. Ed. Engl., 2015, 54(39), 11526-11530.
[http://dx.doi.org/10.1002/anie.201506154] [PMID: 26296530]
[106]
Wang, J.; Liang, D.; Qu, Z.; Kislyakov, I.M.; Kiselev, V.M.; Liu, J. PEGylated-folic acid-modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction. Nanophotonics, 2020, 9(8), 2425-2435.
[http://dx.doi.org/10.1515/nanoph-2019-0506]
[107]
Liu, R.; Ye, X.; Cui, T. Recent progress of biomarker detection sensors. Yosetsu Gakkai Ronbunshu/Quarterly J. Japan Weld. Soc., 2020, 38(3), 193.
[http://dx.doi.org/10.2207/qjjws.38.193]
[108]
Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron., 2020, 152(152), 112018.
[http://dx.doi.org/10.1016/j.bios.2020.112018] [PMID: 32056737]
[109]
Supraja, P.; Sudarshan, V.; Tripathy, S.; Agrawal, A.; Singh, S.G. Label free electrochemical detection of cardiac biomarker troponin T using ZnSnO3 perovskite nanomaterials. Anal. Methods, 2019, 11(6), 744-751.
[http://dx.doi.org/10.1039/C8AY02617C]
[110]
Alagarsamy, K.N.; Mathan, S.; Yan, W.; Rafieerad, A.; Sekaran, S.; Manego, H.; Dhingra, S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact. Mater., 2021, 6(8), 2261-2280.
[http://dx.doi.org/10.1016/j.bioactmat.2020.12.030] [PMID: 33553814]
[111]
Hasanzadeh, M.; Shadjou, N.; Soleymani, J.; Omidinia, E.; de la Guardia, M. Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. Trends Analyt. Chem., 2013, 51, 158-168.
[http://dx.doi.org/10.1016/j.trac.2013.06.010]
[112]
Tan, C.M.; Arshad, M.K.M.; Fathil, M.F.M.; Adzhri, R.; Nuzaihan, M.N.M.; Ruslinda, A.R.; Ibau, C.; Hashim, U. Interdigitated electrodes integrated with zinc oxide nanoparticles for cardiac troponin i biomarker detection. In: Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE); Kuala Lumpur, Malaysia; 2016, 17-19.
[http://dx.doi.org/10.1109/SMELEC.2016.7573631]
[113]
Zapp, E.; Westphal, E.; Gallardo, H.; de Souza, B.; Cruz Vieira, I. Liquid crystal and gold nanoparticles applied to electrochemical immunosensor for cardiac biomarker. Biosens. Bioelectron., 2014, 59, 127-133.
[http://dx.doi.org/10.1016/j.bios.2014.03.026] [PMID: 24721423]
[114]
Haque, M.; Fouad, H.; Seo, H.K.; Alothman, O.Y.; Ansari, Z.A. Cu-doped ZnO nanoparticles as an electrochemical sensing electrode for cardiac biomarker myoglobin detection. IEEE Sens. J., 2020, 20(15), 8820-8832.
[http://dx.doi.org/10.1109/JSEN.2020.2982713]
[115]
Singal, S.; Srivastava, A.K.; Biradar, A.M.; Mulchandani, A.; Rajesh, Pt Nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sens. Actuators B Chem., 2019, 2014(205), 363-370.
[http://dx.doi.org/10.1016/j.snb.2014.08.088]
[116]
Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem., 2020, 2021(330), 129336.
[http://dx.doi.org/10.1016/j.snb.2020.129336]
[117]
Zong, C.; Zhang, D.; Yang, H.; Wang, S.; Chu, M.; Li, P. Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/g-quadruplex dnazyme on a glass chip array. Mikrochim. Acta, 2017, 184(9), 3197-3204.
[http://dx.doi.org/10.1007/s00604-017-2331-z]
[118]
Zhou, F.; Lu, M.; Wang, W.; Bian, Z.P.; Zhang, J.R.; Zhu, J.J. Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin. Chem., 2010, 56(11), 1701-1707.
[http://dx.doi.org/10.1373/clinchem.2010.147256] [PMID: 20852134]
[119]
Cheng, Z.; Wang, R.; Xing, Y.; Zhao, L.; Choo, J.; Yu, F. SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst (Lond.), 2019, 144(22), 6533-6540.
[http://dx.doi.org/10.1039/C9AN01260E] [PMID: 31553332]
[120]
Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc., 2008, 130(9), 2780-2782.
[http://dx.doi.org/10.1021/ja711298b] [PMID: 18257576]
[121]
Quero, G.; Consales, M.; Severino, R.; Vaiano, P.; Boniello, A.; Sandomenico, A.; Ruvo, M.; Borriello, A.; Diodato, L.; Zuppolini, S.; Giordano, M.; Nettore, I.C.; Mazzarella, C.; Colao, A.; Macchia, P.E.; Santorelli, F.; Cutolo, A.; Cusano, A. Long period fiber grating nano-optrode for cancer biomarker detection. Biosens. Bioelectron., 2016, 80, 590-600.
[http://dx.doi.org/10.1016/j.bios.2016.02.021] [PMID: 26896794]
[122]
Li, M.; K. Cushing, S.; Zhang, J.; Suri, S.; Evans, R.; P. Petros, W.; F. Gibson, L.; Ma, D.; Liu, Y.; W., N. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced raman scattering immuno-sensor for cancer biomarker detection in blood plasma. ACS Nano, 2013, 7(6), 4967-4976.
[http://dx.doi.org/10.1021/nn4018284]
[123]
Ambrosi, A.; Airò, F.; Merkoçi, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem., 2010, 82(3), 1151-1156.
[http://dx.doi.org/10.1021/ac902492c] [PMID: 20043655]
[124]
Jie, G.; Wang, L.; Zhang, S. Magnetic electrochemiluminescent Fe3O4/CdSe-CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. Chemistry, 2011, 17(2), 641-648.
[http://dx.doi.org/10.1002/chem.201001128] [PMID: 21207584]
[125]
Hasanzadeh, M.; Rahimi, S.; Solhi, E.; Mokhtarzadeh, A.; Shadjou, N.; Soleymani, J.; Mahboob, S. Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem. J., 2018, 143, 379-392.
[http://dx.doi.org/10.1016/j.microc.2018.08.028]
[126]
Truong, P.L.; Kim, B.W.; Sim, S.J. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip, 2012, 12(6), 1102-1109.
[http://dx.doi.org/10.1039/c2lc20588b] [PMID: 22298159]
[127]
Ye, X.R.; Lin, Y.; Wang, C.; Engelhard, M.H.; Wang, Y.; Wai, C.M. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem., 2004, 5, 908-913.
[http://dx.doi.org/10.1039/b308124a]
[128]
Tabassum, H.; Mahmood, A.; Zhu, B.; Liang, Z.; Zhong, R.; Guo, S.; Zou, R. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci., 2019, 12(10), 2924-2956.
[http://dx.doi.org/10.1039/C9EE00315K]
[129]
Qu, L.; Dai, L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc., 2005, 127(31), 10806-10807.
[http://dx.doi.org/10.1021/ja053479+] [PMID: 16076167]
[130]
Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target MicroRNA. Sens. Actuators B Chem., 2019, 2020(309), 127777.
[http://dx.doi.org/10.1016/j.snb.2020.127777]
[131]
Zheng, L.; Xiong, Y.; Liu, J.; Yang, X.; Wang, L.; Zhang, S.; Liu, M.; Wang, D. MMP-9-Related microRNAs as prognostic markers for hemorrhagic transformation in cardioembolic stroke patients. Front. Neurol., 2019, 10, 945.
[http://dx.doi.org/10.3389/fneur.2019.00945] [PMID: 31555200]
[132]
Kamiński, M.J.; Kamińska, M.; Skorupa, I.; Kazimierczyk, R.; Musiał, W.J.; Kamiński, K.A. In-silico identification of cardiovascular disease-related SNPs affecting predicted microRNA target sites. Pol. Arch. Med. Wewn., 2013, 123(7-8), 355-363.
[http://dx.doi.org/10.20452/pamw.1819] [PMID: 23648690]
[133]
Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Assembly of black phosphorus nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal. Chem., 2020, 92(3), 2866-2875.
[http://dx.doi.org/10.1021/acs.analchem.9b05583] [PMID: 31903745]
[134]
Zhang, M.; Wang, W.; Wu, F.; Graveran, K.; Zhang, J.; Wu, C. Black phosphorus quantum dots gated, carbon-coated Fe3O4 nanocapsules (BPQDs@ss-Fe3O4@C) with low premature release could enable imaging-guided cancer combination therapy. Chemistry, 2018, 24(49), 12890-12901.
[http://dx.doi.org/10.1002/chem.201801085] [PMID: 29855103]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy