Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Computational Study, and Anticonvulsant Activity of Newly Synthesized 2-aminobenzothiazole Derivatives

Author(s): Arun Kumar Mishra*, Vachan Singh, Arvind Kumar and Harpreet Singh

Volume 19, Issue 12, 2022

Published on: 27 May, 2022

Page: [1096 - 1110] Pages: 15

DOI: 10.2174/1570180819666220405081808

Price: $65

Abstract

Background: Despite the fact that anticonvulsant drugs targeting multiple targets have been used in the health center, their effectiveness and tolerability in the treatment of seizures have not improved much. As a result, innovative anticonvulsant medicines are still needed urgently to overcome the significant toxicity of currently existing medications.

Objective: This study aimed to synthesize 2-aminobenzothiazole derivatives as anticonvulsant agents, compute physicochemical parameters, and conduct a docking investigation.

Methods: Condensing 4-(2-(benzo[d]thiazole-2-ylamino) acetamido) benzoyl chloride with substituted phenols in acetone in anhydrous potassium carbonate in the presence of potassium iodide in dry acetone yielded benzothiazole derivatives. IR and NMR spectroscopy were used to characterize the structures of freshly synthesized substances. To estimate their drug-like candidates, a number of molecular attributes of these derivatives were computed. The carbonic anhydrase enzyme was used to perform molecular docking on these synthesized compounds. The synthetic compounds were tested for biological activity, such as anticonvulsant activity and enzyme inhibitor activity for carbonic anhydrase..

Results: The findings showed that V-5 (4-chlorophenyl 4-(2-(benzo[d]thiazol-2-ylamino)acetamido)benzoate) had the strongest anticonvulsant effect out of all the eight target compounds.

Conclusion: The outcome of this research was that V-5 could be a promising new lead molecule for the development of anticonvulsant drugs.

Keywords: Benzothiazole, molecular properties, molecular docking, anticonvulsant activity, carbonic anhydrase enzyme, carbonic anhydrase.

Graphical Abstract

[1]
Oluwaseye, A.; Uzairub, A.; Shallangwa, G.A.; Abechi, S. In silico study on anticonvulsant activity of isoxazole and thiazole derivatives active in subcutaneous pentylenetetrazole animal model. J. King Saud Sci., 2020, 32(1), 116-124.
[http://dx.doi.org/10.1016/j.jksus.2018.03.022]
[2]
Shelar, M.K.; Patil, M.J.; Bhujbal, S.S.; Chaudhari, R.B. Evaluation of anticonvulsant activity of the ethanolic extracts from leaves of Ex-coecaria agallocha. Future J. Pharm. Sci., 2018, 4(2), 215-219.
[http://dx.doi.org/10.1016/j.fjps.2018.06.002]
[3]
El Kayal, W.M.; Shtrygol, S.Y.; Zalevskyi, S.V.; Shark, A.A.; Tsyvunin, V.V.; Kovalenko, S.M.; Bunyatyan, N.D.; Perekhoda, L.O.; Sev-erina, H.I.; Georgiyants, V.A. Synthesis, in vivo and in silico anticonvulsant activity studies of new derivatives of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetamide. Eur. J. Med. Chem., 2019, 180, 134-142.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.085] [PMID: 31302446]
[4]
Oluwaseye, A.; Uzairub, A.; Shallangwa, G.A.; Abechi, S. Computational studies on α-aminoacetamide derivatives with anticonvulsant activities. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(4), 709-718.
[http://dx.doi.org/10.1016/j.bjbas.2018.08.005]
[5]
Noonan, D. The epilepsy dilemma. Sci. Am., 2017, 316(4), 28-29.
[http://dx.doi.org/10.1038/scientificamerican0417-28] [PMID: 28296849]
[6]
Brodie, M.J. Antiepileptic drug therapy the story so far. Seizure, 2010, 19(10), 650-655.
[http://dx.doi.org/10.1016/j.seizure.2010.10.027] [PMID: 21075011]
[7]
Abdulfatai, U.; Uzairu, A.; Uba, S.; Melo, J.I. Quantitative structure activity relationship study of anticonvulsant activity of α_substituted acetamido-N-benzylacetamide derivatives. Cogent Chem., 2016, 2(1), 1-12.
[http://dx.doi.org/10.1080/23312009.2016.1166538]
[8]
Abuelizz, H.A.; Dib, R.E.; Marzouk, M.; Anouar, E.H.; A Maklad, Y.; N. Attia, H.; Al-Salahi, R. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules, 2017, 22(7), 1094.
[http://dx.doi.org/10.3390/molecules22071094] [PMID: 28665338]
[9]
Aggarwal, M.; Kondeti, B.; McKenna, R. Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat., 2013, 23(6), 717-724.
[http://dx.doi.org/10.1517/13543776.2013.782394] [PMID: 23514045]
[10]
Thiry, A.; Dogné, J.M.; Supuran, C.T.; Masereel, B. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr. Top. Med. Chem., 2007, 7(9), 855-864.
[http://dx.doi.org/10.2174/156802607780636726] [PMID: 17504130]
[11]
Chugunova, E.; Boga, C.; Sazykin, I.; Cino, S.; Micheletti, G.; Mazzanti, A.; Sazykina, M.; Burilov, A.; Khmelevtsova, L.; Kostina, N. Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 93, 349-359.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.023] [PMID: 25707015]
[12]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Gupta, A.; Okafor, S.N. Novel anti-inflammatory and analgesic agents: Synthesis, molecular dock-ing and in vivo studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 405-415.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[13]
Kumar, A.; Shakya, A.K.; Siddiqui, H.H. Synthesis and anti-inflammatory activity of some novel 2-aminobenzothiazole derivatives. Indi-an. J. Heterocycl. Chem., 2016, 25(3), 243-249.
[14]
Amnerkar, N.D.; Bhusari, K.P. Synthesis of some thiazolyl aminobenzothiazole derivatives as potential antibacterial, antifungal and an-thelmintic agents. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 22-28.
[http://dx.doi.org/10.3109/14756360903555258] [PMID: 21250821]
[15]
Saipriya, D.; Prakash, A.; Kini, S.G.; Bhatt, V.; Pai, K.S.; Biswas, S.; Mohammed, S. Design, synthesis, antioxidant and anticancer activity of novel schiff’s bases of 2-amino benzothiazole. Ind. J. Pharm. Edu. Res., 2018, 52, S333-S342.
[http://dx.doi.org/10.5530/ijper.52.4s.114]
[16]
Sarkar, S. Design, synthesis, and evaluation of antitubercular activity of a novel benzothiazole-containing an azetidinone ring. Istanbul J. Pharm., 2018, 48(2), 28-31.
[http://dx.doi.org/10.5152/IstanbulJPharm.2018.320135]
[17]
Gull, Y.; Rasool, N.; Noreen, M.; Nasim, F.U.; Yaqoob, A.; Kousar, S.; Rasheed, U.; Bukhari, I.H.; Zubair, M.; Islam, M.S. Efficient syn-thesis of 2-amino-6-arylbenzothiazoles via Pd(0) Suzuki cross coupling reactions: Potent urease enzyme inhibition and nitric oxide scav-enging activities of the products. Molecules, 2013, 18(8), 8845-8857.
[http://dx.doi.org/10.3390/molecules18088845] [PMID: 23892631]
[18]
Yar, M.S.; Ansari, Z.H. Synthesis and in vivo diuretic activity of biphenyl benzothiazole-2-carboxamide derivatives. Acta Pol. Pharm., 2009, 66(4), 387-392.
[PMID: 19702170]
[19]
Liu, D.C.; Zhang, H.J.; Jin, C.M.; Quan, Z.S. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticon-vulsant agents. Molecules, 2016, 21(3), 164.
[http://dx.doi.org/10.3390/molecules21030164] [PMID: 26938519]
[20]
Tahlan, S.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V.; Narasimhan, B. 4-(2-(1H-Benzo[d]imidazol-2-ylthio)acetamido)-N-(substituted phenyl)benzamides: Design, synthesis and biological evaluation. BMC Chem., 2019, 13(1), 12.
[http://dx.doi.org/10.1186/s13065-019-0533-7] [PMID: 31384761]
[21]
Turan-Zitouni, G.; Kaplancikli, Z.A.; Ozdemir, A.; Revial, G.; Guven, K. Synthesis and antimicrobial activity of some 2-(benzo[d]oxazol/benzo[d]imidazol-2-ylthio)-N-(9H-fluoren-9-yl)acetamide derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182, 639-646.
[http://dx.doi.org/10.1080/10426500601047016]
[22]
Khan, M.T. Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr. Drug Metab., 2010, 11(4), 285-295.
[http://dx.doi.org/10.2174/138920010791514306] [PMID: 20450477]
[23]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[24]
OCED/OCDC OECD guidelines for testing of chemicals. Revised draft guidelines 423, acute oral toxicity class method, 2000.
[25]
Swinyard, E.A.; Brown, W.C.; Goodman, L.S. Comparative assays of antiepileptic drugs in mice and rats. J. Pharmacol. Exp. Ther., 1952, 106(3), 319-330.
[PMID: 13000628]
[26]
Karlgren, M.; Bergstrom, C.A.S. New horizons in predictive drug metabolism and pharmacokinetics, 2015.
[27]
Qiu, Y.; Chen, Y.; Mantri, R.V. Developing Solid Oral Dosage Forms. Pharmaceutical Theory and Practice 2nd ed;; , 2017.
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permea-bility in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]

© 2024 Bentham Science Publishers | Privacy Policy