Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Metformin Sensitizes Cisplatin-induced Apoptosis Through Regulating Nucleotide Excision Repair Pathway In Cisplatin-resistant Human Lung Cancer Cells

Author(s): Haiwen Li, Donghong Yang, Zumin Xu, Liu Yang, Jiong Lin, Jingyi Cai and Li Yang*

Volume 19, Issue 12, 2022

Published on: 27 May, 2022

Page: [1086 - 1095] Pages: 10

DOI: 10.2174/1570180819666220330121135

open access plus

Abstract

Background: Lung cancer is a leading cause of cancer death globally. Platinum-based chemotherapeutic medications are essential for treating advanced NSCLC, despite that drug resistance severely limits its effectiveness.

Objective: In this study, we investigated the cytotoxic effect of metformin on cisplatin-resistant NSCLC cells (A549/DDP) and its potential mechanisms.

Methods: Anti-lung cancer efficacy of metformin, cisplatin, and metformin combined with cisplatin was examined in A549 and A549/DDP cells. The cell counting kit-8 (CCK-8) assay was applied for measuring cell proliferation. CalcuSyn software was used to calculate the combination index and estimate the synergistic effect of metformin and cisplatin on cell proliferation. The cell apoptosis was analyzed by flow cytometry and the expression of apoptosis-related proteins, Bcl-2, Bax and caspase-3 were analyzed using Western blot. Futhermore, the expression of key nucleotide excision repair (NER) proteins, ERCC1, XPF, and XPA, was also analyzed using Western blot.

Results: We found that metformin had dose-dependent antiproliferative effects on A549/DDP and A549 cells. The combination of metformin and cisplatin had higher effectiveness in inhibiting A549/DDP and A549 cell growth than either of the two drugs alone. Flow cytometry analysis indicated that the combined treatment could cause more cell apoptosis than the single-drug treatment. Consistently, the combined treatment decreased the expression of Bcl-2 protein and elevated the expression of Bax, and cleaved caspase-3 proteins. The expression level of ERCC1, XPF, and XPA proteins were lower in the combined treatment than in either of metformin and cisplatin treatment alone.

Conclusion: Our study suggested that metformin and cisplatin had synergistic antitumorigenic effects in A549/DDP cells. The combination of cisplatin and metformin could be promising drug candidates to sensitize cisplatin-induced apoptosis through regulating nucleotide excision repair pathways in lung cancer.

Keywords: Metformin, nucleotide excision repair, cisplatin-resistant human lung cancer, apoptosis, ERCC1, western blot.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; Orlov, S.; Cantarini, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.; Frewer, P.; Ou, X.; Oxnard, G. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multi-centre, open-label, phase 1b study. Lancet Oncol., 2020, 21(3), 373-386.
[http://dx.doi.org/10.1016/S1470-2045(19)30785-5] [PMID: 32027846]
[3]
Waterhouse, D.M.; Garon, E.B.; Chandler, J.; McCleod, M.; Hussein, M.; Jotte, R.; Horn, L.; Daniel, D.B.; Keogh, G.; Creelan, B.; Einhorn, L.H.; Baker, J.; Kasbari, S.; Nikolinakos, P.; Babu, S.; Couture, F.; Leighl, N.B.; Reynolds, C.; Blumenschein, G., Jr; Gunuganti, V.; Li, A.; Aanur, N.; Spigel, D.R. Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: Checkmate 153. J. Clin. Oncol., 2020, 38(33), 3863-3873.
[http://dx.doi.org/10.1200/JCO.20.00131] [PMID: 32910710]
[4]
Goldman, J.W.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Ozguroglu, M.; Ji, J.H.; Gar-assino, M.C.; Voitko, O.; Poltoratskiy, A.; Ponce, S.; Verderame, F.; Havel, L.; Bondarenko, I.; Kazarnowicz, A.; Losonczy, G.; Conev, N.V.; Armstrong, J.; Byrne, N.; Thiyagarajah, P.; Jiang, H.; Paz-Ares, L. with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): Updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol., 2020.
[PMID: 33285097]
[5]
Fennell, D.A.; Summers, Y.; Cadranel, J.; Benepal, T.; Christoph, D.C.; Lal, R.; Das, M.; Maxwell, F.; Visseren-Grul, C.; Ferry, D. Cispla-tin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev., 2016, 44, 42-50.
[http://dx.doi.org/10.1016/j.ctrv.2016.01.003] [PMID: 26866673]
[6]
Ardizzoni, A.; Boni, L.; Tiseo, M.; Fossella, F.V.; Schiller, J.H.; Paesmans, M.; Radosavljevic, D.; Paccagnella, A.; Zatloukal, P.; Mazzanti, P.; Bisset, D.; Rosell, R. CISCA (CISplatin versus CArboplatin) Meta-analysis Group. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: An individual patient data meta-analysis. J. Natl. Cancer Inst., 2007, 99(11), 847-857.
[http://dx.doi.org/10.1093/jnci/djk196] [PMID: 17551145]
[7]
Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol., 2005, 205(2), 275-292.
[http://dx.doi.org/10.1002/path.1706] [PMID: 15641020]
[8]
Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[9]
Duan, M.; Ulibarri, J.; Liu, K.J.; Mao, P. Role of nucleotide excision repair in cisplatin resistance. Int. J. Mol. Sci., 2020, 21(23), E9248.
[http://dx.doi.org/10.3390/ijms21239248] [PMID: 33291532]
[10]
Yousef, M.; Tsiani, E. Metformin in lung cancer: Review of in vitro and in vivo animal studies. Cancers (Basel), 2017, 9(5), E45.
[http://dx.doi.org/10.3390/cancers9050045] [PMID: 28481268]
[11]
Ben Sahra, I.; Le Marchand-Brustel, Y.; Tanti, J.F.; Bost, F. Metformin in cancer therapy: A new perspective for an old antidiabetic drug? Mol. Cancer Ther., 2010, 9(5), 1092-1099.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1186] [PMID: 20442309]
[12]
Li, B.; Zhou, P.; Xu, K.; Chen, T.; Jiao, J.; Wei, H.; Yang, X.; Xu, W.; Wan, W.; Xiao, J. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int. J. Biol. Sci., 2020, 16(1), 74-84.
[http://dx.doi.org/10.7150/ijbs.33787] [PMID: 31892847]
[13]
Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005, 330(7503), 1304-1305.
[http://dx.doi.org/10.1136/bmj.38415.708634.F7] [PMID: 15849206]
[14]
Han, H.; Hou, Y.; Chen, X.; Zhang, P.; Kang, M.; Jin, Q.; Ji, J.; Gao, M. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J. Am. Chem. Soc., 2020, 142(10), 4944-4954.
[http://dx.doi.org/10.1021/jacs.0c00650] [PMID: 32069041]
[15]
Kim, S.H.; Kim, S.C.; Ku, J.L. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget, 2017, 8(34), 56546-56557.
[http://dx.doi.org/10.18632/oncotarget.17798] [PMID: 28915611]
[16]
Chevalier, B.; Pasquier, D.; Lartigau, E.F.; Chargari, C.; Schernberg, A.; Jannin, A.; Mirabel, X.; Vantyghem, M.C.; Escande, A. Metformin: (Future) best friend of the radiation oncologist? Radiother. Oncol., 2020, 151, 95-105.
[http://dx.doi.org/10.1016/j.radonc.2020.06.030] [PMID: 32592892]
[17]
Chen, L.; Liao, F.; Jiang, Z.; Zhang, C.; Wang, Z.; Luo, P.; Jiang, Q.; Wu, J.; Wang, Q.; Luo, M.; Li, X.; Leng, Y.; Ma, L.; Shen, G.; Chen, Z.; Wang, Y.; Tan, X.; Gan, Y.; Liu, D.; Liu, Y.; Shi, C. Metformin mitigates gastrointestinal radiotoxicity and radiosensitises P53 mutation colorectal tumours via optimising autophagy. Br. J. Pharmacol., 2020, 177(17), 3991-4006.
[http://dx.doi.org/10.1111/bph.15149] [PMID: 32472692]
[18]
Li, H.; Chen, X.; Yu, Y.; Wang, Z.; Zuo, Y.; Li, S.; Yang, D.; Hu, S.; Xiang, M.; Xu, Z.; Yu, Z. Metformin inhibits the growth of nasopha-ryngeal carcinoma cells and sensitizes the cells to radiation via inhibition of the DNA damage repair pathway. Oncol. Rep., 2014, 32(6), 2596-2604.
[http://dx.doi.org/10.3892/or.2014.3485] [PMID: 25333332]
[19]
Li, L.; Han, R.; Xiao, H.; Lin, C.; Wang, Y.; Liu, H.; Li, K.; Chen, H.; Sun, F.; Yang, Z.; Jiang, J.; He, Y. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin. Cancer Res., 2014, 20(10), 2714-2726.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2613] [PMID: 24644001]
[20]
Morgillo, F.; Sasso, F.C.; Della Corte, C.M.; Vitagliano, D.; D’Aiuto, E.; Troiani, T.; Martinelli, E.; De Vita, F.; Orditura, M.; De Palma, R.; Ciardiello, F. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin. Cancer Res., 2013, 19(13), 3508-3519.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2777] [PMID: 23695170]
[21]
Kim, Y.; Vagia, E.; Viveiros, P.; Kang, C.Y.; Lee, J.Y.; Gim, G.; Cho, S.; Choi, H.; Kim, L.; Park, I.; Choi, J.; Chae, Y.K. Overcoming ac-quired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC). Cancer Immunol. Immunother., 2020.
[PMID: 33084943]
[22]
Xiao, X.; He, Q.; Lu, C.; Werle, K.D.; Zhao, R.X.; Chen, J.; Davis, B.C.; Cui, R.; Liang, J.; Xu, Z.X. Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol. Oncol., 2012, 127(1), 249-255.
[http://dx.doi.org/10.1016/j.ygyno.2012.06.032] [PMID: 22735790]
[23]
Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination stud-ies. Pharmacol. Rev., 2006, 58(3), 621-681.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[24]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[25]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.U.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, A. Evaluating particle emissions and toxicity of 3d pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem.& Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[26]
Ling, S.; Tian, Y.; Zhang, H.; Jia, K.; Feng, T.; Sun, D.; Gao, Z.; Xu, F.; Hou, Z.; Li, Y.; Wang, L. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel 7402/5 fluorouracil cells. Mol. Med. Rep., 2014, 10(6), 2891-2897.
[http://dx.doi.org/10.3892/mmr.2014.2614] [PMID: 25310259]
[27]
Liu, Y.; He, C.; Huang, X. Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget, 2017, 8(43), 75206-75216.
[http://dx.doi.org/10.18632/oncotarget.20663] [PMID: 29088858]
[28]
Qu, C.; Zhang, W.; Zheng, G.; Zhang, Z.; Yin, J.; He, Z. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem., 2014, 386(1-2), 63-71.
[http://dx.doi.org/10.1007/s11010-013-1845-x] [PMID: 24096736]
[29]
Tseng, S.C.; Huang, Y.C.; Chen, H.J.; Chiu, H.C.; Huang, Y.J.; Wo, T.Y.; Weng, S.H.; Lin, Y.W. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes hu-man lung cancer cells to paclitaxel. Biochem. Pharmacol., 2013, 85(4), 583-594.
[http://dx.doi.org/10.1016/j.bcp.2012.12.001] [PMID: 23228696]
[30]
Xiao, Z.; Sperl, B.; Ullrich, A.; Knyazev, P. Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Oncotarget, 2014, 5(24), 12877-12890.
[http://dx.doi.org/10.18632/oncotarget.2657] [PMID: 25375092]
[31]
Nazim, U.M.; Moon, J.H.; Lee, J.H.; Lee, Y.J.; Seol, J.W.; Eo, S.K.; Lee, J.H.; Park, S.Y. Activation of autophagy flux by metformin down-regulates cellular FLICE-like inhibitory protein and enhances TRAIL- induced apoptosis. Oncotarget, 2016, 7(17), 23468-23481.
[http://dx.doi.org/10.18632/oncotarget.8048] [PMID: 26992204]
[32]
Lee, B.B.; Kim, Y.; Kim, D.; Cho, E.Y.; Han, J.; Kim, H.K.; Shim, Y.M.; Kim, D.H. Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J. Cell. Mol. Med., 2019, 23(4), 2872-2889.
[http://dx.doi.org/10.1111/jcmm.14194] [PMID: 30710424]
[33]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[34]
Makovec, T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol., 2019, 53(2), 148-158.
[http://dx.doi.org/10.2478/raon-2019-0018] [PMID: 30956230]
[35]
Reardon, J.T.; Vaisman, A.; Chaney, S.G.; Sancar, A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res., 1999, 59(16), 3968-3971.
[PMID: 10463593]
[36]
Pajuelo-Lozano, N.; Bargiela-Iparraguirre, J.; Dominguez, G.; Quiroga, A.G.; Perona, R.; Sanchez-Perez, I. XPA, XPC, and XPD Modulate sensitivity in gastric cisplatin resistance cancer cells. Front. Pharmacol., 2018, 9, 1197.
[http://dx.doi.org/10.3389/fphar.2018.01197] [PMID: 30386247]
[37]
Guffanti, F.; Alvisi, M.F.; Caiola, E.; Ricci, F.; De Maglie, M.; Soldati, S.; Ganzinelli, M.; Decio, A.; Giavazzi, R.; Rulli, E.; Damia, G. Impact of ERCC1, XPF and DNA polymerase β expression on platinum response in patient-derived ovarian cancer xenografts. Cancers (Basel), 2020, 12(9) E2398
[http://dx.doi.org/10.3390/cancers12092398] [PMID: 32847049]
[38]
Cierna, Z.; Miskovska, V.; Roska, J.; Jurkovicova, D.; Pulzova, L.B.; Sestakova, Z.; Hurbanova, L.; Machalekova, K.; Chovanec, M.; Rejlekova, K.; Svetlovska, D.; Kalavska, K.; Kajo, K.; Babal, P.; Mardiak, J.; Ward, T.A.; Mego, M.; Chovanec, M. Increased levels of XPA might be the basis of cisplatin resistance in germ cell tumours. BMC Cancer, 2020, 20(1), 17.
[http://dx.doi.org/10.1186/s12885-019-6496-1] [PMID: 31906898]
[39]
Mendoza, J.; Martínez, J.; Hernández, C.; Pérez-Montiel, D.; Castro, C.; Fabián-Morales, E.; Santibáñez, M.; González-Barrios, R.; Díaz-Chávez, J.; Andonegui, M.A.; Reynoso, N.; Oñate, L.F.; Jiménez, M.A.; Núñez, M.; Dyer, R.; Herrera, L.A. Association between ERCC1 and XPA expression and polymorphisms and the response to cisplatin in testicular germ cell tumours. Br. J. Cancer, 2013, 109(1), 68-75.
[http://dx.doi.org/10.1038/bjc.2013.303] [PMID: 23807173]
[40]
Olaussen, K.A.; Dunant, A.; Fouret, P.; Brambilla, E.; André, F.; Haddad, V.; Taranchon, E.; Filipits, M.; Pirker, R.; Popper, H.H.; Stahel, R.; Sabatier, L.; Pignon, J.P.; Tursz, T.; Le Chevalier, T.; Soria, J.C.; Investigators, I.B. IALT Bio Investigators DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med., 2006, 355(10), 983-991.
[http://dx.doi.org/10.1056/NEJMoa060570] [PMID: 16957145]
[41]
McNeil, E.M.; Melton, D.W. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res., 2012, 40(20), 9990-10004.
[http://dx.doi.org/10.1093/nar/gks818] [PMID: 22941649]
[42]
Arora, S.; Kothandapani, A.; Tillison, K.; Kalman-Maltese, V.; Patrick, S.M. Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair (Amst.), 2010, 9(7), 745-753.
[http://dx.doi.org/10.1016/j.dnarep.2010.03.010] [PMID: 20418188]
[43]
Arora, S.; Heyza, J.; Zhang, H.; Kalman-Maltese, V.; Tillison, K.; Floyd, A.M.; Chalfin, E.M.; Bepler, G.; Patrick, S.M. Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair and potentiate cisplatin efficacy in cancer cells. Oncotarget, 2016, 7(46), 75104-75117.
[http://dx.doi.org/10.18632/oncotarget.12072] [PMID: 27650543]
[44]
Riaz, M.A.; Sak, A.; Erol, Y.B.; Groneberg, M.; Thomale, J.; Stuschke, M. Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci. Rep., 2019, 9(1), 1282.
[http://dx.doi.org/10.1038/s41598-018-38004-5] [PMID: 30718758]
[45]
Morelli, A.P.; Tortelli, T.C., Jr; Pavan, I.C.B.; Silva, F.R.; Granato, D.C.; Peruca, G.F.; Pauletti, B.A.; Domingues, R.R.; Bezerra, R.M.N.; De Moura, L.P.; Paes Leme, A.F.; Chammas, R.; Simabuco, F.M. Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways. Int. J. Oncol., 2021, 58(6), 28.
[http://dx.doi.org/10.3892/ijo.2021.5208] [PMID: 33846781]

© 2024 Bentham Science Publishers | Privacy Policy