Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Investigation of the Anticancer Potential of 2-alkoxycarbonylallyl Esters Against Metastatic Murine Breast Cancer Line 4T1 Targeting the EGFR: A Combined Molecular Docking, QSAR, and Machine Learning Approach

Author(s): Babatunde Samuel Obadawo, Oluwatoba Emmanuel Oyeneyin*, Taoreed Olakunle Owolabi, Damilohun Samuel Metibemu, Nureni Ipinloju, Kehinde Henry Fagbohungbe, Helen Omonipo Modamori and Victor Olanrewaju Olatoye

Volume 19, Issue 12, 2022

Published on: 31 May, 2022

Page: [1068 - 1085] Pages: 18

DOI: 10.2174/1570180819666220512111613

Price: $65

Abstract

Background: The search for novel and potent anticancer drugs is imperative. This present study aims to unravel the mechanisms of action of 2-alkoxyecarbonyl esters using robust model(s) that can accurately predict the bioactivity of novel compounds. Twenty-four potential anticancer 2- alkoxycarbonylallyl ester compounds obtained from the literature were employed in building a 3D-QSAR model.

Objectives: The objective of this study is to determine the predictive ability of the GFA-based QSAR models and extreme machine learning models and compare them. The lead compounds and newly designed compounds were docked at the active site of a human epidermal growth factor receptor (EGFR) kinase domain to determine their binding modes and affinity.

Methods: QikProp program and Spartan packages were employed for screening compounds for druglikeness and toxicity. QSAR models were equally used to predict the bioactivities of these molecules using the Material Studio package. Molecular docking of the molecules at the active site of an EGFR receptor, 1M17, was done using Auto dock tools.

Results: The model of choice, with r2pred (0.857), satisfied the recommended standard for a stable and reliable model. The low value of r2, Q2 for several trials and cRp2 (0.779 ≥ 0.5) and the high value of correlation coefficient r2 for the training set (0.918) and test set (0.849) provide credence to the predictability of the model. The superior inhibition of EGFR displayed by the lead compounds (20 and 21) with binding energies of 6.70 and 7.00 kcalmol-1, respectively, is likely due to the presence of double bonds and α-ester groups. ADMET screening showed that these compounds are highly druggable. The designed compounds (A and B) displayed better inhibition of EGFR.

Conclusion: The QSAR model used here performed better than the Random Forest Regression model for predicting the bioactivity of these anticancer compounds, while the designed compounds (A and B) performed better with higher binding affinity than the lead compounds.

Keywords: 2-alkoxyecarbonyl esters, computer-aided drug design, genetic function approximation, epidermal growth factor receptor, random forest regression, machine learning.

Graphical Abstract

[1]
Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(2), 109-126.
[PMID: 22247839]
[2]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[3]
Jin, X.; Mu, P. Targeting breast cancer metastasis. Breast Cancer (Auckl.), 2015, 9(Suppl. 1), 23-24.
[http://dx.doi.org/10.4137/BCBCR.S25460] [PMID: 26380552]
[4]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer cancer Matastasis. Cancer, 1952, 5(3), 581-582.
[http://dx.doi.org/10.1002/1097-0142(195205)5:3<581:AID-CNCR2820050319>3.0.CO;2-Q]
[5]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[6]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1), 1-16.
[http://dx.doi.org/10.1186/s43042-019-0035-0]
[7]
Banys-Paluchowski, M.; Witzel, I.; Riethdorf, S.; Rack, B.; Janni, W.; Fasching, P.A.; Solomayer, E.F.; Aktas, B.; Kasimir-Bauer, S.; Pan-tel, K.; Fehm, T.; Müller, V. Evaluation of serum epidermal growth factor receptor (EGFR) in correlation to circulating tumor cells in pa-tients with metastatic breast cancer. Sci. Rep., 2017, 7(1), 17307.
[http://dx.doi.org/10.1038/s41598-017-17514-8] [PMID: 29229933]
[8]
Dickler, M.N.; Rugo, H.S.; Eberle, C.A.; Brogi, E.; Caravelli, J.F.; Panageas, K.S.; Boyd, J.; Yeh, B.; Lake, D.E.; Dang, C.T.; Gilewski, T.A.; Bromberg, J.F.; Seidman, A.D.; D’Andrea, G.M.; Moasser, M.M.; Melisko, M.; Park, J.W.; Dancey, J.; Norton, L.; Hudis, C.A. A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer. Clin. Cancer Res., 2008, 14(23), 7878-7883.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0141] [PMID: 19047117]
[9]
Dickler, M.N.; Cobleigh, M.A.; Miller, K.D.; Klein, P.M.; Winer, E.P. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res. Treat., 2009, 115(1), 115-121.
[http://dx.doi.org/10.1007/s10549-008-0055-9] [PMID: 18496750]
[10]
Ronayne, C.T.; Solano, L.N.; Nelson, G.L.; Lueth, E.A.; Hubbard, S.L.; Schumacher, T.J.; Gardner, Z.S.; Jonnalagadda, S.K.; Gurrapu, S.; Holy, J.; Mereddy, V.R. Synthesis and biological evaluation of 2-alkoxycarbonylallyl esters as potential anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 776-780.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.037] [PMID: 28129978]
[11]
Olanrewaju, A.A.; Ibeji, C.U.; Oyeneyin, O.E. Biological evaluation and molecular docking of some newly synthesized 3d-series metal(II) mixed-ligand complexes of fuoro-naphthyl diketone and dithiocarbamate. SN Appl Sci, 2020, 2(4), 678.
[http://dx.doi.org/10.1007/s42452-020-2482-0]
[12]
Oyeneyin, O.E.; Abayomi, T.G.; Ipinloju, N.; Agbaffa, E.B.; Akerele, D.D.; Arobadade, O.A. Investigation of amino chalcone derivatives as antiproliferative agents against MCF-7 breast cancer cell lines-DFT, molecular docking and pharmacokinetics studies. Adv J Chem- Section A 2021, 4, 288-299.
[http://dx.doi.org/10.22034/AJCA.2021.285869.1261]
[13]
Oyeneyin, O.E.; Obadawo, B.S.; Olanrewaju, A.A.; Owolabi, T.O.; Gbadamosi, F.A.; Ipinloju, N.; Modamori, H.O. Predicting the bioac-tivity of 2-alkoxycarbonylallyl esters as potential antiproliferative agents against pancreatic cancer (MiaPaCa-2) cell lines: GFA-based QSAR and ELM-based models with molecular docking. J. Genet. Eng. Biotechnol., 2021, 19(1), 38.
[http://dx.doi.org/10.1186/s43141-021-00133-2] [PMID: 33689046]
[14]
Metibemu, D.S. 3D-QSAR and molecular dockingapproaches for the identification of novel phyto-inhibitors of the cyclin-dependentkinase 4. Sci. Lett., 2021, 2021(9), 42-48.
[http://dx.doi.org/10.47262/SL/9.2.132021007]
[15]
Mahmood, A.; Wang, J. Machine learning for high performance organic solar cells: Current scenario and future prospective. Energy Environ. Sci., 2020.
[http://dx.doi.org/10.1039/D0EE02838J]
[16]
Ahmad, F.; Mahmood, A.; Muhmood, T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater. Sci., 2021, 9(5), 1598-1608.
[http://dx.doi.org/10.1039/D0BM01672A] [PMID: 33443512]
[17]
Mahmood, A.; Irfan, A.; Wang, J. Developing efficient small molecule acceptors with sp2-hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem. Eur. J., 2021, 28, e202103712.
[18]
Mahmood, A.; Wang, J. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(28), 15684-15695.
[http://dx.doi.org/10.1039/D1TA04742F]
[19]
Mahmood, A.; Irfan, A.; Wang, J. Machine learning and molecular dynamics simulation assisted evolutionary design and discovery pipe-line to screen efficient small molecule acceptors for PTB7 Th-based organic solar cells with over 15% efficiency. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(8), 4170-4180.
[http://dx.doi.org/10.1039/D1TA09762H]
[20]
Owolabi, T.O.; Saleh, T.A.; Olusayo, O.; Souiyah, M.; Oyeneyin, O.E. Modeling the specific surface area of doped spinel ferrite nano-materials using hybrid intelligent computational method. J. Nanomater., 2021, 9677423, 1-13.
[http://dx.doi.org/10.1155/2021/9677423]
[21]
Oyeneyin, O.E.; Obadawo, B.S.; Orimoloye, S.M.; Akintemi, E.O.; Ipinloju, N.; Asere, A.M.; Owolabi, T.O. Prediction of inhibition activi-ty of BET bromodomain inhibitors using grid search based extreme learning machine and molecular docking. Lett. Drug Des. Discov., 2021, 18(11), 1039-1049.
[http://dx.doi.org/10.2174/1570180818666210521215433]
[22]
The Advantages of ADME Properties Prediction. Available from: https://www.schrodinger.com/qikprop
[23]
SPARTAN 14’, build 1.01. Irvine (CA); 2014.
[24]
Becke, A.D. Density ‐ functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[25]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[26]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[27]
Singh, P. Quantitative structure-activity relationship study of substituted-[1,2,4] oxadiazoles as S1P1 agonists. J Curr Chem Pharm Sci, 2013, 3, 64-79.
[28]
Oyeneyin, O.E.; Obadawo, B.S.; Metibemu, D.S.; Owolabi, T.O.; Olanrewaju, A.A.; Orimoloye, S.M.; Ipinloju, N.; Olubosede, O. An ex-ploration of the antiproliferative potential of chalcones and dihydropyrazole derivatives in prostate cancer via androgen receptor: Com-bined QSAR, machine learning, and molecular docking techniques. Phys. Chem. Res., 2022, 10, 211-223.
[http://dx.doi.org/10.22036/pcr.2021.293051.1932]
[29]
Obadawo, B.S.; Oyeneyin, O.E.; Anifowose, M.M.; Fagbohungbe, K.H.; Amoko, J.S. QSAR evaluation of C-8-Tert-Butyl substituted as potent anti-enterovirus agents. Sci Lett, 2020, 8, 28-35.
[30]
Taylor, P.; Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11(1), 137-148.
[http://dx.doi.org/10.1080/00401706.1969.10490666]
[31]
Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat., 1991, 19, 1-141.
[32]
Khaled, K.F. Modeling corrosion inhibition of iron in acid medium by genetic function approximation method: A QSAR model. Corros. Sci., 2011, 53(11), 3457-3465.
[http://dx.doi.org/10.1016/j.corsci.2011.01.035]
[33]
Tropsha, A.; Gramatica, P.; Gombar, V.K. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci., 2003, 22(1), 69-77.
[http://dx.doi.org/10.1002/qsar.200390007]
[34]
Bansal, R.; Karthikeyan, C.; Moorthy, N.S.H.N.; Trivedi, P. QSAR analysis of some phthalimide analogues based inhibitors of HIV-1 integrase. ARKIVOC, 2007, 2007(15), 66-81.
[http://dx.doi.org/10.3998/ark.5550190.0008.f08]
[35]
Edache, E.I.; Uzairu, A.; Abechi, S.E. Multi-target in-silico study of 5,6-dihydro-2-pyrones, indole b-diketo acid, diketo acid and carbox-amide derivatives against various anti- Hiv-1 strain at PM3 semi-empirical level. Ewemen J Pharm, 2006, 1, 1-13.
[36]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR models-strategies and importance. Int J Drug Des Discov, 2011, 3, 511-519.
[37]
Breiman, L. Random forests. Mach. Learn., 2011, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[38]
Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.C.; Wang, L. Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Undergr. Sp., 2020, 7(2), 233-241.
[http://dx.doi.org/10.1016/j.undsp.2020.03.001]
[39]
Belmokre, A.; Mihoubi, M.K.; Santillan, D. The 3rd International Conference on Structural Integrity Seepage and dam deformation analyses with statistical models: Seepage and dam deformation analyses with statistical models: Support vector regression machine and random forest. Proced Struc Intergr, 2019. 17, pp. 698-703
[http://dx.doi.org/10.1016/j.prostr.2019.08.093]
[40]
Ahmad, M.W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regres-sion, random forest, extra trees and regression trees. J. Clean. Prod., 2018, 203, 810-821.
[http://dx.doi.org/10.1016/j.jclepro.2018.08.207]
[41]
Grape, S.; Branger, E.; Elter, Z.; Balkestahl, L.P. Determination of spent nuclear fuel parameters using modelled signatures from non-destructive assay and Random Forest regression. Nucl. Instrum. Methods Phys. Res. A, 2020, 969, 163979.
[http://dx.doi.org/10.1016/j.nima.2020.163979]
[42]
van der Heide, E.M.M.; Veerkamp, R.F.; van Pelt, M.L.; Kamphuis, C.; Athanasiadis, I.; Ducro, B.J. Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle. J. Dairy Sci., 2019, 102(10), 9409-9421.
[http://dx.doi.org/10.3168/jds.2019-16295] [PMID: 31447154]
[43]
Zhang, T.; Liang, L.; Wang, K.; Tang, H.; Yang, X.; Duan, Y.; Li, H. A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR). J. Anal. At. Spectrom., 2014, 29(12), 2323-2329.
[http://dx.doi.org/10.1039/C4JA00217B]
[44]
Epidermal growth factor receptor tyrosine kinase domain with 4- anilinoquinazoline inhibitor erlotinib. Available from: https://www.rcsb.org/structure/1m17
[45]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permea-bility in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[46]
Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev., 2016, 101, 34-41.
[http://dx.doi.org/10.1016/j.addr.2016.04.029] [PMID: 27154268]
[47]
Adejoro, I.A.; Waheed, S.O.; Adeboye, O.O.; Akhigbe, F.U. Molecular docking of the inhibitory activities of triterpenoids of lonchocarpus cyanescens against ulcer. J. Biophys. Chem., 2017, 8(1), 1-11.
[http://dx.doi.org/10.4236/jbpc.2017.81001]
[48]
Mahernia, S.; Hassanzadeh, M.; Sharifi, N.; Mehravi, B.; Paytam, F.; Adib, M.; Amanlou, M. Structure-based pharmacophore design and virtual screening for novel potential inhibitors of epidermal growth factor receptor as an approach to breast cancer chemotherapy. Mol. Divers., 2017, 22(1), 173-181.
[http://dx.doi.org/10.1007/s11030-017-9799-7] [PMID: 29197962]
[49]
Musa, A.; Mostafa, E.M.; Bukhari, S.N.A.; Alotaibi, N.H.; El-Ghorab, A.H.; Farouk, A.; Nayl, A.A.; Ghoneim, M.M.; Abdelgawad, M.A. EGFR and COX-2 dual inhibitor: The design, synthesis, and biological evaluation of novel chalcones. Molecules, 2022, 27(4), 1158.
[http://dx.doi.org/10.3390/molecules27041158] [PMID: 35208952]

© 2024 Bentham Science Publishers | Privacy Policy