Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Piperazine-based Semicarbazone Derivatives as Potent Urease Inhibitors: Design, Synthesis, and Bioactivity Screening

Author(s): Ebrahim Saeedian Moghadam, Abdullah Mohammed Al-Sadi, Meysam Talebi, Massoud Amanlou, Musa Shongwe, Mohsen Amini* and Raid Abdel-Jalil*

Volume 19, Issue 12, 2022

Published on: 27 May, 2022

Page: [1111 - 1120] Pages: 10

DOI: 10.2174/1570180819666220405234009

Price: $65

conference banner
Abstract

Background: An enzyme called urease assists highly pathogenic bacteria in colonizing and maintaining themselves. Accordingly, inhibiting urease enzymes has been shown to be a promising strategy for preventing ureolytic bacterial infections.

Objective: This study aimed to synthesize and evaluate the bioactivity of a series of semicarbazone derivatives.

Methods: A series of piperazine-based semicarbazone derivatives 5a-o were synthesized and isolated, and their structures were elucidated by 1H-NMR and 13C-NMR spectroscopic techniques besides MS and elemental analysis. The urease inhibition activity of these compounds was evaluated using the standard urease enzyme inhibition kit. An MTT assay was performed on two different cell lines (NIH-3T3 and MCF-7) to investigate the cytotoxicity profile.

Results: All semicarbazone 5a-o exhibited higher urease inhibition activity (3.95–6.62 μM) than the reference standards thiourea and hydroxyurea (IC50: 22 and 100 μM, respectively). Derivatives 5m and 5o exhibited the best activity with the IC50 values of 3.95 and 4.05 μM, respectively. Investigating the cytotoxicity profile of the target compound showed that all compounds 5a-o have IC50 values higher than 50 μM for both tested cell lines.

Conclusion: The results showed that semicarbazone derivatives could be highly effective as urease inhibitors.

Keywords: Enzyme inhibitors, piperazine, rational drug design, semicarbazone, synthesis, urease.

Graphical Abstract

[1]
(a) Mazzei, L.; Cianci, M.; Benini, S.; Ciurli, S. The structure of the elusive urease–urea complex unveils the mechanism of a paradigmatic nickel‐dependent enzyme. Angew. Chem. Int. Ed. Engl., 2019, 58(22), 7415-7419.
[http://dx.doi.org/10.1002/anie.201903565 ] [PMID: 30969470]
(b) Maroney, M.J.; Ciurli, S. Nonredox nickel enzymes. Chem. Rev., 2014, 114(8), 4206-4228.
[http://dx.doi.org/10.1021/cr4004488] [PMID: 24369791]
[2]
Kazmi, M.; Khan, I.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Ibrar, A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg. Med. Chem., 2019, 27(22), 115123.
[http://dx.doi.org/10.1016/j.bmc.2019.115123] [PMID: 31623971]
[3]
Abdulwahab, H.G.; Harras, M.F.; El Menofy, N.G.; Hegab, A.M.; Essa, B.M.; Selim, A.A.; Sakr, T.M.; El-Zahabi, H.S.A. Novel thiobarbi-turates as potent urease inhibitors with potential antibacterial activity: Design, synthesis, radiolabeling and biodistribution study. Bioorg. Med. Chem., 2020, 28(23), 115759.
[http://dx.doi.org/10.1016/j.bmc.2020.115759] [PMID: 32992246]
[4]
Kosikowska, P. Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[http://dx.doi.org/10.1517/13543776.2011.574615] [PMID: 21457123]
[5]
Jiang, X.Y.; Sheng, L.Q.; Song, C.F.; Du, N.N.; Xu, H.J.; Liu, Z.D.; Chen, S.S. Mechanism, kinetics, and antimicrobial activities of 2-hydroxy-1-naphthaldehyde semicarbazone as a new Jack bean urease inhibitor. New J. Chem., 2016, 40, 3520-3527.
[http://dx.doi.org/10.1039/C5NJ01601K]
[6]
Brito, T.O.; Souza, A.X.; Mota, Y.C.; Morais, V.S.; de Souza, L.T.; de Fátima, Â.; Macedo, F.; Modolo, L.V. Design, syntheses and evalu-ation of benzoylthioureas as urease inhibitors of agricultural interest. RSC Advances, 2015, 5, 44507-44515.
[http://dx.doi.org/10.1039/C5RA07886E]
[7]
Shakeel, A.; Altaf, A.A.; Qureshi, A.M.; Badshah, A. Thiourea derivatives in drug design and medicinal chemistry: A short review. J. Drug Des. Med. Chem, 2016, 2, 10-20.
[http://dx.doi.org/10.11648/j.jddmc.20160201.12]
[8]
Rauf, M.K.; Talib, A.; Badshah, A.; Zaib, S.; Shoaib, K.; Shahid, M.; Flörke, U. Imtiaz-ud-Din; Iqbal, J. Solution-phase microwave as-sisted parallel synthesis of N,N-disubstituted thioureas derived from benzoic acid: Biological evaluation and molecular docking studies. Eur. J. Med. Chem., 2013, 70, 487-496.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.012] [PMID: 24185379]
[9]
Aslam, M.A.; Mahmood, S.U.; Shahid, M.; Saeed, A.; Iqbal, J. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5473-5479.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.009] [PMID: 21981981]
[10]
Qazi, S.U.; Rahman, S.U.; Awan, A.N.; Al-Rashida, M.; Alharthy, R.D.; Asari, A.; Hameed, A.; Iqbal, J. Semicarbazone derivatives as urease inhibitors: Synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorg. Chem., 2018, 79, 19-26.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.029] [PMID: 29709568]
[11]
Hameed, A.; Khan, K.M.; Zehra, S.T.; Ahmed, R.; Shafiq, Z.; Bakht, S.M.; Yaqub, M.; Hussain, M.; de la Vega de León, A.; Furtmann, N.; Bajorath, J.; Shad, H.A.; Tahir, M.N.; Iqbal, J. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorg. Chem., 2015, 61, 51-57.
[http://dx.doi.org/10.1016/j.bioorg.2015.06.004] [PMID: 26119990]
[12]
Sheng, G.H.; Chen, X.F.; Li, J.; Chen, J.; Xu, Y.; Han, Y.W.; Yang, T.; You, Z.; Zhu, H.L. Synthesis, Crystal Structures and Urease Inhibi-tion of N-(2-Bromobenzylidene)-2-(4-nitrophenoxy) acetohydrazide and N-(4-Nitrobenzylidene) -2-(4-nitrophenoxy)acetohydrazide. Acta Chim. Slov., 2015, 62(4), 940-946.
[http://dx.doi.org/10.17344/acsi.2015.1770] [PMID: 26680723]
[13]
Isaac, I.O.; Al-Rashida, M.; Rahman, S.U.; Alharthy, R.D.; Asari, A.; Hameed, A.; Khan, K.M.; Iqbal, J. Acridine-based (thio)semicarbazones and hydrazones: Synthesis, in vitro urease inhibition, molecular docking and in silico ADME evaluation. Bioorg. Chem., 2019, 82, 6-16.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.032] [PMID: 30267972]
[14]
Arshia, A.; Khan, A.; Khan, K.M.; Saad, S.M.; Siddiqui, N.I.; Javaid, S.; Perveen, S.; Choudhary, M.I. Synthesis and urease inhibitory activities of benzophenone semicarbazones/thiosemicarbazones. Med. Chem. Res., 2016, 25, 2666-2679.
[http://dx.doi.org/10.1007/s00044-016-1673-0]
[15]
Jia, X.; Liu, Q.; Wang, S.; Zeng, B.; Du, G.; Zhang, C.; Li, Y. Synthesis, cytotoxicity, and in vivo antitumor activity study of parthenolide semicarbazones and thiosemicarbazones. Bioorg. Med. Chem., 2020, 28(13), 115557.
[http://dx.doi.org/10.1016/j.bmc.2020.115557] [PMID: 32546298]
[16]
Beraldo, H. Semicarbazones and thiosemicarbazones: Their wide pharmacological profile and clinical applications. Quim. Nova, 2004, 27(3), 461-471.
[http://dx.doi.org/10.1590/S0100-40422004000300017]
[17]
Kiss, M.; Szabó, E.; Bocska, B.; Sinh, L.T.; Fernandes, C.P.; Timári, I.; Hayes, J.M.; Somsák, L.; Barna, T. Nanomolar inhibition of hu-man OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. Eur. J. Med. Chem., 2021, 223, 113649.
[http://dx.doi.org/10.1016/j.ejmech.2021.113649] [PMID: 34186233]
[18]
Dai, B.; Ma, X.; Tang, Y.; Xu, L.; Guo, S.; Chen, X.; Lu, S.; Wang, G.; Liu, Y. Design, synthesis, and biological activity of novel semi-carbazones as potent Ryanodine receptor1 inhibitors of Alzheimer’s disease. Bioorg. Med. Chem., 2021, 29, 115891.
[http://dx.doi.org/10.1016/j.bmc.2020.115891] [PMID: 33278783]
[19]
Bai, C.; Wu, S.; Ren, S.; Zhu, M.; Luo, G.; Xiang, H. Synthesis and evaluation of novel thiosemicarbazone and semicarbazone analogs with both anti-proliferative and anti-metastatic activities against triple negative breast cancer. Bioorg. Med. Chem., 2021, 37, 116107.
[http://dx.doi.org/10.1016/j.bmc.2021.116107] [PMID: 33735799]
[20]
Scarim, C.B.; Lira de Farias, R.; Vieira de Godoy Netto, A.; Chin, C.M.; Leandro Dos Santos, J.; Pavan, F.R. Recent advances in drug dis-covery against Mycobacterium tuberculosis: Metal-based complexes. Eur. J. Med. Chem., 2021, 214, 113166.
[http://dx.doi.org/10.1016/j.ejmech.2021.113166] [PMID: 33550181]
[21]
Singh, M.; Singh, S.K.; Gangwar, M.; Nath, G.; Singh, S.K. Design, synthesis and mode of action of novel 2-(4-aminophenyl) benzothia-zole derivatives bearing semicarbazone and thiosemicarbazone moiety as potent antimicrobial agents. Med. Chem. Res., 2016, 25(2), 263-282.
[http://dx.doi.org/10.1007/s00044-015-1479-5]
[22]
Raghav, N.; Kaur, R. Synthesis and evaluation of some semicarbazone-and thiosemicarbazone-based cathepsin B inhibitors. Med. Chem. Res., 2014, 23(11), 4669-4679.
[http://dx.doi.org/10.1007/s00044-014-1036-7]
[23]
Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini Rev. Med. Chem., 2004, 4(1), 31-39.
[http://dx.doi.org/10.2174/1389557043487484] [PMID: 14754441]
[24]
Saeedian Moghadam, E.; Al-Sadi, A.M.; Talebi, M.; Amanlou, M.; Amini, M.; Abdel-Jalil, R. Design, synthesis, and bioactivity investiga-tion of novel benzimidazole derivatives as potent urease inhibitors. Synth. Commun., 2021, 1-11.
[http://dx.doi.org/10.1080/00397911.2021.2001661]
[25]
Talebi, M.; Hamidian, E.; Niasari-Naslaji, F.; Rahmani, S.; Hosseini, F.S.; Boumi, S.; Montazer, M.N.; Asadi, M.; Amanlou, M. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med. Chem. Res., 2021, 30(6), 1220-1229.
[http://dx.doi.org/10.1007/s00044-021-02727-4]
[26]
Saravani, F.; Moghadam, E.S.; Salehabadi, H.; Ostad, S.; Hamedani, M.P.; Amanlou, M.; Faramarzi, M.A.; Amini, M. Synthesis, anti-proliferative evaluation, and molecular docking studies of 3-(alkylthio)-5, 6-diaryl-1, 2, 4-triazines as tubulin polymerization inhibitors. Lett. Drug Des. Discov., 2019, 16(11), 1194-1201.
[http://dx.doi.org/10.2174/1570180815666180727114216]
[27]
Saeedian Moghadam, E.; Saravani, F.; Ostad, S.; Tavajohi, S.; Hamedani, M.P.; Amini, M. Design, synthesis and cytotoxicity evaluation of indibulin analogs. Heterocycl. Commun., 2018, 24(4), 211-217.
[http://dx.doi.org/10.1515/hc-2018-0016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy