Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Maternal Nutritional Factors, Fetal Macrosomia and Increased Risk of Childhood Obesity: Effects of Excess Placental Transfer of Maternal Glucose and Fatty Acids

Author(s): Seray Kabaran*

Volume 19, Issue 2, 2023

Published on: 04 August, 2022

Page: [145 - 157] Pages: 13

DOI: 10.2174/1573401318666220328143217

Price: $65

Abstract

Background: Maternal nutritional factors play a significant role in maternal glucose and fatty acid transfer across the placenta and contribute to further enhancing fetal growth and also increasing the risk of fetal macrosomia.

Objective: This review aims to provide the effects of placental transfer of maternal fatty acids and glucose on fetal macrosomia, and also highlights the maternal nutritional interventions to prevent fetal adiposity.

Methods: All abstracts and full-text articles have been examined and the most relevant articles have been included in this review.

Results: Maternal obesity, maternal over-nutrition, and gestational diabetes can permanently influence the risk of macrosomia via the effects of the placental transfer of maternal fatty acids and glucose on the fetus. These conditions are associated with unfavorable maternal environments that lead to fetal growth acceleration by adverse fetal programming outcomes and increased risk of childhood obesity. As a result, pregnancy should be viewed as a window of opportunity for the development of maternal nutritional therapies that improve maternal glucose and lipid metabolism, potentially reducing macrosomia and juvenile obesity.

Conclusion: Evidence-based techniques for managing maternal glucose and fatty acid transfer to the fetus include maintaining maternal pre-pregnancy body mass index (BMI), acceptable weight gain throughout pregnancy, and maternal nutritional interventions during pregnancy. Healthy dietary patterns (such as the Mediterranean diet) and/or dietary consumption of certain nutrients (such as omega-3 fatty acids) are among the suggestions for fetal macrosomia prevention.

Keywords: Childhood obesity, fetal macrosomia, maternal glucose, maternal fatty acids, maternal nutrition, nutritional interventions.

Graphical Abstract

[1]
Yin Z, Ullevig SL, Sosa E, et al. Study protocol for a cluster randomized controlled trial to test “¡Míranos! Look at us, We are healthy!” - an early childhood obesity prevention program. BMC Pediatr 2019; 19(1): 190-4.
[http://dx.doi.org/10.1186/s12887-019-1541-4] [PMID: 31179916]
[2]
Şanlı E, Kabaran S. Maternal obesity, maternal overnutrition and fetal programming: Effects of epigenetic mechanisms on the development of metabolic disorders. Curr Genomics 2019; 20(6): 419-27.
[http://dx.doi.org/10.2174/1389202920666191030092225] [PMID: 32476999]
[3]
Frederick IO, Williams MA, Sales AE, Martin DP, Killien M. Pre-pregnancy body mass index, gestational weight gain, and other maternal characteristics in relation to infant birth weight. Matern Child Health J 2008; 12(5): 557-67.
[http://dx.doi.org/10.1007/s10995-007-0276-2] [PMID: 17713848]
[4]
Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: A literature review. Ann Nutr Metab 2015; 66 (Suppl. 2): 14-20.
[http://dx.doi.org/10.1159/000371628] [PMID: 26045324]
[5]
Ornoy A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol 2011; 32(2): 205-12.
[http://dx.doi.org/10.1016/j.reprotox.2011.05.002] [PMID: 21620955]
[6]
Szabo AJ. Transferred maternal fatty acids stimulate fetal adipogenesis and lead to neonatal and adult obesity. Med Hypotheses 2019; 122: 82-8.
[http://dx.doi.org/10.1016/j.mehy.2018.10.022] [PMID: 30593430]
[7]
Pedersen J. Weight and length at birth of infants of diabetic mothers. Acta Endocrinol (Copenh) 1954; 16(4): 330-42.
[http://dx.doi.org/10.1530/acta.0.0160330] [PMID: 13206643]
[8]
Scifres CM, Catov JM, Simhan HN. The impact of maternal obesity and gestational weight gain on early and mid-pregnancy lipid profiles. Obesity (Silver Spring) 2014; 22(3): 932-8.
[http://dx.doi.org/10.1002/oby.20576] [PMID: 23853155]
[9]
Barbour LA, Hernandez TL. Maternal lipids and fetal overgrowth: Making fat from fat. Clin Ther 2018; 40(10): 1638-47.
[http://dx.doi.org/10.1016/j.clinthera.2018.08.007] [PMID: 30236792]
[10]
Vieira MC, Sankaran S, Pasupathy D. Fetal macrosomia. Obstetrics, Gynaecol Reprod Med 2020; 30(5): 146-51.
[http://dx.doi.org/10.1016/j.ogrm.2020.02.011]
[11]
Agbozo F, Abubakari A, Der J, Jahn A. Prevalence of low birth weight, macrosomia and stillbirth and their relationship to associated maternal risk factors in Hohoe Municipality, Ghana. Midwifery 2016; 40: 200-6.
[http://dx.doi.org/10.1016/j.midw.2016.06.016] [PMID: 27474932]
[12]
Boulet SL, Alexander GR, Salihu HM, Pass M. Macrosomic births in the United States: Determinants, outcomes, and proposed grades of risk. Am J Obstet Gynecol 2003; 188(5): 1372-8.
[http://dx.doi.org/10.1067/mob.2003.302] [PMID: 12748514]
[13]
Jolly MC, Sebire NJ, Harris JP, Regan L, Robinson S. Risk factors for macrosomia and its clinical consequences: A study of 350,311 pregnancies. Eur J Obstet Gynecol Reprod Biol 2003; 111(1): 9-14.
[http://dx.doi.org/10.1016/S0301-2115(03)00154-4] [PMID: 14557004]
[14]
Pan X-F, Tang L, Lee AH, et al. Association between fetal macrosomia and risk of obesity in children under 3 years in Western China: A cohort study. World J Pediatr 2019; 15(2): 153-60.
[http://dx.doi.org/10.1007/s12519-018-0218-7] [PMID: 30635839]
[15]
Wang Y, Gao E, Wu J, et al. Fetal macrosomia and adolescence obesity: Results from a longitudinal cohort study. Int J Obes 2009; 33(8): 923-8.
[http://dx.doi.org/10.1038/ijo.2009.131] [PMID: 19564880]
[16]
Stotland NE, Caughey AB, Breed EM, Escobar GJ. Risk factors and obstetric complications associated with macrosomia. Int J Gynaecol Obstet 2004; 87(3): 220-6.
[http://dx.doi.org/10.1016/j.ijgo.2004.08.010] [PMID: 15548393]
[17]
Stevenson K, Lillycrop KA, Silver MJ. Fetal programming and epigenetics. Curr Opin Endocr Metab Res 2020; 13: 1-6.
[http://dx.doi.org/10.1016/j.coemr.2020.07.005]
[18]
Gabory A, Attig L, Junien C. Developmental programming and epigenetics. Am J Clin Nutr 2011; 94(6) (Suppl.): 1943S-52S.
[http://dx.doi.org/10.3945/ajcn.110.000927] [PMID: 22049164]
[19]
Desai M, Jellyman JK, Ross MG. Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes 2015; 39(4): 633-41.
[http://dx.doi.org/10.1038/ijo.2015.13] [PMID: 25640766]
[20]
Lakshman R, Elks CE, Ong KK. Childhood obesity. Circulation 2012; 126(14): 1770-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.047738] [PMID: 23027812]
[21]
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in children’s and adolescents’ body mass index, underweight and obesity, in comparison with adults, from 1975 to 2016: A pooled analysis of 2,416 population-based measurement studies with 128.9 million participants. Lancet 2017; 390(10113): 2627-42.
[PMID: 29029897]
[22]
Ogden CL, Carroll MD, Lawman HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA 2016; 315(21): 2292-9.
[http://dx.doi.org/10.1001/jama.2016.6361] [PMID: 27272581]
[23]
World Health Organization (WHO) Obesity and overweight. 2016. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
[24]
Wiss DA, Brewerton TD. Adverse childhood experiences and adult obesity: A systematic review of plausible mechanisms and meta-analysis of cross-sectional studies. Physiol Behav 2020; 223: 112964.
[http://dx.doi.org/10.1016/j.physbeh.2020.112964] [PMID: 32479804]
[25]
Liu D, Hao YX, Zhao TZ, et al. Childhood BMI and adult obesity in a Chinese sample: A 13-year follow-up study. Biomed Environ Sci 2019; 32(3): 162-8.
[PMID: 30987690]
[26]
Albataineh SR, Badran EF, Tayyem RF. Overweight and obesity in childhood: Dietary, biochemical, inflammatory and lifestyle risk factors. Obes Med 2019; 15: 100112.
[http://dx.doi.org/10.1016/j.obmed.2019.100112]
[27]
Mistry SK, Puthussery S. Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: A systematic review of the evidence. Public Health 2015; 129(3): 200-9.
[http://dx.doi.org/10.1016/j.puhe.2014.12.004] [PMID: 25746156]
[28]
Woo Baidal JA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM. Risk factors for childhood obesity in the first 1,000 days: A systematic review. Am J Prev Med 2016; 50(6): 761-79.
[http://dx.doi.org/10.1016/j.amepre.2015.11.012] [PMID: 26916261]
[29]
Lindsay KL, Entringer S, Buss C, Wadhwa PD. Intergenerational transmission of the effects of maternal exposure to childhood maltreatment on offspring obesity risk: A fetal programming perspective. Psychoneuroendocrinology 2020; 116: 104659.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104659] [PMID: 32240906]
[30]
Elshenawy S, Simmons R. Maternal obesity and prenatal programming. Mol Cell Endocrinol 2016; 435: 2-6.
[http://dx.doi.org/10.1016/j.mce.2016.07.002] [PMID: 27392495]
[31]
Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC. The early origins of obesity and insulin resistance: Timing, programming and mechanisms. Int J Obes 2016; 40(2): 229-38.
[http://dx.doi.org/10.1038/ijo.2015.178] [PMID: 26367335]
[32]
Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab 2012; 26(5): 641-53.
[http://dx.doi.org/10.1016/j.beem.2012.03.008] [PMID: 22980046]
[33]
Kwon EJ, Kim YJ. What is fetal programming?: A lifetime health is under the control of in utero health. Obstet Gynecol Sci 2017; 60(6): 506-19.
[http://dx.doi.org/10.5468/ogs.2017.60.6.506] [PMID: 29184858]
[34]
Rinaudo P, Wang E. Fetal programming and metabolic syndrome. Annu Rev Physiol 2012; 74: 107-30.
[http://dx.doi.org/10.1146/annurev-physiol-020911-153245] [PMID: 21910625]
[35]
Maffeis C, Morandi A. Effect of maternal obesity on foetal growth and metabolic health of the offspring. Obes Facts 2017; 10(2): 112-7.
[http://dx.doi.org/10.1159/000456668] [PMID: 28384625]
[36]
Padmanabhan V, Cardoso RC, Puttabyatappa M. Developmental programming, a pathway to disease. Endocrinology 2016; 157(4): 1328-40.
[http://dx.doi.org/10.1210/en.2016-1003] [PMID: 26859334]
[37]
Warner MJ, Ozanne SE. Mechanisms involved in the developmental programming of adulthood disease. Biochem J 2010; 427(3): 333-47.
[http://dx.doi.org/10.1042/BJ20091861] [PMID: 20388123]
[38]
Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006; 82(8): 485-91.
[http://dx.doi.org/10.1016/j.earlhumdev.2006.07.001] [PMID: 16876341]
[39]
Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1(8489): 1077-81.
[http://dx.doi.org/10.1016/S0140-6736(86)91340-1] [PMID: 2871345]
[40]
Barker DJP. Sir Richard Doll Lecture. Developmental origins of chronic disease. Public Health 2012; 126(3): 185-9.
[http://dx.doi.org/10.1016/j.puhe.2011.11.014] [PMID: 22325676]
[41]
Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992; 35(7): 595-601.
[http://dx.doi.org/10.1007/BF00400248] [PMID: 1644236]
[42]
Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. 1992. Int J Epidemiol 2013; 42(5): 1215-22.
[http://dx.doi.org/10.1093/ije/dyt133] [PMID: 24159065]
[43]
O’Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf) 2013; 78(1): 9-16.
[http://dx.doi.org/10.1111/cen.12055] [PMID: 23009645]
[44]
Morris MJ. Early life influences on obesity risk: Maternal overnutrition and programming of obesity. Expert Rev Endocrinol Metab 2009; 4(6): 625-37.
[http://dx.doi.org/10.1586/eem.09.45] [PMID: 30780787]
[45]
Neri C, Edlow AG. Effects of maternal obesity on fetal programming: Molecular approaches. Cold Spring Harb Perspect Med 2015; 6(2): a026591.
[http://dx.doi.org/10.1101/cshperspect.a026591] [PMID: 26337113]
[46]
Grattan DR. Fetal programming from maternal obesity: Eating too much for two? Endocrinology 2008; 149(11): 5345-7.
[http://dx.doi.org/10.1210/en.2008-1106] [PMID: 18936494]
[47]
Schellong K, Schulz S, Harder T, Plagemann A. Birth weight and long-term overweight risk: Systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PLoS One 2012; 7(10): e47776.
[http://dx.doi.org/10.1371/journal.pone.0047776] [PMID: 23082214]
[48]
Lee H-S. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 2015; 7(11): 9492-507.
[http://dx.doi.org/10.3390/nu7115467] [PMID: 26593940]
[49]
Salihu HM, Dongarwar D, King LM, Yusuf KK, Ibrahimi S, Salinas-Miranda AA. Trends in the incidence of fetal macrosomia and its phenotypes in the United States, 1971-2017. Arch Gynecol Obstet 2020; 301(2): 415-26.
[http://dx.doi.org/10.1007/s00404-019-05400-9] [PMID: 31811414]
[50]
Shi P, Yang W, Yu Q, et al. Overweight, gestational weight gain and elevated fasting plasma glucose and their association with macrosomia in Chinese pregnant women. Matern Child Health J 2014; 18(1): 10-5.
[http://dx.doi.org/10.1007/s10995-013-1253-6] [PMID: 23784612]
[51]
Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: A systematic review and meta-analysis. Obes Rev 2011; 12(7): 525-42.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00867.x] [PMID: 21438992]
[52]
Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: A systematic review and meta-analysis. PLoS One 2013; 8(4): e61627.
[http://dx.doi.org/10.1371/journal.pone.0061627] [PMID: 23613888]
[53]
Lu S, Fu Y, Wu Y-Y, et al. Mediating effects of maternal blood triglycerides on the relationship between prepregnancy body mass index and fetal macrosomia. J Pediatr 2020; 226: 118-122.e1.
[54]
Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care 2008; 31(9): 1858-63.
[http://dx.doi.org/10.2337/dc08-0039] [PMID: 18606978]
[55]
Gaudet L, Ferraro ZM, Wen SW, Walker M. Maternal obesity and occurrence of fetal macrosomia: A systematic review and meta-analysis. BioMed Res Int 2014; 2014: 640291.
[http://dx.doi.org/10.1155/2014/640291] [PMID: 25544943]
[56]
Voerman E, Santos S, Patro Golab B, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med 2019; 16(2): e1002744.
[http://dx.doi.org/10.1371/journal.pmed.1002744] [PMID: 30742624]
[57]
He X-J, Qin FY, Hu C-L, Zhu M, Tian C-Q, Li L. Is gestational diabetes mellitus an independent risk factor for macrosomia: A meta-analysis? Arch Gynecol Obstet 2015; 291(4): 729-35.
[http://dx.doi.org/10.1007/s00404-014-3545-5] [PMID: 25388922]
[58]
Godfrey KM. The role of the placenta in fetal programming-a review. Placenta 2002; 23 (Suppl. A): S20-7.
[http://dx.doi.org/10.1053/plac.2002.0773] [PMID: 11978056]
[59]
Jovanovic-Peterson L, Peterson CM, Reed GF, et al. Maternal postprandial glucose levels and infant birth weight: The Diabetes in early pregnancy study. Am J Obstet Gynecol 1991; 164(1 Pt 1): 103-11.
[http://dx.doi.org/10.1016/0002-9378(91)90637-7] [PMID: 1986596]
[60]
Voldner N, Qvigstad E, Frøslie KF, Godang K, Henriksen T, Bollerslev J. Increased risk of macrosomia among overweight women with high gestational rise in fasting glucose. J Matern Fetal Neonatal Med 2010; 23(1): 74-81.
[http://dx.doi.org/10.3109/14767050903121472] [PMID: 19626569]
[61]
Mirghani Dirar A, Doupis J. Gestational diabetes from A to Z. World J Diabetes 2017; 8(12): 489-511.
[http://dx.doi.org/10.4239/wjd.v8.i12.489] [PMID: 29290922]
[62]
Ong KK, Diderholm B, Salzano G, et al. Pregnancy insulin, glucose, and BMI contribute to birth outcomes in nondiabetic mothers. Diabetes Care 2008; 31(11): 2193-7.
[http://dx.doi.org/10.2337/dc08-1111] [PMID: 18697902]
[63]
Jiménez-Moleón JJ, Bueno-Cavanillas A, Luna-del-Castillo Jde D, García-Martín M, Lardelli-Claret P, Gálvez-Vargas R. Impact of different levels of carbohydrate intolerance on neonatal outcomes classically associated with gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol 2002; 102(1): 36-41.
[http://dx.doi.org/10.1016/S0301-2115(01)00575-9] [PMID: 12039087]
[64]
Duque-Guimarães DE, Ozanne SE. Nutritional programming of insulin resistance: Causes and consequences. Trends Endocrinol Metab 2013; 24(10): 525-35.
[http://dx.doi.org/10.1016/j.tem.2013.05.006] [PMID: 23791137]
[65]
Symonds ME, Pope M, Sharkey D, Budge H. Adipose tissue and fetal programming. Diabetologia 2012; 55(6): 1597-606.
[http://dx.doi.org/10.1007/s00125-012-2505-5] [PMID: 22402988]
[66]
Desai M, Ross MG. Fetal programming of adipose tissue: Effects of IUGR and maternal obesity/high fat diet. Semin Reprod Med 2011; 26(3): 237-45.
[http://dx.doi.org/10.1055/s-0031-1275517] [PMID: 21710399]
[67]
Vambergue A, Fajardy I. Consequences of gestational and pregestational diabetes on placental function and birth weight. World J Diabetes 2011; 2(11): 196-203.
[http://dx.doi.org/10.4239/wjd.v2.i11.196] [PMID: 22087356]
[68]
Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007; 30(8): 2070-6.
[http://dx.doi.org/10.2337/dc06-2559a] [PMID: 17416786]
[69]
McCarthy FP, Khashan AS, Murray D, et al. SCOPE Ireland Cohort study and the Cork BASELINE Birth Cohort study. Parental physical and lifestyle factors and their association with newborn body composition. BJOG 2016; 123(11): 1824-9.
[http://dx.doi.org/10.1111/1471-0528.14042] [PMID: 27102226]
[70]
Herrera E, Amusquivar E, López-Soldado I, Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm Res 2006; 65 (Suppl. 3): 59-64.
[PMID: 16612115]
[71]
Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr 2010; 30: 237-55.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104742] [PMID: 20438366]
[72]
Ghio A, Bertolotto A, Resi V, Volpe L, Di Cianni G. Triglyceride metabolism in pregnancy. Adv Clin Chem 2011; 55: 133-53.
[http://dx.doi.org/10.1016/B978-0-12-387042-1.00007-1] [PMID: 22126027]
[73]
Son GH, Kwon JY, Kim YH, Park YW. Maternal serum triglycerides as predictive factors for large-for-gestational age newborns in women with gestational diabetes mellitus. Acta Obstet Gynecol Scand 2010; 89(5): 700-4.
[http://dx.doi.org/10.3109/00016341003605677] [PMID: 20423280]
[74]
Mossayebi E, Arab Z, Rahmaniyan M, Almassinokiani F, Kabir A. Prediction of neonates’ macrosomia with maternal lipid profile of healthy mothers. Pediatr Neonatol 2014; 55(1): 28-34.
[http://dx.doi.org/10.1016/j.pedneo.2013.05.006] [PMID: 23911877]
[75]
Hashemipour S, Haji Seidjavadi E, Maleki F, Esmailzadehha N, Movahed F, Yazdi Z. Level of maternal triglycerides is a predictor of fetal macrosomia in non-obese pregnant women with gestational diabetes mellitus. Pediatr Neonatol 2018; 59(6): 567-72.
[http://dx.doi.org/10.1016/j.pedneo.2018.01.008] [PMID: 29398554]
[76]
Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: A fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 2010; 299(3): R711-22.
[http://dx.doi.org/10.1152/ajpregu.00310.2010] [PMID: 20631295]
[77]
McCurdy CE, Bishop JM, Williams SM, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 2009; 119(2): 323-35.
[http://dx.doi.org/10.1172/JCI32661] [PMID: 19147984]
[78]
Muhlhausler BS, Ong ZY. The fetal origins of obesity: Early origins of altered food intake. Endocr Metab Immune Disord Drug Targets 2011; 11(3): 189-97.
[http://dx.doi.org/10.2174/187153011796429835] [PMID: 21831032]
[79]
Poston L. Maternal obesity, gestational weight gain and diet as determinants of offspring long term health. Best Pract Res Clin Endocrinol Metab 2012; 26(5): 627-39.
[http://dx.doi.org/10.1016/j.beem.2012.03.010] [PMID: 22980045]
[80]
Heude B, Thiébaugeorges O, Goua V, et al. Pre-pregnancy body mass index and weight gain during pregnancy: Relations with gestational diabetes and hypertension, and birth outcomes. Matern Child Health J 2012; 16(2): 355-63.
[http://dx.doi.org/10.1007/s10995-011-0741-9] [PMID: 21258962]
[81]
Andres A, Shankar K, Badger TM. Body fat mass of exclusively breastfed infants born to overweight mothers. J Acad Nutr Diet 2012; 112(7): 991-5.
[http://dx.doi.org/10.1016/j.jand.2012.03.031] [PMID: 22889630]
[82]
Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC. Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 2006; 20(8): 1257-9.
[http://dx.doi.org/10.1096/fj.05-5241fje] [PMID: 16684802]
[83]
Brion MJ, Ness AR, Rogers I, et al. Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: Exploring parental comparisons and prenatal effects. Am J Clin Nutr 2010; 91(3): 748-56.
[http://dx.doi.org/10.3945/ajcn.2009.28623] [PMID: 20053880]
[84]
Lawlor DA, Smith GD, O’Callaghan M, et al. Epidemiologic evidence for the fetal overnutrition hypothesis: Findings from the mater-university study of pregnancy and its outcomes. Am J Epidemiol 2007; 165(4): 418-24.
[http://dx.doi.org/10.1093/aje/kwk030] [PMID: 17158475]
[85]
Bouret SG. Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development. J Nutr 2010; 140(3): 653-7.
[http://dx.doi.org/10.3945/jn.109.112433] [PMID: 20107150]
[86]
Candler T, Kühnen P, Prentice AM, Silver M. Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 2019; 54: 100773.
[http://dx.doi.org/10.1016/j.yfrne.2019.100773] [PMID: 31344387]
[87]
Ramos-Lobo AM, Teixeira PD, Furigo IC, et al. Long-term consequences of the absence of leptin signaling in early life. eLife 2019; 8: e40970.
[http://dx.doi.org/10.7554/eLife.40970] [PMID: 30694175]
[88]
Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab 2006; 291(4): E792-9.
[http://dx.doi.org/10.1152/ajpendo.00078.2006] [PMID: 16720630]
[89]
Chechi K, Cheema SK. Maternal diet rich in saturated fats has deleterious effects on plasma lipids of mice. Exp Clin Cardiol 2006; 11(2): 129-35.
[PMID: 18651049]
[90]
Tamashiro KL, Moran TH. Perinatal environment and its influences on metabolic programming of offspring. Physiol Behav 2010; 100(5): 560-6.
[http://dx.doi.org/10.1016/j.physbeh.2010.04.008] [PMID: 20394764]
[91]
Davenport MH, Cabrero MR. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 2009; 587(Pt 14): 3423-4.
[http://dx.doi.org/10.1113/jphysiol.2009.174896] [PMID: 19602635]
[92]
Samuelsson A-M, Matthews PA, Argenton M, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: A novel murine model of developmental programming. Hypertension 2008; 51(2): 383-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.101477] [PMID: 18086952]
[93]
Gali Ramamoorthy T, Allen T-J, Davies A, et al. Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic pomc in the offspring of rats. Int J Obes 2018; 42(8): 1431-44.
[http://dx.doi.org/10.1038/s41366-018-0094-1] [PMID: 29777232]
[94]
Chen H, Simar D, Lambert K, Mercier J, Morris MJ. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 2008; 149(11): 5348-56.
[http://dx.doi.org/10.1210/en.2008-0582] [PMID: 18635655]
[95]
Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition. Front Genet 2011; 2: 27.
[http://dx.doi.org/10.3389/fgene.2011.00027] [PMID: 22303323]
[96]
Mühlhäusler BS. Programming of the appetite-regulating neural network: A link between maternal overnutrition and the programming of obesity? J Neuroendocrinol 2007; 19(1): 67-72.
[http://dx.doi.org/10.1111/j.1365-2826.2006.01505.x] [PMID: 17184487]
[97]
EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 2010; 8(3): 107.
[98]
Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr 2011; 7 (Suppl. 2): 112-23.
[http://dx.doi.org/10.1111/j.1740-8709.2011.00318.x] [PMID: 21366871]
[99]
Wilson NA, Mantzioris E, Middleton PF, Muhlhausler BS. Influence of clinical characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 154: 102063.
[http://dx.doi.org/10.1016/j.plefa.2020.102063] [PMID: 32058894]
[100]
Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol 2003; 101(3): 469-79.
[PMID: 12636950]
[101]
Kabaran S, Besler HT. Do fatty acids affect fetal programming? J Health Popul Nutr 2015; 33(1): 14.
[http://dx.doi.org/10.1186/s41043-015-0018-9] [PMID: 26825664]
[102]
Khaire A, Wadhwani N, Madiwale S, Joshi S. Maternal fats and pregnancy complications: Implications for long-term health. Prostaglandins Leukot Essent Fatty Acids 2020; 157: 102098.
[http://dx.doi.org/10.1016/j.plefa.2020.102098] [PMID: 32380367]
[103]
Bowers K, Tobias DK, Yeung E, Hu FB, Zhang C. A prospective study of prepregnancy dietary fat intake and risk of gestational diabetes. Am J Clin Nutr 2012; 95(2): 446-53.
[http://dx.doi.org/10.3945/ajcn.111.026294] [PMID: 22218158]
[104]
Barbieiri P, Nunes JC, Torres AG, et al. Indices of dietary fat quality during midpregnancy is associated with gestational diabetes. Nutrition 2016; 32(6): 656-61.
[http://dx.doi.org/10.1016/j.nut.2015.12.002] [PMID: 26876000]
[105]
Moon RJ, Harvey NC, Robinson SM, et al. SWS Study Group. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab 2013; 98(1): 299-307.
[http://dx.doi.org/10.1210/jc.2012-2482] [PMID: 23162098]
[106]
Larqué E, Gil-Sánchez A, Prieto-Sánchez MT, Koletzko B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br J Nutr 2012; 107 (Suppl. 2): S77-84.
[http://dx.doi.org/10.1017/S0007114512001481] [PMID: 22591905]
[107]
Saravanan P. Gestational diabetes: Opportunities for improving maternal and child health. Lancet Diabetes Endocrinol 2020; 8(9): 793-800.
[http://dx.doi.org/10.1016/S2213-8587(20)30161-3] [PMID: 32822601]
[108]
Hernandez TL, Anderson MA, Chartier-Logan C, Friedman JE, Barbour LA. Strategies in the nutritional management of gestational diabetes. Clin Obstet Gynecol 2013; 56(4): 803-15.
[http://dx.doi.org/10.1097/GRF.0b013e3182a8e0e5] [PMID: 24047934]
[109]
Thomas B, Ghebremeskel K, Lowy C, Crawford M, Offley-Shore B. Nutrient intake of women with and without gestational diabetes with a specific focus on fatty acids. Nutrition 2006; 22(3): 230-6.
[http://dx.doi.org/10.1016/j.nut.2005.07.017] [PMID: 16500549]
[110]
Allehdan SS, Basha AS, Asali FF, Tayyem RF. Dietary and exercise interventions and glycemic control and maternal and newborn outcomes in women diagnosed with gestational diabetes: Systematic review. Diabetes Metab Syndr 2019; 13(4): 2775-84.
[http://dx.doi.org/10.1016/j.dsx.2019.07.040] [PMID: 31405707]
[111]
Girard AW, Olude O. Nutrition education and counselling provided during pregnancy: Effects on maternal, neonatal and child health outcomes. Paediatr Perinat Epidemiol 2012; 26 (Suppl. 1): 191-204.
[http://dx.doi.org/10.1111/j.1365-3016.2012.01278.x] [PMID: 22742611]
[112]
Garg A, Kashyap S. Effect of counseling on nutritional status during pregnancy. Indian J Pediatr 2006; 73(8): 687-92.
[http://dx.doi.org/10.1007/BF02898446] [PMID: 16936363]
[113]
Guelinckx I, Devlieger R, Mullie P, Vansant G. Effect of lifestyle intervention on dietary habits, physical activity, and gestational weight gain in obese pregnant women: A randomized controlled trial. Am J Clin Nutr 2010; 91(2): 373-80.
[http://dx.doi.org/10.3945/ajcn.2009.28166] [PMID: 19955397]
[114]
Vestgaard M, Christensen AS, Viggers L, Lauszus FF. Birth weight and its relation with medical nutrition therapy in gestational diabetes. Arch Gynecol Obstet 2017; 296(1): 35-41.
[http://dx.doi.org/10.1007/s00404-017-4396-7] [PMID: 28510096]
[115]
Ásbjörnsdóttir B, Vestgaard M, Ringholm L, et al. Effect of motivational interviewing on gestational weight gain and fetal growth in pregnant women with type 2 diabetes. BMJ Open Diabetes Res Care 2019; 7(1): e000733.
[http://dx.doi.org/10.1136/bmjdrc-2019-000733] [PMID: 31798895]
[116]
Li S, Gan Y, Chen M, et al. Effects of the dietary approaches to stop hypertension (DASH) on pregnancy/neonatal outcomes and maternal glycemic control: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2020; 54: 102551.
[http://dx.doi.org/10.1016/j.ctim.2020.102551] [PMID: 33183669]
[117]
Izadi V, Tehrani H, Haghighatdoost F, Dehghan A, Surkan PJ, Azadbakht L. Adherence to the DASH and mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition 2016; 32(10): 1092-6.
[http://dx.doi.org/10.1016/j.nut.2016.03.006] [PMID: 27189908]
[118]
Filardi T, Panimolle F, Crescioli C, Lenzi A, Morano S. Gestational diabetes mellitus: The impact of carbohydrate quality in diet. Nutrients 2019; 11(7): 1549.
[http://dx.doi.org/10.3390/nu11071549] [PMID: 31323991]
[119]
Mahajan A, Donovan LE, Vallee R, Yamamoto JM. Evidenced-based nutrition for gestational diabetes mellitus. Curr Diab Rep 2019; 19(10): 94.
[http://dx.doi.org/10.1007/s11892-019-1208-4] [PMID: 31473839]
[120]
Kapur K, Kapur A, Hod M. Nutrition management of gestational diabetes mellitus. Ann Nutr Metab 2021; 1-13.
[http://dx.doi.org/10.1159/000509900] [PMID: 33524988]
[121]
Goshtasebi A, Hosseinpour-Niazi S, Mirmiran P, Lamyian M, Moghaddam Banaem L, Azizi F. Pre-pregnancy consumption of starchy vegetables and legumes and risk of gestational diabetes mellitus among Tehranian women. Diabetes Res Clin Pract 2018; 139: 131-8.
[http://dx.doi.org/10.1016/j.diabres.2018.02.033] [PMID: 29505799]
[122]
Ramanathan K, Jagadeesh NS, Vishwanath U, Dayal C, Babu RC, Hayter M. Efficacy of supplementation of probiotics on maternal glycaemic control-A systematic review and meta-analysis of randomized controlled trials. Clin Epidemiol Glob Health 2020; 10: 100674.
[http://dx.doi.org/10.1016/j.cegh.2020.11.007]
[123]
Dhillon P, Singh K, Kaur K. The benefits of probiotic interventions in maternal-fetal health: An appraise review. PharmaNutrition 2020; 13: 100211.
[http://dx.doi.org/10.1016/j.phanu.2020.100211]
[124]
Karamali M, Dadkhah F, Sadrkhanlou M, et al. Effects of probiotic supplementation on glycaemic control and lipid profiles in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes Metab 2016; 42(4): 234-41.
[http://dx.doi.org/10.1016/j.diabet.2016.04.009] [PMID: 27209439]
[125]
Badehnoosh B, Karamali M, Zarrati M, et al. The effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. J Matern Fetal Neonatal Med 2018; 31(9): 1128-36.
[http://dx.doi.org/10.1080/14767058.2017.1310193] [PMID: 28326881]
[126]
Castro-Rodríguez DC, Rodríguez-González GL, Menjivar M, Zambrano E. Maternal interventions to prevent adverse fetal programming outcomes due to maternal malnutrition: Evidence in animal models. Placenta 2020; 102: 49-54.
[http://dx.doi.org/10.1016/j.placenta.2020.04.002] [PMID: 33218579]
[127]
Gilmore LA, Klempel-Donchenko M, Redman LM. Pregnancy as a window to future health: Excessive gestational weight gain and obesity. Semin Perinatol 2015; 39(4): 296-303.
[http://dx.doi.org/10.1053/j.semperi.2015.05.009] [PMID: 26096078]
[128]
Gaillard R, Durmuş B, Hofman A, Mackenbach JP, Steegers EA, Jaddoe VW. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Obesity (Silver Spring) 2013; 21(5): 1046-55.
[http://dx.doi.org/10.1002/oby.20088] [PMID: 23784909]
[129]
Tie H-T, Xia Y-Y, Zeng Y-S, et al. Risk of childhood overweight or obesity associated with excessive weight gain during pregnancy: A meta-analysis. Arch Gynecol Obstet 2014; 289(2): 247-57.
[http://dx.doi.org/10.1007/s00404-013-3053-z] [PMID: 24141389]
[130]
Diesel JC, Eckhardt CL, Day NL, Brooks MM, Arslanian SA, Bodnar LM. Is gestational weight gain associated with offspring obesity at 36 months? Pediatr Obes 2015; 10(4): 305-10.
[http://dx.doi.org/10.1111/ijpo.262] [PMID: 25267200]
[131]
Institute of Medicine (IOM) National Research Council. Weight Gain during Pregnancy: Reexamining the Guidelines. Rasmussen KM, Yaktine AL, Eds. Washington, DC: The National Academies Press 2009.
[132]
Knabl J, Riedel C, Gmach J, et al. Prediction of excessive gestational weight gain from week-specific cutoff values: A cohort study. J Perinatol 2014; 34(5): 351-6.
[http://dx.doi.org/10.1038/jp.2014.22] [PMID: 24577434]
[133]
Tomedi LE, Simhan HN, Chang C-CH, McTigue KM, Bodnar LM. Gestational weight gain, early pregnancy maternal adiposity distribution, and maternal hyperglycemia. Matern Child Health J 2014; 18(5): 1265-70.
[http://dx.doi.org/10.1007/s10995-013-1361-3] [PMID: 24101436]
[134]
Ballesta-Castillejos A, Gómez-Salgado J, Rodríguez-Almagro J, Ortiz-Esquinas I, Hernández-Martínez A. Relationship between maternal body mass index and obstetric and perinatal complications. J Clin Med 2020; 9(3): 707.
[http://dx.doi.org/10.3390/jcm9030707] [PMID: 32151008]
[135]
Freeman DJ. Effects of maternal obesity on fetal growth and body composition: Implications for programming and future health. Semin Fetal Neonatal Med 2010; 15(2): 113-8.
[http://dx.doi.org/10.1016/j.siny.2009.09.001] [PMID: 19853544]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy