Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Porcine Epidemic Diarrhea: Causative Agent, Epidemiology, Clinical Characteristics, and Treatment Strategy Targeting Main Protease

Author(s): Tooba N. Shamsi, Jiang Yin, Michelle E. James and Michael N.G. James*

Volume 29, Issue 5, 2022

Published on: 14 April, 2022

Page: [392 - 407] Pages: 16

DOI: 10.2174/0929866529666220316145149

Price: $65

conference banner
Abstract

Aims: This aimed to study the causative agent, epidemiology, clinical characteristics, and treatment strategy targeting the main protease in porcine epidemic diarrhea.

Background: Porcine epidemic diarrhea (PED) is a contagious intestinal viral infection causing severe diarrhea, vomiting, and dehydration in pigs. High rates of mortalities and severe morbidities, approaching 100%, are reported in piglets infected with PEDV. In recent years, PED has been observed to influence the swine-farming nations in Europe, Asia, the USA, South Korea, and Canada. The PED virus (PEDV) transmission takes place through a faecal-oral route.

Objective: The objective is to review the characteristics of PEDV and its role in the disease. In addition, we aim to outline some possible methods to combat PED infection, including targeting the main protease of coronavirus and their future perspectives.

Methods: This study is a review of literature on the PED virus.

Results: Apart from symptomatic treatment and supportive care, there is no available specific treatment for PEDV. Appropriate disinfectants and cleaning are pivotal for the control of PEDV. To date, apart from anti-PEDV inhibitors, there are no specific drugs available commercially to treat the disease. Therefore, 3C-like protease (3CLpro) in PEDV that has highly conserved structure and catalytic mechanism serves as an alluring drug as it plays a vital role during viral polyprotein processing at the time of infection.

Conclusion: A well synchronized and collective effort of scientists, swine veterinarians, pork industry experts, and associated authorities is essential for the accomplishment of proper execution of these required measures.

Keywords: Coronavirus, cysteine protease, porcine epidemic diarrhea virus, target therapy, proteolysis, virus entry.

Graphical Abstract

[1]
Wood, E.N. An apparently new syndrome of porcine epidemic diarrhoea. Vet. Rec., 1977, 100(12), 243-244.
[http://dx.doi.org/10.1136/vr.100.12.243] [PMID: 888300]
[2]
Debouck, P.; Pensaert, M.; Coussement, W. The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, CV 777. Vet. Microbiol., 1981, 6(2), 157-165.
[http://dx.doi.org/10.1016/0378-1135(81)90007-9]
[3]
Mullis, L.; Saif, L.J.; Zhang, Y.; Zhang, X.; Azevedo, M.S.P. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiol., 2012, 30(1), 180-186.
[http://dx.doi.org/10.1016/j.fm.2011.12.009] [PMID: 22265299]
[4]
Oldham, J.F.; Dudley, H.A. Some unusual obstacles to the use of computers in clinical science. Med. J. Aust., 1972, 1(10), 483-486.
[http://dx.doi.org/10.5694/j.1326-5377.1972.tb46881.x] [PMID: 5024421]
[5]
Xu, X.; Du, L.; Fan, B.; Sun, B.; Zhou, J.; Guo, R.; Yu, Z.; Shi, D.; He, K.; Li, B. A flagellin-adjuvanted inactivated porcine epidemic diarrhea virus (PEDV) vaccine provides enhanced immune protection against PEDV challenge in piglets. Arch. Virol., 2020, 165(6), 1299-1309.
[http://dx.doi.org/10.1007/s00705-020-04567-w] [PMID: 32253616]
[6]
Pasick, J.; Berhane, Y.; Ojkic, D.; Maxie, G.; Embury-Hyatt, C.; Swekla, K.; Handel, K.; Fairles, J.; Alexandersen, S. Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transbound. Emerg. Dis., 2014, 61(5), 397-410.
[http://dx.doi.org/10.1111/tbed.12269] [PMID: 25098383]
[7]
Stevenson, G.W.; Hoang, H.; Schwartz, K.J.; Burrough, E.R.; Sun, D.; Madson, D.; Cooper, V.L.; Pillatzki, A.; Gauger, P.; Schmitt, B.J.; Koster, L.G.; Killian, M.L.; Yoon, K.J. Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences. J. Vet. Diagn. Invest., 2013, 25(5), 649-654.
[http://dx.doi.org/10.1177/1040638713501675] [PMID: 23963154]
[8]
Lee, S.; Lee, C. Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg. Infect. Dis., 2014, 20(7), 1223-1226.
[http://dx.doi.org/10.3201/eid2007.140294] [PMID: 24960370]
[9]
Vlasova, A.N.; Marthaler, D.; Wang, Q.; Culhane, M.R.; Rossow, K.D.; Rovira, A.; Collins, J.; Saif, L.J. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg. Infect. Dis., 2014, 20(10), 1620-1628.
[http://dx.doi.org/10.3201/eid2010.140491] [PMID: 25279722]
[10]
Chan, J.F-W.; To, K.K-W.; Tse, H.; Jin, D-Y.; Yuen, K-Y. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol., 2013, 21(10), 544-555.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[11]
Cohen, D.; Orr, N.; Robin, G.; Slepon, R.; Ashkenazi, S.; Ashkenazi, I.; Shemer, J. Detection of antibodies to Shigella lipopolysaccharide in urine after natural Shigella infection or vaccination. Clin. Diagn. Lab. Immunol., 1996, 3(4), 451-455.
[http://dx.doi.org/10.1128/cdli.3.4.451-455.1996] [PMID: 8807212]
[12]
Rodák, L.; Valícek, L.; Smíd, B.; Nevoránková, Z. An ELISA optimized for porcine epidemic diarrhoea virus detection in faeces. Vet. Microbiol., 2005, 105(1), 9-17.
[http://dx.doi.org/10.1016/j.vetmic.2004.09.020] [PMID: 15607079]
[13]
Martelli, P.; Lavazza, A.; Nigrelli, A.D.; Merialdi, G.; Alborali, L.G.; Pensaert, M.B. Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy. Vet. Rec., 2008, 162(10), 307-310.
[http://dx.doi.org/10.1136/vr.162.10.307] [PMID: 18326842]
[14]
Pensaert, M.B.; de Bouck, P. A new coronavirus-like particle associated with diarrhea in swine. Arch. Virol., 1978, 58(3), 243-247.
[http://dx.doi.org/10.1007/BF01317606] [PMID: 83132]
[15]
Sozzi, E.; Papetti, A.; Lelli, D. Diagnosis and investigations on PED in Northern Italy. Proceedings of the 8th Annual EPIZONE Meeting, 2014.Copenhagen, Denmark
[16]
Song, D.; Moon, H.; Kang, B. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin. Exp. Vaccine Res., 2015, 4(2), 166-176.
[http://dx.doi.org/10.7774/cevr.2015.4.2.166] [PMID: 26273575]
[17]
Temeeyasen, G.; Srijangwad, A.; Tripipat, T.; Tipsombatboon, P.; Piriyapongsa, J.; Phoolcharoen, W.; Chuanasa, T.; Tantituvanont, A.; Nilubol, D. Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand. Infect. Genet. Evol., 2014, 21, 205-213.
[http://dx.doi.org/10.1016/j.meegid.2013.11.001] [PMID: 24291225]
[18]
Puranaveja, S.; Poolperm, P.; Lertwatcharasarakul, P.; Kesdaengsakonwut, S.; Boonsoongnern, A.; Urairong, K.; Kitikoon, P.; Choojai, P.; Kedkovid, R.; Teankum, K.; Thanawongnuwech, R. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerg. Infect. Dis., 2009, 15(7), 1112-1115.
[http://dx.doi.org/10.3201/eid1507.081256] [PMID: 19624933]
[19]
Olanratmanee, E.O.; Kunavongkrit, A.; Tummaruk, P. Impact of porcine epidemic diarrhea virus infection at different periods of pregnancy on subsequent reproductive performance in gilts and sows. Anim. Reprod. Sci., 2010, 122(1-2), 42-51.
[http://dx.doi.org/10.1016/j.anireprosci.2010.07.004] [PMID: 20727693]
[20]
Lin, C-N.; Chung, W-B.; Chang, S-W.; Wen, C.C.; Liu, H.; Chien, C.H.; Chiou, M.T. US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013-2014. J. Vet. Med. Sci., 2014, 76(9), 1297-1299.
[http://dx.doi.org/10.1292/jvms.14-0098] [PMID: 24898162]
[21]
Sun, M.; Ma, J.; Wang, Y.; Wang, M.; Song, W.; Zhang, W.; Lu, C.; Yao, H. Genomic and epidemiological characteristics provide new insights into the phylogeographical and spatiotemporal spread of porcine epidemic diarrhea virus in Asia. J. Clin. Microbiol., 2015, 53(5), 1484-1492.
[http://dx.doi.org/10.1128/JCM.02898-14] [PMID: 25694517]
[22]
Lee, D-K.; Park, C-K.; Kim, S-H.; Lee, C. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res., 2010, 149(2), 175-182.
[http://dx.doi.org/10.1016/j.virusres.2010.01.015] [PMID: 20132850]
[23]
Chen, Q. Porcine Epidemic Diarrhea Virus in the United States: Cell Culture Isolation, Genetic Phylogeny, Pathogenesis, and Immunity. Arch. Virol., 2015, 2015(160), 1055-1064.
[24]
Wang, Hui; Xia, Xinchao; Liu, Zhiqi; Liu, Yongming; Wang, Shengyi; Qi, Zhiming; Liu, Shixiang; Wang, Haijun; Niu, Xu; Liu Outbreak of porcine epidemic diarrhea in piglets in gansu province, China. Acta Sci. Veter., 2013, 2013, 41, 1-4.
[25]
EFSA Panel on Animal Health and Welfare (AHAW). Scientific opinion on porcine epidemic diarrhoea and emerging porcine deltacoronavirus. EFSA J., 2014, 12(10), 3877.
[http://dx.doi.org/10.2903/j.efsa.2014.3877] [PMID: 32313570]
[26]
Kweon, C-H.; Kwon, B-J.; Lee, J-G.; Kwon, G-O.; Kang, Y-B. Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate. Vaccine, 1999, 17(20-21), 2546-2553.
[http://dx.doi.org/10.1016/S0264-410X(99)00059-6] [PMID: 10418901]
[27]
Park, N.Y.; Lee, S.Y. Retrospective study of porcine epidemic diarrhea virus (PEDV) in Korea by in situ hybridization. Korean J. Vet. Res., 1997, 37, 809-816.
[28]
CK. P.; SI, P. Infection patterns of porcine epidemic diarrhea virus (PEDV) by sera-epidemiological analysis in Korean Pig farms. J. Life Sci., 2009, 2009(19), 1304-1308.
[29]
Li, W.; Wicht, O.; van Kuppeveld, F.J.; He, Q.; Rottier, P.J.; Bosch, B-J. A single point mutation creating a furin cleavage site in the spike protein renders porcine epidemic diarrhea coronavirus trypsin independent for cell entry and fusion. J. Virol., 2015, 89(15), 8077-8081.
[http://dx.doi.org/10.1128/JVI.00356-15] [PMID: 25972540]
[30]
Pan, Y.; Tian, X.; Li, W.; Zhou, Q.; Wang, D.; Bi, Y.; Chen, F.; Song, Y. Isolation and characterization of a variant porcine epidemic diarrhea virus in China. Virol. J., 2012, 9, 195.
[http://dx.doi.org/10.1186/1743-422X-9-195] [PMID: 22967434]
[31]
Thomas, P.R. Evaluation of methods for inactivating porcine epidemic diarrhea virus (PEDV) in livestock trailers. Proteomics, 2015, 2015(15), 1819-1828.
[32]
Huang, Y-W.; Dickerman, A.W.; Piñeyro, P.; Li, L.; Fang, L.; Kiehne, R.; Opriessnig, T.; Meng, X.J. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio, 2013, 4(5), e00737-e13.
[http://dx.doi.org/10.1128/mBio.00737-13] [PMID: 24129257]
[33]
Ojkic, D.; Hazlett, M.; Fairles, J.; Marom, A.; Slavic, D.; Maxie, G.; Alexandersen, S.; Pasick, J.; Alsop, J.; Burlatschenko, S. The first case of porcine epidemic diarrhea in Canada. Can. Vet. J., 2015, 56(2), 149-152.
[PMID: 25694663]
[34]
Kim, Y.; Lee, C. Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor. Virology, 2014, 460-461, 180-193.
[http://dx.doi.org/10.1016/j.virol.2014.04.040] [PMID: 25010284]
[35]
Saif, L.J.; Wang, Q.; Vlasova, A.N.; Jung, K.; Xiao, S. Coronaviruses, Diseases of Swine; Wiley Online, 2019, pp. 488-523.
[36]
Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet. J., 2015, 204(2), 134-143.
[http://dx.doi.org/10.1016/j.tvjl.2015.02.017] [PMID: 25841898]
[37]
Lee, S.; Kim, Y.; Lee, C. Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112. Virus Res., 2015, 208, 215-224.
[http://dx.doi.org/10.1016/j.virusres.2015.07.010] [PMID: 26196056]
[38]
Lee, S-H. Virtual microscopy: past, present and future. Pathology, 2011, 43(S1), S4.
[http://dx.doi.org/10.1016/S0031-3025(16)33087-2]
[39]
Shibata, I.; Tsuda, T.; Mori, M.; Ono, M.; Sueyoshi, M.; Uruno, K. Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Vet. Microbiol., 2000, 72(3-4), 173-182.
[http://dx.doi.org/10.1016/S0378-1135(99)00199-6] [PMID: 10727829]
[40]
Jung, K.; Wang, Q.; Scheuer, K.A.; Lu, Z.; Zhang, Y.; Saif, L.J. Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerg. Infect. Dis., 2014, 20(4), 662-665.
[http://dx.doi.org/10.3201/eid2004.131685] [PMID: 24795932]
[41]
Coussement, W.; Ducatelle, R.; Debouck, P.; Hoorens, J. Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study. Vet. Pathol., 1982, 19(1), 46-56.
[http://dx.doi.org/10.1177/030098588201900108] [PMID: 6280359]
[42]
Madson, D.M.; Magstadt, D.R.; Arruda, P.H.E.; Hoang, H.; Sun, D.; Bower, L.P.; Bhandari, M.; Burrough, E.R.; Gauger, P.C.; Pillatzki, A.E.; Stevenson, G.W.; Wilberts, B.L.; Brodie, J.; Harmon, K.M.; Wang, C.; Main, R.G.; Zhang, J.; Yoon, K.J. Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Vet. Microbiol., 2014, 174(1-2), 60-68.
[http://dx.doi.org/10.1016/j.vetmic.2014.09.002] [PMID: 25278366]
[43]
Ducatelle, R.; Coussement, W.; Debouck, P.; Hoorens, J. Pathology of experimental CV777 coronavirus enteritis in piglets. II. Electron microscopic study. Vet. Pathol., 1982, 19(1), 57-66.
[http://dx.doi.org/10.1177/030098588201900109] [PMID: 6280360]
[44]
Moon, H.W.; Kemeny, L.J.; Lambert, G.; Stark, S.L.; Booth, G.D. Age-dependent resistance to transmissible gastroenteritis of swine. III. Effects of epithelial cell kinetics on coronavirus production and on atrophy of intestinal villi. Vet. Pathol., 1975, 12(5-6), 434-445.
[http://dx.doi.org/10.1177/0300985875012005-00610] [PMID: 1229058]
[45]
Aelterman, E.O.; Hooper, B.E. Transmissible gastroenteritis of swine as a model for the study of enteric disease. Gastroenterology, 1967, 53(1), 109-113.
[http://dx.doi.org/10.1016/S0016-5085(19)34270-2] [PMID: 6067460]
[46]
Ma, Y.; Zhang, Y.; Liang, X.; Lou, F.; Oglesbee, M.; Krakowka, S.; Li, J. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. MBio, 2015, 6(2), e00064.
[http://dx.doi.org/10.1128/mBio.00064-15] [PMID: 25759498]
[47]
Carvajal, A.; Lanza, I.; Diego, R.; Rubio, P.; Cármenes, P. Evaluation of a blocking ELISA using monoclonal antibodies for the detection of porcine epidemic diarrhea virus and its antibodies. J. Vet. Diagn. Invest., 1995, 7(1), 60-64.
[http://dx.doi.org/10.1177/104063879500700109] [PMID: 7779966]
[48]
Brewer, R.A.; Stuart, F.A.; Corbel, M.J. An indirect enzyme-linked immunosorbent assay for the detection of antibodies to Brucella abortus in procine sera. Br. Vet. J., 1983, 139(6), 495-500.
[http://dx.doi.org/10.1016/S0007-1935(17)30335-4] [PMID: 6418328]
[49]
Oh, J.S.; Song, D.S.; Yang, J.S.; Song, J.Y.; Moon, H.J.; Kim, T.Y.; Park, B.K. Comparison of an enzyme-linked immunosorbent assay with serum neutralization test for serodiagnosis of porcine epidemic diarrhea virus infection. J. Vet. Sci., 2005, 6(4), 349-352.
[http://dx.doi.org/10.4142/jvs.2005.6.4.349] [PMID: 16294000]
[50]
Gerber, P.F.; Gong, Q.; Huang, Y-W.; Wang, C.; Holtkamp, D.; Opriessnig, T. Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA. Vet. J., 2014, 202(1), 33-36.
[http://dx.doi.org/10.1016/j.tvjl.2014.07.018] [PMID: 25135339]
[51]
Knuchel, M.; Ackermann, M.; Müller, H.K.; Kihm, U. An ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV) based on the specific solubility of the viral surface glycoprotein. Vet. Microbiol., 1992, 32(2), 117-134.
[http://dx.doi.org/10.1016/0378-1135(92)90100-8] [PMID: 1441196]
[52]
Wang, P.H.; Li, Y.Q.; Pan, Y.Q.; Guo, Y.Y.; Guo, F.; Shi, R.Z.; Xing, L. The spike glycoprotein genes of porcine epidemic diarrhea viruses isolated in China. Vet. Res., 2021, 52(1), 87.
[http://dx.doi.org/10.1186/s13567-021-00954-6] [PMID: 34130762]
[53]
Sun, D.B.; Feng, L.; Shi, H.Y.; Chen, J.F.; Liu, S.W.; Chen, H.Y.; Wang, Y.F. Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol., 2007, 51(3), 149-156.
[PMID: 18076304]
[54]
Hsueh, P-R.; Huang, L-M.; Chen, P-J.; Kao, C-L.; Yang, P-C. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect., 2004, 10(12), 1062-1066.
[http://dx.doi.org/10.1111/j.1469-0691.2004.01009.x] [PMID: 15606632]
[55]
Jacobs, J.L.; Mellors, J.W. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in blood of patients with coronavirus disease 2019 (COVID-19): What does it mean? Clin. Infect. Dis., 2021, 73(9), e2898-e2900.
[http://dx.doi.org/10.1093/cid/ciaa1316] [PMID: 32898242]
[56]
La Marca, A.; Capuzzo, M.; Paglia, T.; Roli, L.; Trenti, T.; Nelson, S.M. Testing for SARS-CoV-2 (COVID-19): A systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod. Biomed. Online, 2020, 41(3), 483-499.
[http://dx.doi.org/10.1016/j.rbmo.2020.06.001] [PMID: 32651106]
[57]
Augustine, R.; Das, S.; Hasan, A. S, A.; Abdul Salam, S.; Augustine, P.; Dalvi, Y.B.; Varghese, R.; Primavera, R.; Yassine, H.M.; Thakor, A.S.; Kevadiya, B.D. Rapid antibody-based COVID-19 mass surveillance: Relevance, challenges, and prospects in a pandemic and post-pandemic world. J. Clin. Med., 2020, 9(10), 3372.
[http://dx.doi.org/10.3390/jcm9103372] [PMID: 33096742]
[58]
Madore, D.V.; Meade, B.D.; Rubin, F.; Deal, C.; Lynn, F. Meeting Contributors. Utilization of serologic assays to support efficacy of vaccines in nonclinical and clinical trials: meeting at the crossroads. Vaccine, 2010, 28(29), 4539-4547.
[http://dx.doi.org/10.1016/j.vaccine.2010.04.094] [PMID: 20470795]
[59]
St John, S.E.; Anson, B.J.; Mesecar, A.D. X-Ray structure and inhibition of 3C-like protease from porcine epidemic diarrhea virus. Sci. Rep., 2016, 6(1), 25961.
[http://dx.doi.org/10.1038/srep25961] [PMID: 27173881]
[60]
Cavanagh, D. The coronavirus surface glycoprotein. In: The Coronaviridae; Springer, 1995; pp. 73-113.
[61]
Kocherhans, R.; Bridgen, A.; Ackermann, M.; Tobler, K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes, 2001, 23(2), 137-144.
[http://dx.doi.org/10.1023/A:1011831902219] [PMID: 11724265]
[62]
Duarte, M.; Tobler, K.; Bridgen, A.; Rasschaert, D.; Ackermann, M.; Laude, H. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology, 1994, 198(2), 466-476.
[http://dx.doi.org/10.1006/viro.1994.1058] [PMID: 8291230]
[63]
Hofmann, M.; Wyler, R. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV). Vet. Microbiol., 1989, 20(2), 131-142.
[http://dx.doi.org/10.1016/0378-1135(89)90036-9] [PMID: 2549681]
[64]
Lee, C. Erratum to: Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J., 2016, 13(1), 19.
[http://dx.doi.org/10.1186/s12985-016-0465-y] [PMID: 26833094]
[65]
Lai, M.C.; Perlman, S.; Anderson, L.J. Coronaviridae. Fields Virology, 5th ed.; Knipe, D.M.; Howley, P.M.; Griffin, D.E.; Martin, M.A.; Lamb, R.A.; Roizman, B.; Straus, S.E., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2007, pp. 1306-1336.
[66]
Jackwood, M.W.; Hilt, D.A.; Callison, S.A.; Lee, C-W.; Plaza, H.; Wade, E. Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis., 2001, 45(2), 366-372.
[http://dx.doi.org/10.2307/1592976] [PMID: 11417816]
[67]
Sato, T.; Takeyama, N.; Katsumata, A.; Tuchiya, K.; Kodama, T.; Kusanagi, K. Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes, 2011, 43(1), 72-78.
[http://dx.doi.org/10.1007/s11262-011-0617-5] [PMID: 21559974]
[68]
Oh, J.; Lee, K-W.; Choi, H-W.; Lee, C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch. Virol., 2014, 159(11), 2977-2987.
[http://dx.doi.org/10.1007/s00705-014-2163-7] [PMID: 25008896]
[69]
Chen, Q.; Li, G.; Stasko, J.; Thomas, J.T.; Stensland, W.R.; Pillatzki, A.E.; Gauger, P.C.; Schwartz, K.J.; Madson, D.; Yoon, K.J.; Stevenson, G.W.; Burrough, E.R.; Harmon, K.M.; Main, R.G.; Zhang, J. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J. Clin. Microbiol., 2014, 52(1), 234-243.
[http://dx.doi.org/10.1128/JCM.02820-13] [PMID: 24197882]
[70]
de Haan, C.A.; Vennema, H.; Rottier, P.J. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J. Virol., 2000, 74(11), 4967-4978.
[http://dx.doi.org/10.1128/JVI.74.11.4967-4978.2000] [PMID: 10799570]
[71]
Baudoux, P.; Carrat, C.; Besnardeau, L.; Charley, B.; Laude, H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J. Virol., 1998, 72(11), 8636-8643.
[http://dx.doi.org/10.1128/JVI.72.11.8636-8643.1998] [PMID: 9765403]
[72]
Li, Z.; Ma, Z.; Li, Y.; Gao, S.; Xiao, S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb. Pathog., 2020, 149, 104553.
[http://dx.doi.org/10.1016/j.micpath.2020.104553] [PMID: 33011361]
[73]
Xu, X.; Zhang, H.; Zhang, Q.; Dong, J.; Liang, Y.; Huang, Y.; Liu, H.J.; Tong, D. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol. J., 2013, 10, 26.
[http://dx.doi.org/10.1186/1743-422X-10-26] [PMID: 23332027]
[74]
McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[75]
Wang, X-Y.; Zhao, T-Q.; Xu, D-P.; Zhang, X.; Ji, C-J.; Zhang, D-L. The influence of porcine epidemic diarrhea virus on pig small intestine mucosal epithelial cell function. Arch. Virol., 2019, 164(1), 83-90.
[http://dx.doi.org/10.1007/s00705-018-4061-x] [PMID: 30284628]
[76]
Ding, Z.; Fang, L.; Jing, H.; Zeng, S.; Wang, D.; Liu, L.; Zhang, H.; Luo, R.; Chen, H.; Xiao, S. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J. Virol., 2014, 88(16), 8936-8945.
[http://dx.doi.org/10.1128/JVI.00700-14] [PMID: 24872591]
[77]
Wu, Y.; Zhang, H.; Shi, Z.; Chen, J.; Li, M.; Shi, H.; Shi, D.; Guo, L.; Feng, L. Porcine epidemic diarrhea virus nsp15 antagonizes interferon signaling by RNA degradation of TBK1 and IRF3. Viruses, 2020, 12(6), 599.
[http://dx.doi.org/10.3390/v12060599] [PMID: 32486349]
[78]
Song, D.S.; Yang, J.S.; Oh, J.S.; Han, J.H.; Park, B.K. Differentiation of a vero cell adapted porcine epidemic diarrhea virus from korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine, 2003, 21(17-18), 1833-1842.
[http://dx.doi.org/10.1016/S0264-410X(03)00027-6] [PMID: 12706667]
[79]
Wang, K.; Lu, W.; Chen, J.; Xie, S.; Shi, H.; Hsu, H.; Yu, W.; Xu, K.; Bian, C.; Fischer, W.B.; Schwarz, W.; Feng, L.; Sun, B. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett., 2012, 586(4), 384-391.
[http://dx.doi.org/10.1016/j.febslet.2012.01.005] [PMID: 22245155]
[80]
Song, D-S.; Kang, B-K.; Lee, S-S.; Yang, J-S.; Moon, H-J.; Oh, J-S.; Ha, G-W.; Jang, Y-S.; Park, B-K. Use of an internal control in a quantitative RT-PCR assay for quantitation of porcine epidemic diarrhea virus shedding in pigs. J. Virol. Methods, 2006, 133(1), 27-33.
[http://dx.doi.org/10.1016/j.jviromet.2005.10.021] [PMID: 16300838]
[81]
Crawford, K.; Lager, K.; Miller, L.; Opriessnig, T.; Gerber, P.; Hesse, R. Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs. Vet. Res., 2015, 46(1), 49.
[http://dx.doi.org/10.1186/s13567-015-0180-5] [PMID: 25943434]
[82]
Kim, Y.; Yang, M.; Goyal, S.M.; Cheeran, M.C.; Torremorell, M. Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus. BMC Vet. Res., 2017, 13(1), 89.
[http://dx.doi.org/10.1186/s12917-017-1017-4] [PMID: 28381304]
[83]
Lowe, J.; Gauger, P.; Harmon, K.; Zhang, J.; Connor, J.; Yeske, P.; Loula, T.; Levis, I.; Dufresne, L.; Main, R. Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerg. Infect. Dis., 2014, 20(5), 872-874.
[http://dx.doi.org/10.3201/eid2005.131628] [PMID: 24750785]
[84]
Dee, S.; Clement, T.; Schelkopf, A.; Nerem, J.; Knudsen, D.; Christopher-Hennings, J.; Nelson, E. An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naïve pigs following consumption via natural feeding behavior: proof of concept. BMC Vet. Res., 2014, 10(1), 176.
[http://dx.doi.org/10.1186/s12917-014-0176-9] [PMID: 25091641]
[85]
Alonso, C.; Goede, D.P.; Morrison, R.B.; Davies, P.R.; Rovira, A.; Marthaler, D.G.; Torremorell, M. Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet. Res., 2014, 45(1), 73.
[http://dx.doi.org/10.1186/s13567-014-0073-z] [PMID: 25017790]
[86]
Alonso, C.; Raynor, P.C.; Davies, P.R.; Torremorell, M. Concentration, size distribution, and infectivity of airborne particles carrying swine viruses. PLoS One, 2015, 10(8), e0135675.
[http://dx.doi.org/10.1371/journal.pone.0135675] [PMID: 26287616]
[87]
Duchet-Suchaux, M.; Le Maitre, C.; Bertin, A. Differences in susceptibility of inbred and outbred infant mice to enterotoxigenic Escherichia coli of bovine, porcine and human origin. J. Med. Microbiol., 1990, 31(3), 185-190.
[http://dx.doi.org/10.1099/00222615-31-3-185] [PMID: 2179554]
[88]
Truong, Q.L.; Seo, T.W.; Yoon, B-I.; Kim, H-C.; Han, J.H.; Hahn, T-W. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea. J. Vet. Med. Sci., 2013, 75(12), 1647-1650.
[http://dx.doi.org/10.1292/jvms.12-0568] [PMID: 23892461]
[89]
Sun, R-Q.; Cai, R-J.; Chen, Y-Q.; Liang, P-S.; Chen, D-K.; Song, C-X. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg. Infect. Dis., 2012, 18(1), 161-163.
[http://dx.doi.org/10.3201/eid1801.111259] [PMID: 22261231]
[90]
Lin, C.M.; Annamalai, T.; Liu, X.; Gao, X.; Lu, Z.; El-Tholoth, M.; Hu, H.; Saif, L.J.; Wang, Q. Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection. Vet. Res., 2015, 46(46), 134.
[http://dx.doi.org/10.1186/s13567-015-0278-9] [PMID: 26589292]
[91]
Krishna, V.D.; Kim, Y.; Yang, M.; Vannucci, F.; Molitor, T.; Torremorell, M.; Cheeran, M.C. Immune responses to porcine epidemic diarrhea virus (PEDV) in swine and protection against subsequent infection. PLoS One, 2020, 15(4), e0231723.
[http://dx.doi.org/10.1371/journal.pone.0231723] [PMID: 32343704]
[92]
Niederwerder, M.C.; Nietfeld, J.C.; Bai, J.; Peddireddi, L.; Breazeale, B.; Anderson, J.; Kerrigan, M.A.; An, B.; Oberst, R.D.; Crawford, K.; Lager, K.M.; Madson, D.M.; Rowland, R.R.; Anderson, G.A.; Hesse, R.A. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs. J. Vet. Diagn. Invest., 2016, 28(6), 671-678.
[http://dx.doi.org/10.1177/1040638716663251] [PMID: 27698163]
[93]
Pujols, J.; Segalés, J. Survivability of porcine epidemic diarrhea virus (PEDV) in bovine plasma submitted to spray drying processing and held at different time by temperature storage conditions. Vet. Microbiol., 2014, 174(3-4), 427-432.
[http://dx.doi.org/10.1016/j.vetmic.2014.10.021] [PMID: 25465663]
[94]
Opriessnig, T.; Xiao, C-T.; Gerber, P.F.; Zhang, J.; Halbur, P.G. Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naïve pigs. PLoS One, 2014, 9(8), e104766.
[http://dx.doi.org/10.1371/journal.pone.0104766] [PMID: 25116479]
[95]
Davies, P.R. The dilemma of rare events: Porcine epidemic diarrhea virus in North America. Prev. Vet. Med., 2015, 122(1-2), 235-241.
[http://dx.doi.org/10.1016/j.prevetmed.2015.08.006] [PMID: 26318527]
[96]
Crenshaw, J.; Del Río, L.L.; Sanjoaquin, L.; Tibble, S.; González-Solé, F.; Solà-Oriol, D.; Rodriguez, C.; Campbell, J.; Polo, J. Effect of spray-dried porcine plasma in peripartum sow feed on subsequent litter size. Porcine Health Manag., 2021, 7(1), 11.
[http://dx.doi.org/10.1186/s40813-020-00180-0] [PMID: 33431055]
[97]
Park, J-E.; Shin, H-J. Porcine epidemic diarrhea virus infects and replicates in porcine alveolar macrophages. Virus Res., 2014, 191, 143-152.
[http://dx.doi.org/10.1016/j.virusres.2014.07.038] [PMID: 25116392]
[98]
Li, W.; Li, H.; Liu, Y.; Pan, Y.; Deng, F.; Song, Y.; Tang, X.; He, Q. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg. Infect. Dis., 2012, 18(8), 1350-1353.
[http://dx.doi.org/10.3201/eid1803.120002] [PMID: 22840964]
[99]
Boniotti, M.B.; Papetti, A.; Lavazza, A.; Alborali, G.; Sozzi, E.; Chiapponi, C.; Faccini, S.; Bonilauri, P.; Cordioli, P.; Marthaler, D. Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy. Emerg. Infect. Dis., 2016, 22(1), 83-87.
[http://dx.doi.org/10.3201/eid2201.150544] [PMID: 26689738]
[100]
Hanke, D.; Jenckel, M.; Petrov, A.; Ritzmann, M.; Stadler, J.; Akimkin, V.; Blome, S.; Pohlmann, A.; Schirrmeier, H.; Beer, M.; Höper, D. Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014. Emerg. Infect. Dis., 2015, 21(3), 493-496.
[http://dx.doi.org/10.3201/eid2103.141165] [PMID: 25695311]
[101]
Stadler, J.; Zoels, S.; Fux, R.; Hanke, D.; Pohlmann, A.; Blome, S.; Weissenböck, H.; Weissenbacher-Lang, C.; Ritzmann, M.; Ladinig, A. Emergence of porcine epidemic diarrhea virus in southern Germany. BMC Vet. Res., 2015, 11, 142.
[http://dx.doi.org/10.1186/s12917-015-0454-1] [PMID: 26135732]
[102]
Carvajal, A.; Argüello, H.; Martínez-Lobo, F.J.; Costillas, S.; Miranda, R. G de Nova, P.J.; Rubio, P. Porcine epidemic diarrhoea: new insights into an old disease. Porcine Health Manag., 2015, 1, 12.
[http://dx.doi.org/10.1186/s40813-015-0007-9] [PMID: 28405418]
[103]
Chen, Q.; Gauger, P.; Stafne, M.; Thomas, J.; Arruda, P.; Burrough, E.; Madson, D.; Brodie, J.; Magstadt, D.; Derscheid, R.; Welch, M.; Zhang, J. Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets. Virology, 2015, 482, 51-59.
[http://dx.doi.org/10.1016/j.virol.2015.03.024] [PMID: 25817405]
[104]
Thimmasandra Narayanappa, A.; Sooryanarain, H.; Deventhiran, J.; Cao, D.; Ammayappan Venkatachalam, B.; Kambiranda, D.; LeRoith, T.; Heffron, C.L.; Lindstrom, N.; Hall, K.; Jobst, P.; Sexton, C.; Meng, X-J.; Elankumaran, S. A novel pathogenic mammalian orthoreovirus from diarrheic pigs and Swine blood meal in the United States. MBio, 2015, 6(3), e00593-e15.
[http://dx.doi.org/10.1128/mBio.00593-15] [PMID: 25991685]
[105]
Goede, D.; Murtaugh, M.P.; Nerem, J.; Yeske, P.; Rossow, K.; Morrison, R. Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain. Vet. Microbiol., 2015, 176(1-2), 161-164.
[http://dx.doi.org/10.1016/j.vetmic.2014.12.019] [PMID: 25601801]
[106]
Kweon, C.H.; Kwon, B.J.; Woo, S.R.; Kim, J.M.; Woo, G.H.; Son, D.H.; Hur, W.; Lee, Y.S. Immunoprophylactic effect of chicken egg yolk immunoglobulin (Ig Y) against porcine epidemic diarrhea virus (PEDV) in piglets. J. Vet. Med. Sci., 2000, 62(9), 961-964.
[http://dx.doi.org/10.1292/jvms.62.961] [PMID: 11039591]
[107]
Chen, J.; Wang, C.; Shi, H.; Qiu, H.; Liu, S.; Chen, X.; Zhang, Z.; Feng, L. Molecular epidemiology of porcine epidemic diarrhea virus in China. Arch. Virol., 2010, 155(9), 1471-1476.
[http://dx.doi.org/10.1007/s00705-010-0720-2] [PMID: 20544234]
[108]
Collin, E.A.; Anbalagan, S.; Okda, F.; Batman, R.; Nelson, E.; Hause, B.M. An inactivated vaccine made from a U.S. field isolate of porcine epidemic disease virus is immunogenic in pigs as demonstrated by a dose-titration. BMC Vet. Res., 2015, 11, 62.
[http://dx.doi.org/10.1186/s12917-015-0357-1] [PMID: 25881296]
[109]
Lee, C. Porcine Viruses: From Pathogenesis to Strategies for Control 2019; Caister Academic Press: Yerevan, Armenia, 2019.
[110]
Lee, D.H.; Jeon, Y-S.; Park, C-K.; Kim, S.; Lee, D.S.; Lee, C. Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a recombinant S1 domain of the porcine epidemic diarrhea virus spike protein in piglets. Arch. Virol., 2015, 160(9), 2197-2207.
[http://dx.doi.org/10.1007/s00705-015-2494-z] [PMID: 26100403]
[111]
Shibata, I.; Ono, M.; Mori, M. Passive protection against porcine epidemic diarrhea (PED) virus in piglets by colostrum from immunized cows. J. Vet. Med. Sci., 2001, 63(6), 655-658.
[http://dx.doi.org/10.1292/jvms.63.655] [PMID: 11459011]
[112]
Pyo, H-M.; Kim, I-J.; Kim, S-H.; Kim, H-S.; Cho, S-D.; Cho, I-S.; Hyun, B-H. Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus. Vaccine, 2009, 27(14), 2030-2036.
[http://dx.doi.org/10.1016/j.vaccine.2009.01.130] [PMID: 19428826]
[113]
Theuns, S.; Conceição-Neto, N.; Christiaens, I.; Zeller, M.; Desmarets, L.M.; Roukaerts, I.D.; Acar, D.D.; Heylen, E.; Matthijnssens, J.; Nauwynck, H.J. Complete genome sequence of a porcine epidemic diarrhea virus from a novel outbreak in Belgium, January 2015. Genome Announc., 2015, 3(3), e00506-15.
[http://dx.doi.org/10.1128/genomeA.00506-15] [PMID: 25999551]
[114]
St John, S. E.; Mesecar, A. D. X-Ray structure of unbound porcine epidemic diarrhea virus 3CLpro. 2016, 6, 25961.
[115]
Wang, D.; Fang, L.; Shi, Y.; Zhang, H.; Gao, L.; Peng, G.; Chen, H.; Li, K.; Xiao, S. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO. J. Virol., 2015, 90(4), 2090-2101.
[http://dx.doi.org/10.1128/JVI.02514-15] [PMID: 26656704]
[116]
Lee, T.W.; Cherney, M.M.; Liu, J.; James, K.E.; Powers, J.C.; Eltis, L.D.; James, M.N.G. Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase. J. Mol. Biol., 2007, 366(3), 916-932.
[http://dx.doi.org/10.1016/j.jmb.2006.11.078] [PMID: 17196984]
[117]
Song, D.; Park, B. Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes, 2012, 44(2), 167-175.
[http://dx.doi.org/10.1007/s11262-012-0713-1] [PMID: 22270324]
[118]
Li, Z.; Cao, H.; Cheng, Y.; Zhang, X.; Zeng, W.; Sun, Y.; Chen, S.; He, Q.; Han, H. Inhibition of porcine epidemic diarrhea virus replication and viral 3C-like protease by quercetin. Int. J. Mol. Sci., 2020, 21(21), 8095.
[http://dx.doi.org/10.3390/ijms21218095] [PMID: 33142980]
[119]
Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol., 2020, 164(164), 1693-1703.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.235] [PMID: 32745548]
[120]
Lee, T-W.; Cherney, M.M.; Huitema, C.; Liu, J.; James, K.E.; Powers, J.C.; Eltis, L.D.; James, M.N. Crystal structures of SARS coronavirus main peptidase inhibited by an Aza-peptide epoxide in the space group C2. J. Mol. Biol., 2005, 353(5), 1137-1151.
[http://dx.doi.org/10.1016/j.jmb.2005.09.004] [PMID: 16219322]
[121]
Sheahan, T.P.; Sims, A.C.; Zhou, S.; Graham, R.L.; Pruijssers, A.J.; Agostini, M.L.; Leist, S.R.; Schäfer, A.; Dinnon, K.H., III; Stevens, L.J.; Chappell, J.D.; Lu, X.; Hughes, T.M.; George, A.S.; Hill, C.S.; Montgomery, S.A.; Brown, A.J.; Bluemling, G.R.; Natchus, M.G.; Saindane, M.; Kolykhalov, A.A.; Painter, G.; Harcourt, J.; Tamin, A.; Thornburg, N.J.; Swanstrom, R.; Denison, M.R.; Baric, R.S. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med., 2020, 12(541), 12.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[122]
Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat. Microbiol., 2021, 6(1), 11-18.
[http://dx.doi.org/10.1038/s41564-020-00835-2] [PMID: 33273742]
[123]
Vandyck, K.; Deval, J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr. Opin. Virol., 2021, 49, 36-40.
[http://dx.doi.org/10.1016/j.coviro.2021.04.006] [PMID: 34029993]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy