Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Current Trends and Applications of Food-derived Antihypertensive Peptides for the Management of Cardiovascular Disease

Author(s): Pratik Shukla, Keval Chopada, Amar Sakure and Subrota Hati*

Volume 29, Issue 5, 2022

Published on: 08 April, 2022

Page: [408 - 428] Pages: 21

DOI: 10.2174/0929866529666220106100225

Price: $65

conference banner
Abstract

Food-derived antihypertensive peptides are considered a natural supplement for controlling hypertension. Food protein serves as a macronutrient and acts as a raw material for the biosynthesis of physiologically active peptides. Food sources, like milk and milk products, animal proteins such as meat, chicken, fish, eggs, and plant-derived proteins from food products like soy, rice, wheat, mushroom, and pumpkins contain higher quantities of antihypertensive peptides. The food-derived antihypertensive peptides can suppress the action of renin and the angiotensinconverting enzyme (ACE), which are mainly involved in the regulation of blood pressure by RAS. ACE inhibitory peptides enhance endothelial nitric oxide's biosynthesis, which increases nitric oxide production in vascular walls and encourages vasodilation. The peptides also inhibit the interaction between angiotensin II and its receptor, which helps reduce hypertension. This review explores the novel sources and applications of food-derived peptides for the management of hypertension.

Keywords: Bioactive peptides, hypertension, foods, ACE inhibitory, RAS system, food protein.

Graphical Abstract

[1]
Sharma, S.; Singh, R.; Rana, S. Bioactive peptides: A review. Int. J. Bioautomation, 2011, 15, 223-250.
[2]
Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides, 2014, 54, 171-179.
[http://dx.doi.org/10.1016/j.peptides.2014.01.022] [PMID: 24508378]
[3]
Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol., 2009, 8(1), 8-13.
[http://dx.doi.org/10.1111/j.1473-2165.2009.00416.x] [PMID: 19250159]
[4]
Carrasco-Castilla, J.; Hernández-Álvarez, A.J.; Jiménez-Martínez, C.; Gutiérrez-López, G.F.; Dávila-Ortiz, G. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev., 2012, 4, 224-243.
[http://dx.doi.org/10.1007/s12393-012-9058-8]
[5]
Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive peptides from egg: A review. Nutr. Food Sci., 2015, 45, 190-212.
[http://dx.doi.org/10.1108/NFS-10-2014-0088]
[6]
Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr., 2008, 47(4), 171-182.
[http://dx.doi.org/10.1007/s00394-008-0710-2] [PMID: 18506385]
[7]
Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr., 2008, 48(5), 430-441.
[http://dx.doi.org/10.1080/10408390701425615] [PMID: 18464032]
[8]
Ramaa, C.S.; Shirode, A.R.; Mundada, A.S.; Kadam, V.J. Nutraceuticals--an emerging era in the treatment and prevention of cardiovascular diseases. Curr. Pharm. Biotechnol., 2006, 7(1), 15-23.
[http://dx.doi.org/10.2174/138920106775789647] [PMID: 16472130]
[9]
Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods, 2009, 1(2), 177-187.
[http://dx.doi.org/10.1016/j.jff.2009.01.007]
[10]
Mallikarjun Gouda, K.G.; Gowda, L.R.; Rao, A.G.; Prakash, V. Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max). J. Agric. Food Chem., 2006, 54(13), 4568-4573.
[http://dx.doi.org/10.1021/jf060264q] [PMID: 16786999]
[11]
Bernstein, K.E.; Ong, F.S.; Blackwell, W.L.; Shah, K.H.; Giani, J.F.; Gonzalez-Villalobos, R.A.; Shen, X.Z.; Fuchs, S.; Touyz, R.M. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev., 2012, 65(1), 1-46.
[http://dx.doi.org/10.1124/pr.112.006809] [PMID: 23257181]
[12]
Aluko, R.E. Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol., 2015, 6, 235-262.
[http://dx.doi.org/10.1146/annurev-food-022814-015520] [PMID: 25884281]
[13]
Majumder, K.; Wu, J. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int. J. Mol. Sci., 2014, 16(1), 256-283.
[http://dx.doi.org/10.3390/ijms16010256] [PMID: 25547491]
[14]
Skeggs, L.T., Jr; Kahn, J.R.; Shumway, N.P. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med., 1956, 103(3), 295-299.
[http://dx.doi.org/10.1084/jem.103.3.295] [PMID: 13295487]
[15]
Soubrier, F.; Alhenc-Gelas, F.; Hubert, C.; Allegrini, J.; John, M.; Tregear, G.; Corvol, P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. USA, 1988, 85(24), 9386-9390.
[http://dx.doi.org/10.1073/pnas.85.24.9386] [PMID: 2849100]
[16]
Junot, C.; Gonzales, M.F.; Ezan, E.; Cotton, J.; Vazeux, G.; Michaud, A.; Azizi, M.; Vassiliou, S.; Yiotakis, A.; Corvol, P.; Dive, V. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin I hydrolysis. J. Pharmacol. Exp. Ther., 2001, 297(2), 606-611.
[PMID: 11303049]
[17]
Li, G.; Le, G.; Shi, Y.; Shrestha, S. Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. Rev., 2004, 24(7), 469-486.
[http://dx.doi.org/10.1016/S0271-5317(04)00058-2]
[18]
Riordan, J.F. Angiotensin-I-converting enzyme and its relatives. Genome Biol., 2003, 4(8), 225.
[http://dx.doi.org/10.1186/gb-2003-4-8-225] [PMID: 12914653]
[19]
Atanassova, N.; Lakova, E.; Bratchkova, Y.; Krasteva, G.; Donchev, M. Expression of testicular angiotensin-converting enzyme in adult spontaneously hypertensive rats. Folia Histochem. Cytobiol., 2009, 47(1), 117-122.
[http://dx.doi.org/10.2478/v10042-009-0002-6] [PMID: 19419949]
[20]
Hubert, C.; Houot, A.M.; Corvol, P.; Soubrier, F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem., 1991, 266(23), 15377-15383.
[http://dx.doi.org/10.1016/S0021-9258(18)98626-6] [PMID: 1651327]
[21]
Warner, F.J.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell. Mol. Life Sci., 2004, 61(21), 2704-2713.
[http://dx.doi.org/10.1007/s00018-004-4240-7] [PMID: 15549171]
[22]
Coates, D. The angiotensin converting enzyme (ACE). Int. J. Biochem. Cell Biol., 2003, 35(6), 769-773.
[http://dx.doi.org/10.1016/S1357-2725(02)00309-6] [PMID: 12676162]
[23]
Deddish, P.A.; Wang, J.; Michel, B.; Morris, P.W.; Davidson, N.O.; Skidgel, R.A.; Erdös, E.G. Naturally occurring active N-domain of human angiotensin I-converting enzyme. Proc. Natl. Acad. Sci. USA, 1994, 91(16), 7807-7811.
[http://dx.doi.org/10.1073/pnas.91.16.7807] [PMID: 8052664]
[24]
Conrad, N.; Schwager, S.L.U.; Carmona, A.K.; Sturrock, E.D. The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme. Biochem. Biophys. Res. Commun., 2016, 481(1-2), 111-116.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.155] [PMID: 27818199]
[25]
Woodman, Z.L.; Schwager, S.L.U.; Redelinghuys, P.; Carmona, A.K.; Ehlers, M.R.W.; Sturrock, E.D. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity. Biochem. J., 2005, 389(Pt 3), 739-744.
[http://dx.doi.org/10.1042/BJ20050187] [PMID: 15813703]
[26]
Corradi, H.R.; Schwager, S.L.U.; Nchinda, A.T.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J. Mol. Biol., 2006, 357(3), 964-974.
[http://dx.doi.org/10.1016/j.jmb.2006.01.048] [PMID: 16476442]
[27]
Binevski, P.V.; Sizova, E.A.; Pozdnev, V.F.; Kost, O.A. Evidence for the negative cooperativity of the two active sites within bovine somatic angiotensin-converting enzyme. FEBS Lett., 2003, 550(1-3), 84-88.
[http://dx.doi.org/10.1016/S0014-5793(03)00825-1] [PMID: 12935891]
[28]
Turner, A.J.; Hooper, N.M. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol. Sci., 2002, 23(4), 177-183.
[http://dx.doi.org/10.1016/S0165-6147(00)01994-5] [PMID: 11931993]
[29]
Vermeirssen, V.; Van Camp, J.; Verstraete, W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr., 2004, 92(3), 357-366.
[http://dx.doi.org/10.1079/BJN20041189] [PMID: 15469639]
[30]
Wong, M.K. Angiotensin converting enzymes. In: Handbook of Hormones; Academic Press: USA, 2016; pp. 263-e29D.
[http://dx.doi.org/10.1016/B978-0-12-801028-0.00254-3]
[31]
Soubrier, F.; Wei, L.; Hubert, C.; Clauser, E.; Alhenc-Gelas, F.; Corvol, P. Molecular biology of the angiotensin I converting enzyme: II. Structure-function. Gene polymorphism and clinical implications. J. Hypertens., 1993, 11(6), 599-604.
[http://dx.doi.org/10.1097/00004872-199306000-00003] [PMID: 8397238]
[32]
Zhang, R.; Wu, Y.; Zhao, M.; Liu, C.; Zhou, L.; Shen, S.; Liao, S.; Yang, K.; Li, Q.; Wan, H. Role of HIF-1α in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 297(4), L631-L640.
[http://dx.doi.org/10.1152/ajplung.90415.2008] [PMID: 19592460]
[33]
McMurray, J. Heart failure. In: The ESC textbook of cardiovascular medicine, 3rd ed.; Camm, A.J.; Lüscher, T.F.; Maurer, G.; Serruys, P.W., Eds.; Oxford University Press: Oxford, 2018; pp. 1150-1158.
[34]
Scow, D.T.; Smith, E.G.; Shaughnessy, A.F. Combination therapy with ACE inhibitors and angiotensin-receptor blockers in heart failure. Am. Fam. Physician, 2003, 68(9), 1795-1798.
[PMID: 14620599]
[35]
Opie, L.H.; Pfeffer, M.A. Inhibitors of the renin-angiotensin-aldosterone system. In: Drugs for the heart, 8th ed.; Opie, L.H.; Gersh, B.J., Eds.; Elsevier Saunders: Philadelphia, 2013; pp. 119-169.
[36]
Pieruzzi, F.; Abassi, Z.A.; Keiser, H.R. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation, 1995, 92(10), 3105-3112.
[http://dx.doi.org/10.1161/01.CIR.92.10.3105] [PMID: 7586282]
[37]
Ruzicka, M.; Keeley, F.W.; Leenen, F.H. The renin-angiotensin system and volume overload-induced changes in cardiac collagen and elastin. Circulation, 1994, 90(4), 1989-1996.
[http://dx.doi.org/10.1161/01.CIR.90.4.1989] [PMID: 7923689]
[38]
Hirsch, A.T.; Talsness, C.E.; Schunkert, H.; Paul, M.; Dzau, V.J. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ. Res., 1991, 69(2), 475-482.
[http://dx.doi.org/10.1161/01.RES.69.2.475] [PMID: 1650297]
[39]
Hokimoto, S.; Yasue, H.; Fujimoto, K.; Yamamoto, H.; Nakao, K.; Kaikita, K.; Sakata, R.; Miyamoto, E. Expression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction. Circulation, 1996, 94(7), 1513-1518.
[http://dx.doi.org/10.1161/01.CIR.94.7.1513] [PMID: 8840838]
[40]
Sadoshima, J.; Xu, Y.; Slayter, H.S.; Izumo, S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell, 1993, 75(5), 977-984.
[http://dx.doi.org/10.1016/0092-8674(93)90541-W] [PMID: 8252633]
[41]
Weber, K.T.; Sun, Y.; Guarda, E. Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension, 1994, 23(6 Pt 2), 869-877.
[http://dx.doi.org/10.1161/01.HYP.23.6.869] [PMID: 8206620]
[42]
Pfeffer, M.A.; Braunwald, E.; Moyé, L.A.; Basta, L.; Brown, E.J., Jr; Cuddy, T.E.; Davis, B.R.; Geltman, E.M.; Goldman, S.; Flaker, G.C. The SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N. Engl. J. Med., 1992, 327(10), 669-677.
[http://dx.doi.org/10.1056/NEJM199209033271001] [PMID: 1386652]
[43]
Garabelli, P.J.; Modrall, J.G.; Penninger, J.M.; Ferrario, C.M.; Chappell, M.C. Distinct roles for angiotensin-converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart. Exp. Physiol., 2008, 93(5), 613-621.
[http://dx.doi.org/10.1113/expphysiol.2007.040246] [PMID: 18356559]
[44]
Kassiri, Z.; Zhong, J.; Guo, D.; Basu, R.; Wang, X.; Liu, P.P.; Scholey, J.W.; Penninger, J.M.; Oudit, G.Y. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ. Heart Fail., 2009, 2(5), 446-455.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.840124] [PMID: 19808375]
[45]
Bodiga, S.; Zhong, J.C.; Wang, W.; Basu, R.; Lo, J.; Liu, G.C.; Guo, D.; Holland, S.M.; Scholey, J.W.; Penninger, J.M.; Kassiri, Z.; Oudit, G.Y. Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc. Res., 2011, 91(1), 151-161.
[http://dx.doi.org/10.1093/cvr/cvr036] [PMID: 21285291]
[46]
Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; Scholey, J.; Ferrario, C.M.; Manoukian, A.S.; Chappell, M.C.; Backx, P.H.; Yagil, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002, 417(6891), 822-828.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[47]
Yamamoto, K.; Ohishi, M.; Katsuya, T.; Ito, N.; Ikushima, M.; Kaibe, M.; Tatara, Y.; Shiota, A.; Sugano, S.; Takeda, S.; Rakugi, H.; Ogihara, T. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension, 2006, 47(4), 718-726.
[http://dx.doi.org/10.1161/01.HYP.0000205833.89478.5b] [PMID: 16505206]
[48]
Nakamura, K.; Koibuchi, N.; Nishimatsu, H.; Higashikuni, Y.; Hirata, Y.; Kugiyama, K.; Nagai, R.; Sata, M. Candesartan ameliorates cardiac dysfunction observed in angiotensin-converting enzyme 2-deficient mice. Hypertens. Res., 2008, 31(10), 1953-1961.
[http://dx.doi.org/10.1291/hypres.31.1953] [PMID: 19015603]
[49]
Alemán, A.; Giménez, B.; Pérez-Santin, E.; Gómez-Guillén, M.C.; Montero, P. Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem., 2011, 125(2), 334-341.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.058]
[50]
Pan, D.; Cao, J.; Guo, H.; Zhao, B. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chem., 2012, 130(1), 121-126.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.011]
[51]
Otte, J.; Shalaby, S.M.; Zakora, M.; Pripp, A.H.; El-Shabrawy, S.A. Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. Int. Dairy J., 2007, 17(5), 488-503.
[http://dx.doi.org/10.1016/j.idairyj.2006.05.011]
[52]
Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem., 2006, 54(3), 732-738.
[http://dx.doi.org/10.1021/jf051263l] [PMID: 16448176]
[53]
Suetsuna, K.; Nakano, T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J. Nutr. Biochem., 2000, 11(9), 450-454.
[http://dx.doi.org/10.1016/S0955-2863(00)00110-8] [PMID: 11091100]
[54]
Gómez-Ruiz, J.A.; Recio, I.; Belloque, J. ACE-inhibitory activity and structural properties of peptide Asp-Lys-Ile-His-Pro [β-CN f(47-51)]. Study of the peptide forms synthesized by different methods. J. Agric. Food Chem., 2004, 52(20), 6315-6319.
[http://dx.doi.org/10.1021/jf049532f] [PMID: 15453706]
[55]
Eckert, E.; Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Szewczuk, Z.; Polanowski, A.; Trziszka, T.; Chrzanowska, J. Egg-yolk protein by-product as a source of ACE-inhibitory peptides obtained with using unconventional proteinase from Asian pumpkin (Cucurbita ficifolia). J. Proteom., 2014, 110, 107-116.
[http://dx.doi.org/10.1016/j.jprot.2014.08.003] [PMID: 25138009]
[56]
You, S.J.; Wu, J. Angiotensin-I converting enzyme inhibitory and antioxidant activities of egg protein hydrolysates produced with gastrointestinal and nongastrointestinal enzymes. J. Food Sci., 2011, 76(6), C801-C807.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02228.x] [PMID: 22417478]
[57]
Mine, Y. Egg proteins and peptides in human health--chemistry, bioactivity and production. Curr. Pharm. Des., 2007, 13(9), 875-884.
[http://dx.doi.org/10.2174/138161207780414278] [PMID: 17430187]
[58]
Hoppe, A. Examination of egg white proteins and effects of high pressure on select physical and functional properties; University of Nebraska: Nebraska, 2010.
[59]
Liu, J.; Yu, Z.; Zhao, W.; Lin, S.; Wang, E.; Zhang, Y.; Chen, F. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates. Food Chem., 2010, 122(4), 1159-1163.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.108]
[60]
López-Fandiño, R.; Recio, I.; Ramos, M. Egg-protein derived peptides with antihypertensive activity. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. In: Bioactive Egg Compounds; Huopalahti, R.; López-Fandiño, R.; Anton, M.; Schade, R., Eds.; Springer: Berlin, Heidelberg, 2007; pp. 199-211.
[61]
Miguel, M.; Aleixandre, A. Antihypertensive peptides derived from egg proteins. J. Nutr., 2006, 136(6), 1457-1460.
[http://dx.doi.org/10.1093/jn/136.6.1457] [PMID: 16702303]
[62]
Fujita, H.; Sasaki, R.; Yoshikawa, M. Potentiation of the antihypertensive activity of orally administered ovokinin, a vasorelaxing peptide derived from ovalbumin, by emulsification in egg phosphatidylcholine. Biosci. Biotechnol. Biochem., 1995, 59(12), 2344-2345.
[http://dx.doi.org/10.1271/bbb.59.2344] [PMID: 8611762]
[63]
Memarpoor-Yazdi, M.; Asoodeh, A.; Chamani, J. Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme. Int. J. Pept. Res. Ther., 2012, 18(4), 353-360.
[http://dx.doi.org/10.1007/s10989-012-9311-2]
[64]
Yu, Z.; Zhao, W.; Liu, J.; Lu, J.; Chen, F. QIGLF, a novel angiotensin I-converting enzyme-inhibitory peptide from egg white protein. J. Sci. Food Agric., 2011, 91(5), 921-926.
[http://dx.doi.org/10.1002/jsfa.4266] [PMID: 21384361]
[65]
Miguel, M.; Manso, M.; Aleixandre, A.; Alonso, M.J.; Salaices, M.; López-Fandiño, R. Vascular effects, angiotensin I-converting enzyme (ACE)-inhibitory activity, and antihypertensive properties of peptides derived from egg white. J. Agric. Food Chem., 2007, 55(26), 10615-10621.
[http://dx.doi.org/10.1021/jf072307o] [PMID: 18047278]
[66]
Miguel, M.; López-Fandiño, R.; Ramos, M.; Aleixandre, A. Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats. Br. J. Nutr., 2005, 94(5), 731-737.
[http://dx.doi.org/10.1079/BJN20051570] [PMID: 16277776]
[67]
Matoba, N.; Usui, H.; Fujita, H.; Yoshikawa, M. A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery. FEBS Lett., 1999, 452(3), 181-184.
[http://dx.doi.org/10.1016/S0014-5793(99)00587-6] [PMID: 10386586]
[68]
Iroyukifujita, H.; Eiichiyokoyama, K.; Yoshikawa, M. Classification and antihypertensive activity of angiotensin I converting enzyme inhibitory peptides derived from food proteins. J. Food Sci., 2000, 65(4), 564-569.
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb16049.x]
[69]
Yoshii, H.; Tachi, N.; Ohba, R.; Sakamura, O.; Takeyama, H.; Itani, T. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 2001, 128, 27-33.
[70]
Vercruysse, L.; Van Camp, J.; Smagghe, G. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: A review. J. Agric. Food Chem., 2005, 53(21), 8106-8115.
[http://dx.doi.org/10.1021/jf0508908] [PMID: 16218651]
[71]
Lawrie, R.A.; Ledward, D.A. Meat Science, 7th ed; Woodhead Publishing: UK, 2006, pp. 41-73.
[http://dx.doi.org/10.1533/9781845691615.41]
[72]
Spudich, J.A.; Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem., 1971, 246(15), 4866-4871.
[http://dx.doi.org/10.1016/S0021-9258(18)62016-2] [PMID: 4254541]
[73]
Muguruma, M.; Ahhmed, A.M.; Katayama, K.; Kawahara, S.; Maruyama, M.; Nakamura, T. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chem., 2009, 114(2), 516-522.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.081]
[74]
Katayama, K.; Mori, T.; Kawahara, S.; Miake, K.; Kodama, Y.; Sugiyama, M.; Kawamura, Y.; Nakayama, T.; Maruyama, M.; Muguruma, M. Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats. J. Food Sci., 2007, 72(9), S702-S706.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00571.x] [PMID: 18034756]
[75]
Escudero, E.; Mora, L.; Fraser, P.D.; Aristoy, M-C.; Arihara, K.; Toldrá, F. Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. J. Proteomics, 2013, 78, 499-507.
[http://dx.doi.org/10.1016/j.jprot.2012.10.019] [PMID: 23117181]
[76]
Arihara, K.; Nakashima, Y.; Mukai, T.; Ishikawa, S.; Itoh, M. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci., 2001, 57(3), 319-324.
[http://dx.doi.org/10.1016/S0309-1740(00)00108-X] [PMID: 22061507]
[77]
Nakashima, Y.; Arihara, K.; Sasaki, A.; Mio, H.; Ishikawa, S.; Itoh, M. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J. Food Sci., 2002, 67(1), 434-437.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11424.x]
[78]
Ren, Y.; Wan, D.G.; Lu, X.M.; Chen, L.; Zhang, T.E.; Guo, J.L. Isolation and characterization of angiotensin I-converting enzyme inhibitor peptides derived from porcine hemoglobin. Sci. Res. Essays, 2011, 6(30), 6262-6269.
[79]
Katayama, K.; Tomatsu, M.; Kawahara, S.; Yamauchi, K.; Fuchu, H.; Kodama, Y.; Kawamura, Y.; Muguruma, M. Inhibitory profile of nonapeptide derived from porcine troponin C against angiotensin I-converting enzyme. J. Agric. Food Chem., 2004, 52(4), 771-775.
[http://dx.doi.org/10.1021/jf0350865] [PMID: 14969529]
[80]
Gelse, K.; Pöschl, E.; Aigner, T. Collagens--structure, function, and biosynthesis. Adv. Drug Deliv. Rev., 2003, 55(12), 1531-1546.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[81]
Kim, S-K.; Byun, H.G.; Park, P.J.; Shahidi, F. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J. Agric. Food Chem., 2001, 49(6), 2992-2997.
[http://dx.doi.org/10.1021/jf001119u] [PMID: 11409999]
[82]
Jang, A.; Lee, M. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci., 2005, 69(4), 653-661.
[http://dx.doi.org/10.1016/j.meatsci.2004.10.014] [PMID: 22063143]
[83]
Katayama, K.; Anggraeni, H.E.; Mori, T.; Ahhmed, A.M.; Kawahara, S.; Sugiyama, M.; Nakayama, T.; Maruyama, M.; Muguruma, M. Porcine skeletal muscle troponin is a good source of peptides with Angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. J. Agric. Food Chem., 2008, 56(2), 355-360.
[http://dx.doi.org/10.1021/jf071408j] [PMID: 18163567]
[84]
Saiga, A.; Okumura, T.; Makihara, T.; Katsuda, S.; Morimatsu, F.; Nishimura, T. Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle. J. Agric. Food Chem., 2006, 54(3), 942-945.
[http://dx.doi.org/10.1021/jf0508201] [PMID: 16448206]
[85]
Darewicz, M.; Borawska, J.; Vegarud, G.E.; Minkiewicz, P.; Iwaniak, A. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes. Int. J. Mol. Sci., 2014, 15(8), 14077-14101.
[http://dx.doi.org/10.3390/ijms150814077] [PMID: 25123137]
[86]
Rasyad, F.; Huang, T.C.; Hsu, J.L.; Fadjar, M. Screening of Novel angiotensin I converting enzyme inhibitory peptides derived from enzymatic hydrolysis of salmon protamine. J. Life Sci. Biomedicine, 2016, 6, 100-105.
[87]
Gu, R.Z.; Li, C.Y.; Liu, W.Y.; Yi, W.X.; Cai, M.Y. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar) L. skin. Int. Food Res. J., 2011, 44(5), 1536-1540.
[http://dx.doi.org/10.1016/j.foodres.2011.04.006]
[88]
Kim, S.R.; Byun, H.G. The novel angiotensin I converting enzyme inhibitory peptide from rainbow trout muscle hydrolysate. Fish. Aquatic Sci., 2012, 15(3), 183-190.
[http://dx.doi.org/10.5657/FAS.2012.0183]
[89]
Lee, S.H.; Qian, Z.J.; Kim, S.K. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem., 2010, 118(1), 96-102.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.086]
[90]
Kohama, Y.; Oka, H.; Matsumoto, S.; Nakagawa, T.; Miyamoto, T.; Mimura, T.; Nagase, Y.; Satake, M.; Takane, T.; Fujita, T. Biological properties of angiotensin-converting enzyme inhibitor derived from tuna muscle. J. Pharmacobiodyn., 1989, 12(9), 566-571.
[http://dx.doi.org/10.1248/bpb1978.12.566] [PMID: 2614645]
[91]
Qian, Z.J.; Je, J.Y.; Kim, S.K. Antihypertensive effect of angiotensin i converting enzyme-inhibitory peptide from hydrolysates of Bigeye tuna dark muscle, Thunnus obesus. J. Agric. Food Chem., 2007, 55(21), 8398-8403.
[http://dx.doi.org/10.1021/jf0710635] [PMID: 17894458]
[92]
Matsumura, N.; Fujii, M.; Takeda, Y.; Sugita, K.; Shimizu, T. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci. Biotechnol. Biochem., 1993, 57(5), 695-697.
[http://dx.doi.org/10.1271/bbb.57.695] [PMID: 7763772]
[93]
Fujita, H.; Yoshikawa, M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology, 1999, 44(1-2), 123-127.
[http://dx.doi.org/10.1016/S0162-3109(99)00118-6] [PMID: 10604535]
[94]
Hasan, F.; Kitagawa, M.; Kumada, Y.; Hashimoto, N.; Shiiba, M.; Katoh, S.; Terashima, M. Production kinetics of angiotensin-I converting enzyme inhibitory peptides from bonito meat in artificial gastric juice. Process Biochem., 2006, 41, 505-511.
[http://dx.doi.org/10.1016/j.procbio.2005.06.032]
[95]
Byun, H.G.; Kim, S.K. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol., 2002, 35(2), 239-243.
[PMID: 12297036]
[96]
Je, J.Y.; Park, P.J.; Kwon, J.Y.; Kim, S.K. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem., 2004, 52(26), 7842-7845.
[http://dx.doi.org/10.1021/jf0494027] [PMID: 15612765]
[97]
Yokoyama, K.; Chiba, H.; Yoshikawa, M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci. Biotechnol. Biochem., 1992, 56(10), 1541-1545.
[http://dx.doi.org/10.1271/bbb.56.1541] [PMID: 1369054]
[98]
Kawasaki, T.; Seki, E.; Osajima, K.; Yoshida, M.; Asada, K.; Matsui, T.; Osajima, Y. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. J. Hum. Hypertens., 2000, 14(8), 519-523.
[http://dx.doi.org/10.1038/sj.jhh.1001065] [PMID: 10962520]
[99]
Matsufuji, H.; Matsui, T.; Seki, E.; Osajima, K.; Nakashima, M.; Osajima, Y. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci. Biotechnol. Biochem., 1994, 58(12), 2244-2245.
[http://dx.doi.org/10.1271/bbb.58.2244] [PMID: 7765718]
[100]
Guang, C.; Phillips, R.D. Plant food-derived Angiotensin I converting enzyme inhibitory peptides. J. Agric. Food Chem., 2009, 57(12), 5113-5120.
[http://dx.doi.org/10.1021/jf900494d] [PMID: 19449887]
[101]
Nakahara, T.; Sano, A.; Yamaguchi, H.; Sugimoto, K.; Chikata, H.; Kinoshita, E.; Uchida, R. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances. J. Agric. Food Chem., 2010, 58(2), 821-827.
[http://dx.doi.org/10.1021/jf903261h] [PMID: 19994857]
[102]
Nogata, Y.; Nagamine, T.; Sekiya, K. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from wheat bran in spontaneously hypertensive rats. Japanese Soc. Food Sci. Technol., 2011, 58, 67-70.
[http://dx.doi.org/10.3136/nskkk.58.67]
[103]
Hashmi, S.I.; Satwadhar, P.N.; Khotpal, R.R.; Deshpande, H.W.; Syed, K.A.; Vibhute, B.P. Rapeseed meal nutraceuticals. J. Oilseeds Res., 2016, 1(2), 43-54.
[104]
Marczak, E.D.; Usui, H.; Fujita, H.; Yang, Y.; Yokoo, M.; Lipkowski, A.W.; Yoshikawa, M. New antihypertensive peptides isolated from rapeseed. Peptides, 2003, 24(6), 791-798.
[http://dx.doi.org/10.1016/S0196-9781(03)00174-8] [PMID: 12948830]
[105]
Wu, J.; Aluko, R.E.; Muir, A.D. Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chem., 2008, 111(4), 942-950.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.009]
[106]
Udenigwe, C.C.; Adebiyi, A.P.; Doyen, A.; Li, H.; Bazinet, L.; Aluko, R.E. Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein. Food Chem., 2012, 132(1), 468-475.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.024] [PMID: 26434317]
[107]
Marambe, H.K.; Shand, P.J.; Wanasundara, J.P. Release of angiotensin I-converting enzyme inhibitory peptides from flaxseed (Linum usitatissimum L.) protein under simulated gastrointestinal digestion. J. Agric. Food Chem., 2011, 59(17), 9596-9604.
[http://dx.doi.org/10.1021/jf202000e] [PMID: 21776963]
[108]
Iwaniak, A.; Dziuba, B. Motifs with potential physiological activity in food proteins–BIOPEP database. Acta Sci. Pol. Technol. Aliment., 2009, 8(3), 59-85.
[109]
Hu, Y.; Stromeck, A.; Loponen, J.; Lopes-Lutz, D.; Schieber, A.; Gänzle, M.G. LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs. J. Agric. Food Chem., 2011, 59(22), 11983-11989.
[http://dx.doi.org/10.1021/jf2033329] [PMID: 21985248]
[110]
Cheung, I.W.; Nakayama, S.; Hsu, M.N.; Samaranayaka, A.G.; Li-Chan, E.C. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J. Agric. Food Chem., 2009, 57(19), 9234-9242.
[http://dx.doi.org/10.1021/jf9018245] [PMID: 19731915]
[111]
Li, G.H.; Qu, M.R.; Wan, J.Z.; You, J.M. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac. J. Clin. Nutr., 2007, 16(S1)(Suppl. 1), 275-280.
[PMID: 17392118]
[112]
Miyoshi, S.; Ishikawa, H.; Kaneko, T.; Fukui, F.; Tanaka, H.; Maruyama, S. Structures and activity of angiotensin-converting enzyme inhibitors in an α-zein hydrolysate. Agric. Biol. Chem., 1991, 55(5), 1313-1318.
[PMID: 1368684]
[113]
Matsui, T.; Li, C.H.; Tanaka, T.; Maki, T.; Osajima, Y.; Matsumoto, K. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol. Pharm. Bull., 2000, 23(4), 427-431.
[http://dx.doi.org/10.1248/bpb.23.427] [PMID: 10784421]
[114]
Rai, M.; Tidke, G.; Wasser, S.P. Therapeutic potential of mushrooms. Indian J. Nat. Prod. Resour., 2005, 4(4), 246-257.
[115]
Choi, H.S.; Cho, H.Y.; Yang, H.C.; Ra, K.S.; Suh, H.J. Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res. Int., 2001, 34(2-3), 177-182.
[http://dx.doi.org/10.1016/S0963-9969(00)00149-6]
[116]
Li, G.H.; Shi, Y.H.; Liu, H.; Le, G.W. Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats. Eur. Food Res. Technol., 2006, 222(5), 733-736.
[http://dx.doi.org/10.1007/s00217-005-0147-2]
[117]
Sipola, M.; Finckenberg, P.; Santisteban, J.; Korpela, R.; Vapaatalo, H.; Nurminen, M.L. Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol., 2001, 52(4 Pt 2), 745-754.
[PMID: 11785770]
[118]
Minervini, F.; Algaron, F.; Rizzello, C.G.; Fox, P.F.; Monnet, V.; Gobbetti, M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Environ. Microbiol., 2003, 69(9), 5297-5305.
[http://dx.doi.org/10.1128/AEM.69.9.5297-5305.2003] [PMID: 12957917]
[119]
Takano, T. Milk derived peptides and hypertension reduction. Int. Dairy J., 1998, 8(5-6), 375-381.
[http://dx.doi.org/10.1016/S0958-6946(98)00060-0]
[120]
Quirós, A.; Ramos, M.; Muguerza, B.; Delgado, M.A.; Miguel, M.; Aleixandre, A.; Recio, I. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int. Dairy J., 2007, 17(1), 33-41.
[http://dx.doi.org/10.1016/j.idairyj.2005.12.011]
[121]
Miguel, M.; Muguerza, B.; Sánchez, E.; Delgado, M.A.; Recio, I.; Ramos, M.; Aleixandre, M.A. Changes in arterial blood pressure in hypertensive rats caused by long-term intake of milk fermented by Enterococcus faecalis CECT 5728. Br. J. Nutr., 2005, 94(1), 36-43.
[http://dx.doi.org/10.1079/BJN20051450] [PMID: 16115330]
[122]
Ashar, M.N.; Chand, R. Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft, 2004, 59(7-8), 363-366.
[123]
Papadimitriou, C.G.; Vafopoulou-Mastrojiannaki, A.; Silva, S.V.; Gomes, A.M.; Malcata, F.X.; Alichanidis, E. Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem., 2007, 105(2), 647-656.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.028]
[124]
Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem., 1994, 58(4), 776-778.
[http://dx.doi.org/10.1271/bbb.58.776]
[125]
FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr., 2004, 134(4), 980S-988S.
[http://dx.doi.org/10.1093/jn/134.4.980S] [PMID: 15051858]
[126]
López-Fandiño, R.; Otte, J.; Van Camp, J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy J., 2006, 16(11), 1277-1293.
[http://dx.doi.org/10.1016/j.idairyj.2006.06.004]
[127]
Maes, W.; Van Camp, J.; Vermeirssen, V.; Hemeryck, M.; Ketelslegers, J.M.; Schrezenmeir, J.; Otte, J.; Shalaby, S.M.; Kakora, M.; Pripp, A.H.; El-Shabrawy, S.A. Int. Dairy J., 2007, 17, 488-203.
[http://dx.doi.org/10.1016/j.idairyj.2006.05.011]
[128]
Miguel, M.; Gómez-Ruiz, J.Á.; Recio, I.; Aleixandre, A. Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats. Mol. Nutr. Food Res., 2010, 54(10), 1422-1427.
[http://dx.doi.org/10.1002/mnfr.200900448] [PMID: 20397194]
[129]
Maeno, M.; Yamamoto, N.; Takano, T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci., 1996, 79(8), 1316-1321.
[http://dx.doi.org/10.3168/jds.S0022-0302(96)76487-1] [PMID: 8880454]
[130]
del Mar Contreras, M.; Carrón, R.; Montero, M.J.; Ramos, M.; Recio, I. Novel casein-derived peptides with antihypertensive activity. Int. Dairy J., 2009, 19(10), 566-573.
[http://dx.doi.org/10.1016/j.idairyj.2009.05.004]
[131]
Bütikofer, U.; Meyer, J.; Sieber, R.; Wechsler, D. Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int. Dairy J., 2007, 17(8), 968-975.
[http://dx.doi.org/10.1016/j.idairyj.2006.11.003]
[132]
Maruyama, S.; Nagakomi, K.; Tomizuka, N.; Suzuki, H. Agric. Biol. Chem., 1985, 49, 1405-1409.
[133]
Smacchi, E.; Gobbetti, M. Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. Food Microbiol., 2000, 17(2), 129-141.
[http://dx.doi.org/10.1006/fmic.1999.0302]
[134]
Gómez-Ruiz, J.Á.; Ramos, M.; Recio, I. Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int. Dairy J., 2002, 12(8), 697-706.
[http://dx.doi.org/10.1016/S0958-6946(02)00059-6]
[135]
Haileselassie, S.S.; Lee, B.H.; Gibbs, B.F. Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J. Dairy Sci., 1999, 82(8), 1612-1617.
[http://dx.doi.org/10.3168/jds.S0022-0302(99)75389-0] [PMID: 10480087]
[136]
Mao, X.Y.; Ni, J.R.; Sun, W.L.; Hao, P.P.; Fan, L. Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides. Food Chem., 2007, 103(4), 1282-1287.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.041]
[137]
Fathi, M.; Martin, A.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate-based delivery systems. Trends Food Sci. Technol., 2014, 39(1), 18-39.
[http://dx.doi.org/10.1016/j.tifs.2014.06.007]
[138]
Segura-Campos, M.; Chel-Guerrero, L.D.A. Betancur-Ancona.; Hernandez-Escalante, V, M. Food Res. Int., 2011, 27, 213-218.
[http://dx.doi.org/10.1080/87559129.2011.563395]
[139]
Ma, J.J.; Mao, X.Y.; Wang, Q.; Yang, S.; Zhang, D.; Chen, S.W.; Li, Y.H. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. Lebensm. Wiss. Technol., 2014, 56(2), 296-302.
[http://dx.doi.org/10.1016/j.lwt.2013.12.019]
[140]
Ortiz, S.E.M.; Mauri, A.; Monterrey-Quintero, E.S.; Trindade, M.A.; Santana, A.S.; Favaro-Trindade, C.S. Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. Lebensm. Wiss. Technol., 2009, 42(5), 919-923.
[http://dx.doi.org/10.1016/j.lwt.2008.12.004]
[141]
Wang, Z.; Ju, X.; He, R.; Yuan, J.; Wang, L. The effect of rapeseed protein structural modification on microstructural properties of peptide microcapsules. Food Bioprocess Technol., 2015, 8(6), 1305-1318.
[http://dx.doi.org/10.1007/s11947-015-1472-5]
[142]
Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol., 2014, 37(1), 5-20.
[http://dx.doi.org/10.1016/j.tifs.2014.02.008]
[143]
O’Neill, G.J.; Egan, T.; Jacquier, J.C.; O’Sullivan, M.; Dolores O’Riordan, E. Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chem., 2014, 160, 46-52.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.002] [PMID: 24799207]
[144]
Favaro-Trindade, C.S.; Santana, A.S.; Monterrey-Quintero, E.S.; Trindade, M.A.; Netto, F.M. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll., 2010, 24(4), 336-340.
[http://dx.doi.org/10.1016/j.foodhyd.2009.10.012]
[145]
Ren, C.; Chu, L.; Huang, F.; Yang, L.; Fan, H.; Liu, J. A novel H2O2 responsive supramolecular hydrogel for controllable drug release. RSC Advances, 2017, 7(3), 1313-1317.
[http://dx.doi.org/10.1039/C6RA26536G]
[146]
Zhang, P.; Cheetham, A.G.; Lock, L.L.; Cui, H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug. Chem., 2013, 24(4), 604-613.
[http://dx.doi.org/10.1021/bc300585h] [PMID: 23514455]
[147]
Schloss, A.C.; Williams, D.M.; Regan, L.J. Protein-based hydrogels for tissue engineering. Adv. Exp. Med. Biol., 2016, 940, 167-177.
[http://dx.doi.org/10.1007/978-3-319-39196-0_8] [PMID: 27677513]
[148]
Vinogradov, S.V. Nanogels in the race for drug delivery. Nanomedicine (Lond.), 2010, 5(2), 165-168.
[http://dx.doi.org/10.2217/nnm.09.103] [PMID: 20148627]
[149]
Jonker, A.M.; Löwik, D.W.P.M.; van Hest, J.C.M. Peptide and protein-based hydrogels. Chem. Mater., 2012, 24(5), 759-773.
[http://dx.doi.org/10.1021/cm202640w]
[150]
Yokota, D.; Moraes, M.; Pinho, S. Characterization of lyophilized liposomes produced with non-purified soy lecithin: A case study of casein hydrolysate microencapsulation. Braz. J. Chem. Eng., 2012, 29(2), 325-335.
[http://dx.doi.org/10.1590/S0104-66322012000200013]
[151]
McClements, J.; McClements, D.J. Standardization of nanoparticle characterization: methods for testing properties, stability, and functionality of edible nanoparticles. Crit. Rev. Food Sci. Nutr., 2016, 56(8), 1334-1362.
[http://dx.doi.org/10.1080/10408398.2014.970267] [PMID: 25850035]
[152]
Barbosa, C.M.; Morais, H.A.; Delvivo, F.M.; Mansur, H.S.; De Oliveira, M.C.; Silvestre, M.P. Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres. J. Sci. Food Agric., 2014, 84(14), 1891-1900.
[http://dx.doi.org/10.1002/jsfa.1855]
[153]
Silva, J.C.; Pinho, S.C. Int. J. of Fin. Stud., 2013, 2, 48.
[154]
Foltz, M.; Meynen, E.E.; Bianco, V.; van Platerink, C.; Koning, T.M.; Kloek, J. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr., 2007, 137(4), 953-958.
[http://dx.doi.org/10.1093/jn/137.4.953] [PMID: 17374660]
[155]
Righard, L.; Carlsson-Jonsson, A.; Nyberg, F. Enhanced levels of immunoreactive β-casomorphin-8 in milk of breastfeeding women with mastitis. Peptides, 2014, 51, 54-58.
[http://dx.doi.org/10.1016/j.peptides.2013.10.027] [PMID: 24189037]
[156]
Nongonierma, A.B.; FitzGerald, R.J. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A review. J. Funct. Foods, 2015, 17, 640-656.
[http://dx.doi.org/10.1016/j.jff.2015.06.021]
[157]
Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol., 2017, 19(1), 29-41.
[http://dx.doi.org/10.1111/1462-2920.13589] [PMID: 27928878]
[158]
Singh, B.P.; Vij, S. In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes. Lebensm. Wiss. Technol., 2018, 91, 303-307.
[http://dx.doi.org/10.1016/j.lwt.2018.01.066]
[159]
Chakraborty, A.; Banerjee, S.; Mukherjee, B.; Poddar, M.K. Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mech. Ageing Dev., 2020, 189, 111248.
[http://dx.doi.org/10.1016/j.mad.2020.111248] [PMID: 32339520]
[160]
Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Cerrudo, V.; Audebert, M.; Dumont, F.; Mancano, G.; Khodorova, N.; Andriamihaja, M.; Airinei, G.; Tomé, D.; Benamouzig, R.; Davila, A.M.; Claus, S.P.; Sanz, Y.; Blachier, F. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr., 2017, 106(4), 1005-1019.
[http://dx.doi.org/10.3945/ajcn.117.158816] [PMID: 28903954]
[161]
Yu, Y.J.; Amorim, M.; Marques, C.; Calhau, C.; Pintado, M. Effects of whey peptide extract on the growth of probiotics and gut microbiota. J. Funct. Foods, 2016, 21, 507-516.
[http://dx.doi.org/10.1016/j.jff.2015.10.035]
[162]
Salamat-Miller, N.; Johnston, T.P. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int. J. Pharm., 2005, 294(1-2), 201-216.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.022] [PMID: 15814245]
[163]
Wang, B.; Li, B. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chem., 2017, 218, 1-8.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.106] [PMID: 27719884]
[164]
Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 256-276.
[http://dx.doi.org/10.1016/j.addr.2016.07.007] [PMID: 27496705]
[165]
Matsui, T. Are peptides absorbable compounds? J. Agric. Food Chem., 2018, 66(2), 393-394.
[http://dx.doi.org/10.1021/acs.jafc.7b05589] [PMID: 29286653]
[166]
Xu, Q.; Liu, Z.; Liu, H.; Zhao, F.; Huang, X.; Wu, Y.; Liu, J. Functional characterization of oliopeptide transporter 1 of dairy cows. J. Anim. Sci. Biotechnol., 2018, 9(1), 1-8.
[http://dx.doi.org/10.1186/s40104-017-0219-8]
[167]
Jochems, P.G.M.; Garssen, J.; van Keulen, A.M.; Masereeuw, R.; Jeurink, P.V. Evaluating human intestinal cell lines for studying dietary protein absorption. Nutrients, 2018, 10(3), 322.
[http://dx.doi.org/10.3390/nu10030322] [PMID: 29518965]
[168]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[169]
Regazzo, D.; Mollé, D.; Gabai, G.; Tomé, D.; Dupont, D.; Leonil, J.; Boutrou, R. The (193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Mol. Nutr. Food Res., 2010, 54(10), 1428-1435.
[http://dx.doi.org/10.1002/mnfr.200900443] [PMID: 20397193]
[170]
Komin, A.; Russell, L.M.; Hristova, K.A.; Searson, P.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv. Drug Deliv. Rev., 2017, 110-111, 52-64.
[http://dx.doi.org/10.1016/j.addr.2016.06.002] [PMID: 27313077]
[171]
Shimizu, M.; Tsunogai, M.; Arai, S. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Peptides, 1997, 18(5), 681-687.
[http://dx.doi.org/10.1016/S0196-9781(97)00002-8] [PMID: 9213361]
[172]
Burton, P.S.; Conradi, R.A.; Ho, N.F.; Hilgers, A.R.; Borchardt, R.T. How structural features influence the biomembrane permeability of peptides. J. Pharm. Sci., 1996, 85(12), 1336-1340.
[http://dx.doi.org/10.1021/js960067d] [PMID: 8961149]
[173]
Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G.F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; Lennernaes, H.; Senner, F. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discov., 2010, 9(8), 597-614.
[http://dx.doi.org/10.1038/nrd3187] [PMID: 20671764]
[174]
Gilbert, E.R.; Wong, E.A.; Webb, K.E. Jr Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci., 2008, 86(9), 2135-2155.
[http://dx.doi.org/10.2527/jas.2007-0826] [PMID: 18441086]
[175]
Xu, Q.; Wu, Y.; Liu, H.; Xie, Y.; Huang, X.; Liu, J. Establishment and characterization of an omasal epithelial cell model derived from dairy calves for the study of small peptide absorption. PLoS One, 2014, 9(3), e88993.
[http://dx.doi.org/10.1371/journal.pone.0088993] [PMID: 24633419]
[176]
Xu, Q.; Liu, Z.; Liu, H.; Zhao, F.; Huang, X.; Wu, Y.; Liu, J. Functional characterization of oligopeptide transporter 1 of dairy cows. J. Anim. Sci. Biotechnol., 2018, 9(1), 7.
[http://dx.doi.org/10.1186/s40104-017-0219-8] [PMID: 29387385]
[177]
Daniel, H.; Zietek, T. Taste and move: glucose and peptide transporters in the gastrointestinal tract. Exp. Physiol., 2015, 100(12), 1441-1450.
[http://dx.doi.org/10.1113/EP085029] [PMID: 26140358]
[178]
Vig, B.S.; Stouch, T.R.; Timoszyk, J.K.; Quan, Y.; Wall, D.A.; Smith, R.L.; Faria, T.N. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. J. Med. Chem., 2006, 49(12), 3636-3644.
[http://dx.doi.org/10.1021/jm0511029] [PMID: 16759105]
[179]
Omkvist, D.H.; Larsen, S.B.; Nielsen, C.U.; Steffansen, B.; Olsen, L.; Jørgensen, F.S.; Brodin, B. A quantitative structure-activity relationship for translocation of tripeptides via the human proton-coupled peptide transporter, hPEPT1 (SLC15A1). AAPS J., 2010, 12(3), 385-396.
[http://dx.doi.org/10.1208/s12248-010-9195-z] [PMID: 20449699]
[180]
Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta, 2012, 1820(11), 1753-1763.
[http://dx.doi.org/10.1016/j.bbagen.2012.07.007] [PMID: 22842481]
[181]
Ding, F.; Qian, B.; Zhao, X.; Shen, S.; Deng, Y.; Wang, D.; Zhang, F.; Sui, Z.; Jing, P. VPPIPP and IPPVPP: Two hexapeptides innovated to exert antihypertensive activity. PLoS One, 2013, 8(4), e62384.
[http://dx.doi.org/10.1371/journal.pone.0062384] [PMID: 23638059]
[182]
Ding, L.; Wang, L.; Zhang, Y.; Liu, J. Transport of antihypertensive peptide RVPSL, ovotransferrin 328–332, in human intestinal Caco-2 cell monolayers. J. Agric. Food Chem., 2015, 63(37), 8143-8150.
[http://dx.doi.org/10.1021/acs.jafc.5b01824] [PMID: 26335384]
[183]
Orally available collagen tripeptide: Enzymatic stability, intestinal permeability, and absorption of Gly-Pro-Hyp and ProHyp. J. Agric. Food Chem., 2016, 64, 7127-7133.
[http://dx.doi.org/10.1021/acs.jafc.6b02955] [PMID: 27573716]
[184]
Xu, Q.; Fan, H.; Yu, W.; Hong, H.; Wu, J. Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers. J. Agric. Food Chem., 2017, 65(34), 7406-7414.
[http://dx.doi.org/10.1021/acs.jafc.7b02176] [PMID: 28782363]
[185]
Shen, W.; Matsui, T. Current knowledge of intestinal absorption of bioactive peptides. Food Funct., 2017, 8(12), 4306-4314.
[http://dx.doi.org/10.1039/C7FO01185G] [PMID: 29139513]
[186]
Tao, W.; Zhao, D.; Sun, M.; Wang, Z.; Lin, B.; Bao, Y.; Li, Y.; He, Z.; Sun, Y.; Sun, J. Intestinal absorption and activation of decitabine amino acid ester prodrugs mediated by peptide transporter PEPT1 and enterocyte enzymes. Int. J. Pharm., 2018, 541(1-2), 64-71.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.033] [PMID: 29471144]
[187]
Kamdem, J.P.; Tsopmo, A. Reactivity of peptides within the food matrix. J. Food Biochem., 2019, 43(1), e12489.
[http://dx.doi.org/10.1111/jfbc.12489] [PMID: 31353483]
[188]
Johansson, M.E.; Ambort, D.; Pelaseyed, T.; Schütte, A.; Gustafsson, J.K.; Ermund, A.; Subramani, D.B.; Holmén-Larsson, J.M.; Thomsson, K.A.; Bergström, J.H.; van der Post, S.; Rodriguez-Piñeiro, A.M.; Sjövall, H.; Bäckström, M.; Hansson, G.C. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci., 2011, 68(22), 3635-3641.
[http://dx.doi.org/10.1007/s00018-011-0822-3] [PMID: 21947475]
[189]
Pelaseyed, T.; Bergström, J.H.; Gustafsson, J.K.; Ermund, A.; Birchenough, G.M.; Schütte, A.; van der Post, S.; Svensson, F.; Rodríguez-Piñeiro, A.M.; Nyström, E.E.; Wising, C.; Johansson, M.E.; Hansson, G.C. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev., 2014, 260(1), 8-20.
[http://dx.doi.org/10.1111/imr.12182] [PMID: 24942678]
[190]
Lawless, E.; Griffin, B.T.; O’Mahony, A.; O’Driscoll, C.M. Exploring the impact of drug properties on the extent of intestinal lymphatic transport - in vitro and in vivo studies. Pharm. Res., 2015, 32(5), 1817-1829.
[http://dx.doi.org/10.1007/s11095-014-1578-x] [PMID: 25428258]
[191]
Boutrou, R.; Jardin, J.; Blais, A.; Tomé, D.; Léonil, J. Glycosylations of κ-casein-derived caseinomacropeptide reduce its accessibility to endo- but not exointestinal brush border membrane peptidases. J. Agric. Food Chem., 2008, 56(17), 8166-8173.
[http://dx.doi.org/10.1021/jf801140d] [PMID: 18698795]
[192]
Pauletti, G.M.; Okumu, F.W.; Borchardt, R.T. Effect of size and charge on the passive diffusion of peptides across Caco-2 cell monolayers via the paracellular pathway. Pharm. Res., 1997, 14(2), 164-168.
[http://dx.doi.org/10.1023/A:1012040425146] [PMID: 9090703]
[193]
FitzGerald, R.J.; Meisel, H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr., 2000, 84(Suppl. 1), S33-S37.
[http://dx.doi.org/10.1017/S0007114500002221] [PMID: 11242444]
[194]
Machado, A.; Liria, C.W.; Proti, P.B.; Remuzgo, C.; Miranda, M.T.M. Sínteses química e enzimática de peptídeos: Princípios básicos e aplicações. Quim. Nova, 2004, 27(1), 781-789.
[http://dx.doi.org/10.1590/S0100-40422004000500018]
[195]
Yakimova, B.K.; Petkova, D.; Stoineva, I.B. Molecular design and chemical synthesis of peptide inhibitors of Angiotensin I converting enzyme (ACE) for prevention and therapy of hypertension. Bulgarian Chem. Commun., 2017, 11-15.
[196]
Kong, R.; Yang, G.; Xue, R.; Liu, M.; Wang, F.; Hu, J.; Guo, X.; Chang, S. COVID-19 Docking Server: A meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics, 2020, 36(20), 5109-5111.
[http://dx.doi.org/10.1093/bioinformatics/btaa645] [PMID: 32692801]
[197]
Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 176, 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[198]
Çakır, B.; Okuyan, B.; Şener, G.; Tunali-Akbay, T. Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. Eur. J. Pharmacol., 2021, 891, 173781.
[http://dx.doi.org/10.1016/j.ejphar.2020.173781] [PMID: 33271151]
[199]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy