Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Effective Strategies for Heterologous Expression of Plant Heterotrimeric G-protein γ Subunits without Gβ Subunit Partners

Author(s): Bihter Avsar*

Volume 29, Issue 5, 2022

Published on: 30 March, 2022

Page: [429 - 439] Pages: 11

DOI: 10.2174/0929866529666220203094448

Price: $65

Abstract

Background: In plants, heterotrimeric G-protein (Gγ) subunits are diverse, and they have structural plasticity to provide functional selectivity to the heterotrimer. Although the Gβ and Gγ subunits dimerize to function in the signaling pathway, the interaction mechanism of various Gγ subunits with the Gβ subunit partners is still elusive.

Objective: To better understand the interaction mechanism, one approach is to separate the subunits for the re-assembly in vitro. Hence, developing a reliable method for achieving the efficient production and purification of these proteins has become necessary.

Methods: In this study, Gγ1 and Gγ2 proteins from Oryza sativa and Arabidopsis thaliana were successfully identified, cloned, expressed in bacteria, and purified as recombinant proteins with the fusion tags. Highly expressed recombinant Gγ subunits in E. coli were digested by proteases, which were also produced in the presented study.

Results: Preliminary structural characterization studies without the Gβ partners showed that Gγ1 proteins have disordered structures with coiled-coil, α-helix extensions, and loops, whereas the Gγ2 protein has a more dominant β-sheet and turns structure. Finally, computational analyses performed on Gγ genes have laid the foundation of new targets for biotechnological purposes.

Conclusion: The proposed optimized expression and purification protocol can contribute to investigations on the Gβγ binding mechanism in plant G-protein signaling. The investigations on selective binding are critical to shed light on the role(s) of different plant Gγ subunit types in biological processes.

Keywords: RGG1, RGG2, AGG1, Ulp1, TEV protease, microRNA.

Graphical Abstract

[1]
Perfus-Barbeoch, L.; Jones, A.M.; Assmann, S.M. Plant heterotrimeric G protein function: Insights from Arabidopsis and rice mutants. Curr. Opin. Plant Biol., 2004, 7(6), 719-731.
[http://dx.doi.org/10.1016/j.pbi.2004.09.013] [PMID: 15491922]
[2]
Urano, D.; Chen, J.G.; Botella, J.R.; Jones, A.M. Heterotrimeric G protein signalling in the plant kingdom. Open Biol., 2013, 3(3), 120186.
[http://dx.doi.org/10.1098/rsob.120186] [PMID: 23536550]
[3]
Trusov, Y.; Botella, J.R. Plant G-proteins come of age: Breaking the bond with animal models. Front Chem., 2016, 4, 24.
[http://dx.doi.org/10.3389/fchem.2016.00024] [PMID: 27252940]
[4]
Mason, M.G.; Botella, J.R. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14784-14788.
[http://dx.doi.org/10.1073/pnas.97.26.14784] [PMID: 11121078]
[5]
Mason, M.G.; Botella, J.R. Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochim. Biophys. Acta, 2001, 1520(2), 147-153.
[http://dx.doi.org/10.1016/S0167-4781(01)00262-7] [PMID: 11513956]
[6]
Higgins, J.B.; Casey, P.J. In vitro processing of recombinant G protein gamma subunits. Requirements for assembly of an active beta gamma complex. J. Biol. Chem., 1994, 269(12), 9067-9073.
[http://dx.doi.org/10.1016/S0021-9258(17)37077-1] [PMID: 8132644]
[7]
Yoshikawa, D.M.; Hatwar, M.; Smrcka, A.V. G protein β 5 subunit interactions with α subunits and effectors. Biochemistry, 2000, 39(37), 11340-11347.
[http://dx.doi.org/10.1021/bi0005557] [PMID: 10985779]
[8]
Kaplan-Türköz, B.; Aktürk, A.; Sayers, Z. Oligomerization of A. Thaliana Heterotrimeric G protein subunits AGB1 and AGG2 in vitro. Protein J., 2020, 39(5), 563-573.
[http://dx.doi.org/10.1007/s10930-020-09914-z] [PMID: 32772216]
[9]
Yee, C.M.; Zak, A.J.; Hill, B.D.; Wen, F. The coming age of insect cells for manufacturing and development of protein therapeutics. Ind. Eng. Chem. Res., 2018, 57(31), 10061-10070.
[http://dx.doi.org/10.1021/acs.iecr.8b00985] [PMID: 30886455]
[10]
Singh, A.; Yadav, D.; Rai, K.M.; Srivastava, M.; Verma, P.C.; Singh, P.K.; Tuli, R. Enhanced expression of rabies virus surface G-protein in Escherichia coli using SUMO fusion. Protein J., 2012, 31(1), 68-74.
[http://dx.doi.org/10.1007/s10930-011-9373-6] [PMID: 22134654]
[11]
Upadhyay, S.K.; Saurabh, S.; Rai, P.; Singh, R.; Chandrashekar, K.; Verma, P.C.; Singh, P.K.; Tuli, R. SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. J. Biotechnol., 2010, 146(1-2), 1-8.
[http://dx.doi.org/10.1016/j.jbiotec.2010.01.013] [PMID: 20100526]
[12]
McDonnell, D.P.; Pike, J.W.; Drutz, D.J.; Butt, T.R.; O’Malley, B.W. Reconstitution of the vitamin D-responsive osteocalcin transcription unit in Saccharomyces cerevisiae. Mol. Cell. Biol., 1989, 9(8), 3517-3523.
[PMID: 2552296]
[13]
Mishra, S.; Yadav, D.K.; Tuli, R. Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J. Biotechnol., 2006, 127(1), 95-108.
[http://dx.doi.org/10.1016/j.jbiotec.2006.06.002] [PMID: 16843564]
[14]
Butt, T.R.; Jonnalagadda, S.; Monia, B.P.; Sternberg, E.J.; Marsh, J.A.; Stadel, J.M.; Ecker, D.J.; Crooke, S.T. Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2540-2544.
[http://dx.doi.org/10.1073/pnas.86.8.2540] [PMID: 2539593]
[15]
Momin, A.A.; Hameed, U.F.S.; Arold, S.T. Passenger sequences can promote interlaced dimers in a common variant of the maltose-binding protein. Sci. Rep., 2019, 9(1), 20396.
[http://dx.doi.org/10.1038/s41598-019-56718-y] [PMID: 31892719]
[16]
Zhang, J.; Lv, X.; Xu, R.; Tao, X.; Dong, Y.; Sun, A.; Wei, D. Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl. Microbiol. Biotechnol., 2015, 99(16), 6705-6713.
[http://dx.doi.org/10.1007/s00253-015-6441-4] [PMID: 25681151]
[17]
Elmore, Z.C.; Donaher, M.; Matson, B.C.; Murphy, H.; Westerbeck, J.W.; Kerscher, O. Sumo-dependent substrate targeting of the SUMO protease Ulp1. BMC Biol., 2011, 9(1), 74.
[http://dx.doi.org/10.1186/1741-7007-9-74] [PMID: 22034919]
[18]
Kapust, R.B.; Tözsér, J.; Fox, J.D.; Anderson, D.E.; Cherry, S.; Copeland, T.D.; Waugh, D.S. Tobacco etch virus protease: Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng., 2001, 14(12), 993-1000.
[http://dx.doi.org/10.1093/protein/14.12.993] [PMID: 11809930]
[19]
Sanchez, M.I.; Ting, A.Y. Directed evolution improves the catalytic efficiency of TEV protease. Nat. Methods, 2020, 17(2), 167-174.
[http://dx.doi.org/10.1038/s41592-019-0665-7] [PMID: 31819267]
[20]
Parks, T.D.; Howard, E.D.; Wolpert, T.J.; Arp, D.J.; Dougherty, W.G. Expression and purification of a recombinant tobacco etch virus NIa proteinase: biochemical analyses of the full-length and a naturally occurring truncated proteinase form. Virology, 1995, 210(1), 194-201.
[http://dx.doi.org/10.1006/viro.1995.1331] [PMID: 7793070]
[21]
Adjobo-Hermans, M.J.; Goedhart, J.; Gadella, T.W. Jr Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation. J. Cell Sci., 2006, 119(Pt 24), 5087-5097.
[http://dx.doi.org/10.1242/jcs.03284] [PMID: 17158913]
[22]
Delgado-Cerezo, M.; Sánchez-Rodríguez, C.; Escudero, V.; Miedes, E.; Fernández, P.V.; Jordá, L.; Hernández-Blanco, C.; Sánchez-Vallet, A.; Bednarek, P.; Schulze-Lefert, P.; Somerville, S.; Estevez, J.M.; Persson, S.; Molina, A. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol. Plant, 2012, 5(1), 98-114.
[http://dx.doi.org/10.1093/mp/ssr082] [PMID: 21980142]
[23]
Trusov, Y.; Rookes, J.E.; Chakravorty, D.; Armour, D.; Schenk, P.M.; Botella, J.R. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol., 2006, 140(1), 210-220.
[http://dx.doi.org/10.1104/pp.105.069625] [PMID: 16339801]
[24]
Botella, J.R. Can heterotrimeric G proteins help to feed the world? Trends Plant Sci., 2012, 17(10), 563-568.
[http://dx.doi.org/10.1016/j.tplants.2012.06.002] [PMID: 22748359]
[25]
Swain, D.M.; Sahoo, R.K.; Srivastava, V.K.; Tripathy, B.C.; Tuteja, R.; Tuteja, N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 2017, 245(2), 367-383.
[http://dx.doi.org/10.1007/s00425-016-2614-3] [PMID: 27785615]
[26]
Miao, J.; Yang, Z.; Zhang, D.; Wang, Y.; Xu, M.; Zhou, L.; Wang, J.; Wu, S.; Yao, Y.; Du, X.; Gu, F.; Gong, Z.; Gu, M.; Liang, G.; Zhou, Y. Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnol. J., 2019, 17(3), 650-664.
[http://dx.doi.org/10.1111/pbi.13005] [PMID: 30160362]
[27]
Kato, C.; Mizutani, T.; Tamaki, H.; Kumagai, H.; Kamiya, T.; Hirobe, A.; Fujisawa, Y.; Kato, H.; Iwasaki, Y. Characterization of heterotrimeric G protein complexes in rice plasma membrane. Plant J., 2004, 38(2), 320-331.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02046.x] [PMID: 15078334]
[28]
Matsuta, S.; Nishiyama, A.; Chaya, G.; Itoh, T.; Miura, K.; Iwasaki, Y. Characterization of heterotrimeric G protein γ4 subunit in rice. Int. J. Mol. Sci., 2018, 19(11), 3596.
[http://dx.doi.org/10.3390/ijms19113596] [PMID: 30441812]
[29]
Avşar, B. Investigation of structural properties of heterotrimeric GProteins γ subunits in plants, Sabanci University, October, 2017.
[30]
Stanke, M.; Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res., 2005, 33(Web Server issue)(Suppl. 2), W465-7.
[http://dx.doi.org/10.1093/nar/gki458] [PMID: 15980513]
[31]
Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res., 2008, 36(Web Server issue)(Suppl. 2), W5-9.
[PMID: 18440982]
[32]
Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; Grosdidier, A.; Hernandez, C.; Ioannidis, V.; Kuznetsov, D.; Liechti, R.; Moretti, S.; Mostaguir, K.; Redaschi, N.; Rossier, G.; Xenarios, I.; Stockinger, H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res., 2012, 40(Web Server issue), W597-603.
[PMID: 22661580]
[33]
Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res., 2004, 32(Web Server issue)(Suppl. 2), W668-73.
[http://dx.doi.org/10.1093/nar/gkh371] [PMID: 15215473]
[34]
Bolser, D.; Staines, D.M.; Pritchard, E.; Kersey, P. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Plant bioinformatics; Humana Press: New York, NY, 2016; pp. 115-140.
[http://dx.doi.org/10.1007/978-1-4939-3167-5_6]
[35]
Tuskan, G.A.; Groover, A.T.; Schmutz, J.; DiFazio, S.P.; Myburg, A.; Grattapaglia, D.; Smart, L.B.; Yin, T.; Aury, J.M.; Kremer, A.; Leroy, T.; Le Provost, G.; Plomion, C.; Carlson, J.E.; Randall, J.; Westbrook, J.; Grimwood, J.; Muchero, W.; Jacobson, D.; Michener, J.K. Hardwood tree genomics: Unlocking woody plant biology. Front. Plant Sci., 2018, 9, 1799.
[http://dx.doi.org/10.3389/fpls.2018.01799] [PMID: 30619389]
[36]
Geer, L.Y.; Marchler-Bauer, A.; Geer, R.C.; Han, L.; He, J.; He, S.; Liu, C.; Shi, W.; Bryant, S.H. The NCBI BioSystems database. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D492-D496.
[http://dx.doi.org/10.1093/nar/gkp858] [PMID: 19854944]
[37]
Lucas, S.J.; Kahraman, K.; Avşar, B.; Buggs, R.J.A.; Bilge, I. A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. Plant J., 2021, 105(5), 1413-1430.
[http://dx.doi.org/10.1111/tpj.15099] [PMID: 33249676]
[38]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[39]
Avşar, B.; Esmaeilialiabadi, D. Identification of microRNA elements from genomic data of European hazelnut (Corylus avellana L.) and its close relatives. Plant Omics, 2017, 10(4), 190-196.
[http://dx.doi.org/10.21475/poj.10.04.17.pne707]
[40]
Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res., 2018, 46(W1), W49-W54.
[http://dx.doi.org/10.1093/nar/gky316] [PMID: 29718424]
[41]
Paul, N.K.; Baksh, K.A.; Arias, J.F.; Zamble, D.B. The impact of a His-tag on DNA binding by RNA polymerase alpha-C-terminal domain from Helicobacter pylori. Protein Expr. Purif., 2020, 167, 105541.
[http://dx.doi.org/10.1016/j.pep.2019.105541] [PMID: 31756376]
[42]
Kapust, R.B.; Waugh, D.S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci., 1999, 8(8), 1668-1674.
[http://dx.doi.org/10.1110/ps.8.8.1668] [PMID: 10452611]
[43]
Thung, L.; Chakravorty, D.; Trusov, Y.; Jones, A.M.; Botella, J.R. Signaling specificity provided by the Arabidopsis thaliana heterotrimeric G-protein γ subunits AGG1 and AGG2 is partially but not exclusively provided through transcriptional regulation. PLoS One, 2013, 8(3), e58503.
[http://dx.doi.org/10.1371/journal.pone.0058503] [PMID: 23520518]
[44]
Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: Methods and analysis. Int. J. Proteomics, 2014, 2014, 147648.
[http://dx.doi.org/10.1155/2014/147648] [PMID: 24693427]
[45]
Sayers, Z. Avşar, B.; Cholak, E.; Karmous, I. Application of advanced X-ray methods in life sciences. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1 Pt B), 3671-3685.
[http://dx.doi.org/10.1016/j.bbagen.2016.05.008] [PMID: 27156488]
[46]
Sambi, I.; Gatti-Lafranconi, P.; Longhi, S.; Lotti, M. How disorder influences order and vice versa--mutual effects in fusion proteins containing an intrinsically disordered and a globular protein. FEBS J., 2010, 277(21), 4438-4451.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07825.x] [PMID: 20875082]
[47]
Berova, N.; Nakanishi, K.; Woody, R.W. Circular dichroism: principles and applications; John Wiley & Sons, 2000.
[48]
Sá-Moura, B.; Simões, A.M.; Fraga, J.; Fernandes, H.; Abreu, I.A.; Botelho, H.M.; Gomes, C.M.; Marques, A.J.; Dohmen, R.J.; Ramos, P.C.; Macedo-Ribeiro, S. Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput. Struct. Biotechnol. J., 2013, 7(8), e201304006.
[http://dx.doi.org/10.5936/csbj.201304006] [PMID: 24688736]
[49]
Krissinel, E. On the relationship between sequence and structure similarities in proteomics. Bioinformatics, 2007, 23(6), 717-723.
[http://dx.doi.org/10.1093/bioinformatics/btm006] [PMID: 17242029]
[50]
Ding, J.; Zhou, S.; Guan, J. Finding microRNA targets in plants: Current status and perspectives. Genom. Bioinform. Proteom., 2012, 10(5), 264-275.
[http://dx.doi.org/10.1016/j.gpb.2012.09.003] [PMID: 23200136]
[51]
Jones-Rhoades, M.W.; Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell, 2004, 14(6), 787-799.
[http://dx.doi.org/10.1016/j.molcel.2004.05.027] [PMID: 15200956]
[52]
Wei, L.Q.; Yan, L.F.; Wang, T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol., 2011, 12(6), R53.
[http://dx.doi.org/10.1186/gb-2011-12-6-r53] [PMID: 21679406]
[53]
Baldrich, P.; Campo, S.; Wu, M.T.; Liu, T.T.; Hsing, Y.I.C.; San Segundo, B. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol., 2015, 12(8), 847-863.
[http://dx.doi.org/10.1080/15476286.2015.1050577] [PMID: 26083154]
[54]
Johnson, C.; Kasprzewska, A.; Tennessen, K.; Fernandes, J.; Nan, G.L.; Walbot, V.; Sundaresan, V.; Vance, V.; Bowman, L.H. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res., 2009, 19(8), 1429-1440.
[http://dx.doi.org/10.1101/gr.089854.108] [PMID: 19584097]
[55]
Moldovan, D.; Spriggs, A.; Yang, J.; Pogson, B.J.; Dennis, E.S.; Wilson, I.W. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J. Exp. Bot., 2010, 61(1), 165-177.
[http://dx.doi.org/10.1093/jxb/erp296] [PMID: 19815687]
[56]
Avsar, B.; Zhao, Y.; Li, W.; Lukiw, W.J. Atropa belladonna Expresses a microRNA (aba-miRNA-9497) Highly Homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3′-Untranslated Region (3′-UTR) of the mRNA Encoding the Neurologically Relevant, Zinc-Finger Transcription Factor ZNF-691. Cell. Mol. Neurobiol., 2020, 40(1), 179-188.
[http://dx.doi.org/10.1007/s10571-019-00729-w] [PMID: 31456135]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy