Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Unidentified N-glycans by N-glycosidase A were Identified by Nglycosidase F under Denaturing Conditions in Plant Glycoprotein

Author(s): Jeongeun Kim, Jihye Kim, Changsoo Ryu, Jaeryong Lee, Chi Soo Park, Mijung Jin, Minju Kang, Ahyeon Kim, Chulmin Mun and Ha Hyung Kim*

Volume 29, Issue 5, 2022

Published on: 19 May, 2022

Page: [440 - 447] Pages: 8

DOI: 10.2174/0929866529666220328152941

Price: $65

Abstract

Background: The identification of N-glycans in plant glycoproteins or plant-made pharmaceuticals is essential for understanding their structure, function, properties, immunogenicity, and allergenicity (induced by plant-specific core-fucosylation or xylosylation) in the applications of plant food, agriculture, and plant biotechnology. N-glycosidase A is widely used to release the Nglycans of plant glycoproteins because the core-fucosylated N-glycans of plant glycoproteins are hydrolyzed by N-glycosidase A but not by N-glycosidase F. However, the efficiency of Nglycosidase A activity in plant glycoproteins remains unclear.

Objective: The aim of the study was to elucidate the efficient use of N-glycosidases to identify and quantify the N-glycans of plant glycoproteins; it aimed at identification of released N-glycans by Nglycosidase F and assessment of their relative quantities with a focus on unidentified N-glycans by N-glycosidase A in plant glycoproteins, Phaseolus vulgaris lectin (PHA) and horseradish peroxidase (HRP).

Methods: Liquid chromatography–tandem mass spectrometry was used to analyze and compare the N-glycans of PHA and HRP treated with either N-glycosidase A or F under denaturing conditions. The relative quantities (%) of each N-glycan (>0.1%) to the total N-glycans (100%) were determined.

Results: N-glycosidase A and F released 9 identical N-glycans of PHA, but two additional corefucosylated N-glycans were released by only N-glycosidase A, as expected. By contrast, in HRP, 8 N-glycans comprising 6 core-fucosylated N-glycans, 1 xylosylated N-glycan, and 1 mannosylated N-glycan were released by N-glycosidase A. Moreover, 8 unexpected N-glycans comprising 1 corefucosylated N-glycan, 4 xylosylated N-glycans, and 3 mannosylated N-glycans were released by Nglycosidase F. Of these, 3 xylosylated and 2 mannosylated N-glycans were released by only Nglycansodase F.

Conclusion: These results demonstrate that N-glycosidase A alone is insufficient to release the Nglycans of all plant glycoproteins, suggesting that to identify and quantify the released N-glycans of the plant glycoprotein HRP, both N-glycosidase A and F treatments are required.

Keywords: Allergenicity, N-glycan, N-glycosidase, plant glycoprotein, plant biotechnology, mammalian cell cultures.

Graphical Abstract

[1]
Hellwig, S.; Drossard, J.; Twyman, R.M.; Fischer, R. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol., 2004, 22(11), 1415-1422.
[http://dx.doi.org/10.1038/nbt1027] [PMID: 15529167]
[2]
Xu, J.; Zhang, N. On the way to commercializing plant cell culture platform for biopharmaceuticals: Present status and prospect. Pharm. Bioprocess., 2014, 2(6), 499-518.
[http://dx.doi.org/10.4155/pbp.14.32] [PMID: 25621170]
[3]
Lee, K.J.; Jung, J.H.; Lee, J.M.; So, Y.; Kwon, O.; Callewaert, N.; Kang, H.A.; Ko, K.; Oh, D.B. High-throughput quantitative analysis of plant N-glycan using a DNA sequencer. Biochem. Biophys. Res. Commun., 2009, 380(2), 223-229.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.070] [PMID: 19167352]
[4]
Trombetta, E.S. The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology, 2003, 13(9), 77R-91R.
[http://dx.doi.org/10.1093/glycob/cwg075] [PMID: 12736198]
[5]
McCarter, J.D.; Withers, S.G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol., 1994, 4(6), 885-892.
[http://dx.doi.org/10.1016/0959-440X(94)90271-2] [PMID: 7712292]
[6]
Suzuki, T. The cytoplasmic peptide:N-glycanase (Ngly1)-basic science encounters a human genetic disorder. J. Biochem., 2015, 157(1), 23-34.
[http://dx.doi.org/10.1093/jb/mvu068] [PMID: 25398991]
[7]
Varki, A.; Cummings, R.D.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. Essentials of Glycobiology, 2nd ed; Cold Spring Harber Laboratory Press: California, 2009.
[8]
Freeze, H. H.; Kranz, C. Endoglycosidase and glycoamidase release of N-linked glycans. Curr. Protoc. Mol. Biol, 2010, 89, 17.13A.1-17.13A.25.
[9]
Takahashi, N.; Muramatsu, T. Crc Handbook of Endoglycosidases and Glycoamidases; CRC Press: Boca Raton, 1992.
[10]
Yang, S.; Hu, Y.; Sokoll, L.; Zhang, H. Simultaneous quantification of N- and O-glycans using a solid-phase method. Nat. Protoc., 2017, 12(6), 1229-1244.
[http://dx.doi.org/10.1038/nprot.2017.034] [PMID: 28518173]
[11]
Keser, T.; Pavić, T.; Lauc, G.; Gornik, O. Comparison of 2-aminobenzamide, procainamide and RapiFluor-MS as derivatizing agents for high-throughput HILIC-UPLC-FLR-MS N-glycan analysis. Front Chem., 2018, 6, 324.
[http://dx.doi.org/10.3389/fchem.2018.00324] [PMID: 30094234]
[12]
Kozak, R.P.; Tortosa, C.B.; Fernandes, D.L.; Spencer, D.I.R. Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry. Anal. Biochem., 2015, 486, 38-40.
[http://dx.doi.org/10.1016/j.ab.2015.06.006] [PMID: 26079702]
[13]
Ruhaak, L.R.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A.M.; Wuhrer, M. Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem., 2010, 397(8), 3457-3481.
[http://dx.doi.org/10.1007/s00216-010-3532-z] [PMID: 20225063]
[14]
Mechref, Y. Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis, 2011, 32(24), 3467-3481.
[http://dx.doi.org/10.1002/elps.201100342] [PMID: 22180203]
[15]
Dotz, V.; Haselberg, R.; Shubhakar, A.; Kozak, R.P.; Falck, D.; Rombouts, Y.; Reusch, D.; Somsen, G.W.; Fernandes, D.L.; Wuhrer, M. Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trends Analyt. Chem., 2015, 73, 1-9.
[http://dx.doi.org/10.1016/j.trac.2015.04.024]
[16]
Park, H.; Kim, J.; Lee, Y.K.; Kim, W.; You, S.K.; Do, J.; Jang, Y.; Oh, D.B.; Il Kim, J.; Kim, H.H. Four unreported types of glycans containing mannose-6-phosphate are heterogeneously attached at three sites (including newly found Asn 233) to recombinant human acid alpha-glucosidase that is the only approved treatment for Pompe disease. Biochem. Biophys. Res. Commun., 2018, 495(4), 2418-2424.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.101] [PMID: 29274340]
[17]
Kim, J.; Lee, J.; Jang, Y.; Ha, J.; Kim, D.; Ji, M.; Lee, Y.K.; Kim, W.; You, S.; Do, J.; Ryu, C.; Kim, H.H. N-glycans of bovine submaxillary mucin contain core-fucosylated and sulfated glycans but not sialylated glycans. Int. J. Biol. Macromol., 2019, 138, 1072-1078.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.108] [PMID: 31325506]
[18]
Kim, J.; Ryu, C.; Ha, J.; Lee, J.; Kim, D.; Ji, M.; Park, C.S.; Lee, J.; Kim, D.K.; Kim, H.H. Structural and quantitative characterization of mucin-type O-glycans and the identification of O-glycosylation sites in bovine submaxillary mucin. Biomolecules, 2020, 10(4), 636.
[http://dx.doi.org/10.3390/biom10040636] [PMID: 32326134]
[19]
Bigge, J.C.; Patel, T.P.; Bruce, J.A.; Goulding, P.N.; Charles, S.M.; Parekh, R.B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem., 1995, 230(2), 229-238.
[http://dx.doi.org/10.1006/abio.1995.1468] [PMID: 7503412]
[20]
Nwosu, C.; Yau, H.K.; Becht, S. Assignment of core versus antenna fucosylation types in protein N-glycosylation via procainamide labeling and tandem mass spectrometry. Anal. Chem., 2015, 87(12), 5905-5913.
[http://dx.doi.org/10.1021/ac5040743] [PMID: 25978524]
[21]
Bardor, M.; Loutelier-Bourhis, C.; Marvin, L.; Cabanes-Macheteau, M.; Lange, C.; Lerouge, P.; Faye, L. Analysis of plant glycoproteins by matrix-assisted laser desorption ionisation mass spectrometry: Application to the N-glycosylation analysis of bean phytohemagglutinin. Plant Physiol. Biochem., 1999, 37(4), 319-325.
[http://dx.doi.org/10.1016/S0981-9428(99)00138-2]
[22]
Liu, C.; Zhao, M.; Sun, W.; Ren, J. Effects of high hydrostatic pressure treatments on haemagglutination activity and structural conformations of phytohemagglutinin from red kidney bean (Phaseolus vulgaris). Food Chem., 2013, 136(3-4), 1358-1363.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.082] [PMID: 23194535]
[23]
Sturm, A.; Chrispeels, M.J. The high mannose oligosaccharide of phytohemagglutinin is attached to asparagine 12 and the modified oligosaccharide to asparagine 60. Plant Physiol., 1986, 81(1), 320-322.
[http://dx.doi.org/10.1104/pp.81.1.320] [PMID: 16664800]
[24]
Wuhrer, M.; Balog, C.I.A.; Koeleman, C.A.M.; Deelder, A.M.; Hokke, C.H. New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim. Biophys. Acta, 2005, 1723(1-3), 229-239.
[http://dx.doi.org/10.1016/j.bbagen.2005.02.013] [PMID: 15814299]
[25]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[26]
Takahashi, N.; Lee, K.B.; Nakagawa, H.; Tsukamoto, Y.; Masuda, K.; Lee, Y.C. New N-glycans in horseradish peroxidase. Anal. Biochem., 1998, 255(2), 183-187.
[http://dx.doi.org/10.1006/abio.1997.2463] [PMID: 9451502]
[27]
Kameyama, A.; Dissanayake, S.K.; Thet Tin, W.W. Rapid chemical de-N-glycosylation and derivatization for liquid chromatography of immunoglobulin N-linked glycans. PLoS One, 2018, 13(5), e0196800.
[http://dx.doi.org/10.1371/journal.pone.0196800] [PMID: 29723274]
[28]
Yang, B.Y.; Gray, J.S.S.; Montgomery, R. The glycans of horseradish peroxidase. Carbohydr. Res., 1996, 287(2), 203-212.
[http://dx.doi.org/10.1016/0008-6215(96)00073-0] [PMID: 8766207]
[29]
Zhang, L.; Wang, C.; Wu, Y.; Sha, Q.; Liu, B.F.; Lin, Y.; Liu, X. Microwave irradiation-assisted high-efficiency N-glycan release using oriented immobilization of PNGase F on magnetic particles. J. Chromatogr. A, 2020, 1619, 460934.
[http://dx.doi.org/10.1016/j.chroma.2020.460934] [PMID: 32029268]
[30]
Du, Y.M.; Xia, T.; Gu, X.Q.; Wang, T.; Ma, H.Y.; Voglmeir, J.; Liu, L. Rapid sample preparation methodology for plant N-glycan analysis using acid-stable PNGase H+. J. Agric. Food Chem., 2015, 63(48), 10550-10555.
[http://dx.doi.org/10.1021/acs.jafc.5b03633] [PMID: 26548339]
[31]
Wang, T.; Cai, Z.P.; Gu, X.Q.; Ma, H.Y.; Du, Y.M.; Huang, K.; Voglmeir, J.; Liu, L. Discovery and characterization of a novel extremely acidic bacterial N-glycanase with combined advantages of PNGase F and A. Biosci. Rep., 2014, 34(6), e00149.
[http://dx.doi.org/10.1042/BSR20140148] [PMID: 25294009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy