Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

胰岛素降解酶基因Rs2421943多态性与晚发性阿尔茨海默病的风险

卷 19, 期 3, 2022

发表于: 05 April, 2022

页: [236 - 245] 页: 10

弟呕挨: 10.2174/1567205019666220302120950

价格: $65

conference banner
摘要

背景:胰岛素降解酶(IDE)是一种广泛分布的Zn2+结合金属蛋白酶,可切割多个易于形成β-结构的短、中型肽。这些包括胰岛素和淀粉样β肽。淀粉样β肽的积累和纤维化导致淀粉样斑块的形成是阿尔茨海默病(AD)病理学的特征性标志。 摘要: 该研究调查了IDE基因的rs2421943单核苷酸多态性(SNP)作为MCI(轻度认知障碍)和AD的危险因素。 方法: 包括两组独立的1670名患者和对照组。AD组由595名患者和400名对照组成;MCI组包括135名患者和540名匹配对照。PCR和限制性片段长度分析用于分析rs2421943多态性。在计算机上使用miRNA和RNA22预测工具表明,rs2421943多态性是特异性miRNA(hsa-miR-7110-5p)的潜在靶点。 结果: rs2421943的AG和GG基因型显著增加AD风险,AG基因型增加MCI风险。G等位基因似乎既增加了AD的风险,又加速了MCI阶段的转变。电子研究显示,rs2421943位于结合miRNA hsa-miR-7110-5p的序列内。多态性可能影响IDE前RNA(异质核RNA,HRNA)的处理速度,导致翻译速度减慢、IDE水平降低、淀粉样β片段的去除不足,以及AD的更大风险和/或进展加快。 结论: 胰岛素降解酶基因单核苷酸多态性rs2421943的GG和AG基因型增加了AD和MCI的风险。

关键词: 阿尔茨海默病、轻度认知障碍、胰岛素降解酶、2型糖尿病、淀粉样β肽、单核苷酸多态性

[1]
Nelson PT, Head E, Schmitt FA, et al. Alzheimer's disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 2011; 121(5): 571-87.
[http://dx.doi.org/10.1007/s00401-011-0826-y] [PMID: 21516511]
[2]
Šerý O, Povová J, Balcar VJ. Perspectives in genetic prediction of Alzheimer's disease. Neuroendocrinol Lett 2014; 35(5): 359-66.
[PMID: 25275266]
[3]
Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer's disease: A review. Folia Neuropathol 2013; 51(1): 1-9.
[http://dx.doi.org/10.5114/fn.2013.34190] [PMID: 23553131]
[4]
Huq AJ, Fransquet P, Laws SM, et al. Genetic resilience to Alzheimer's disease in APOE ε4 homozygotes: A systematic review. Alzheimer's Dement 2019; 15(12): 1612-23.
[http://dx.doi.org/10.1016/j.jalz.2019.05.011] [PMID: 31506248]
[5]
Povová J, Ambroz P, Bar M, et al. Epidemiological of and risk factors for Alzheimer's disease: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156(2): 108-14.
[http://dx.doi.org/10.5507/bp.2012.055] [PMID: 22837131]
[6]
Šerý O, Hlinecká L, Balcar VJ, Janout V, Povová J. Diabetes, hypertension and stroke - Does Alzheimer protect you? Neuroendocrinol Lett 2014; 35(8): 691-6.
[PMID: 25702297]
[7]
Šerý O, Janoutová J, Ewerlingová L, et al. CD36 gene polymorphism is associated with Alzheimer's disease. Biochimie 2017; 135: 46-53.
[http://dx.doi.org/10.1016/j.biochi.2017.01.009] [PMID: 28111291]
[8]
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2019; 174: 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[9]
Bature F, Guinn BA, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer's disease: A systematic scoping review of literature from 1937 to 2016. BMJ Open 2017; 7(8): e015746.
[http://dx.doi.org/10.1136/bmjopen-2016-015746] [PMID: 28851777]
[10]
Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: A concept in evolution. J Intern Med 2014; 275(3): 214-28.
[http://dx.doi.org/10.1111/joim.12190] [PMID: 24605806]
[11]
Janoutová J, Šerý O, Hosák L, Janout V. Is mild cognitive impairment a precursor of Alzheimer's disease? Short review. Cent Eur J Public Health 2015; 23(4): 365-7.
[http://dx.doi.org/10.21101/cejph.a4414] [PMID: 26841152]
[12]
Gauthier S, Reisberg B, Zaudig M, et al. International Psychogeriatric Association Expert Conference on mild cognitive impairment. Lancet 2006; 367(9518): 1262-70.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[13]
Shimada H, Doi T, Lee S, Makizako H. Reversible predictors of reversion from mild cognitive impairment to normal cognition: A 4-year longitudinal study. Alzheimer's Res Ther 2019; 11: 24.
[14]
Reitz C. Alzheimer's disease and the amyloid cascade hypothesis: A critical review. Int J Alzheimer's Dis 2012; 2012: 369808.
[http://dx.doi.org/10.1155/2012/369808] [PMID: 22506132]
[15]
Puzzo D, Privitera L, Leznik E, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 2008; 28(53): 14537-45.
[http://dx.doi.org/10.1523/JNEUROSCI.2692-08.2008] [PMID: 19118188]
[16]
Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer's disease. Neurosci Bull 2014; 30(2): 317-30.
[http://dx.doi.org/10.1007/s12264-013-1422-z] [PMID: 24652457]
[17]
Hardy J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J 2017; 284(7): 1040-4.
[http://dx.doi.org/10.1111/febs.14004] [PMID: 28054745]
[18]
Jia L, Fu Y, Shen L, et al. PSEN1, PSEN2, and APP mutations in 404 Chinese pedigrees with familial Alzheimer's disease. Alzheimer's Dement 2020; 16(1): 178-91.
[http://dx.doi.org/10.1002/alz.12005] [PMID: 31914229]
[19]
Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid β clearance in Alzheimer's disease. Alzheimer's Res Ther 2013; 5(4): 33.
[http://dx.doi.org/10.1186/alzrt187] [PMID: 23849219]
[20]
Kurochkin IV, Guarnera E, Wong JH, Eisenhaber F, Berezovsky IN. Toward allosterically increased catalytic activity of insulin-degrading enzyme against amyloid peptides. Biochemistry 2017; 56(1): 228-39.
[http://dx.doi.org/10.1021/acs.biochem.6b00783] [PMID: 27982586]
[21]
Björk BF, Katzov H, Kehoe P, et al. Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiol Aging 2007; 28(9): 1374-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.017] [PMID: 16876916]
[22]
Blomqvist MEL, Chalmers K, Andreasen N, et al. Sequence variants of IDE are associated with the extent of beta-amyloid deposition in the Alzheimer's disease brain. Neurobiol Aging 2005; 26(6): 795-802.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.011] [PMID: 15718037]
[23]
Broh-Kahn RH, Mirsky IA. The inactivation of insulin by tissue extracts; the effect of fasting on the insulinase content of rat liver. Arch Biochem 1949; 20(1): 10-4.
[PMID: 18104390]
[24]
Tundo GR, Sbardella D, Ciaccio C, et al. Insulin-degrading enzyme (IDE): A novel heat shock-like protein. J Biol Chem 2013; 288(4): 2281-9.
[http://dx.doi.org/10.1074/jbc.M112.393108] [PMID: 23188819]
[25]
Bulloj A, Leal MC, Xu H, Castaño EM, Morelli L. Insulin-degrading enzyme sorting in exosomes: A secretory pathway for a key brain amyloid-beta degrading protease. J Alzheimer's Dis 2010; 19(1): 79-95.
[http://dx.doi.org/10.3233/JAD-2010-1206] [PMID: 20061628]
[26]
Bernstein HG, Lendeckel U, Bukowska A, et al. Regional and cellular distribution patterns of insulin-degrading enzyme in the adult human brain and pituitary. J Chem Neuroanat 2008; 35(2): 216-24.
[http://dx.doi.org/10.1016/j.jchemneu.2007.12.001] [PMID: 18226493]
[27]
Son SM, Cha MY, Choi H, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 2016; 12(5): 784-800.
[http://dx.doi.org/10.1080/15548627.2016.1159375] [PMID: 26963025]
[28]
Farris W, Mansourian S, Leissring MA, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 2004; 164(4): 1425-34.
[http://dx.doi.org/10.1016/S0002-9440(10)63229-4] [PMID: 15039230]
[29]
Stefanidis L, Fusco ND, Cooper SE, Smith-Carpenter JE, Alper BJ. Molecular determinants of substrate specificity in human insulin-degrading enzyme. Biochemistry 2018; 57(32): 4903-14.
[http://dx.doi.org/10.1021/acs.biochem.8b00474] [PMID: 30004674]
[30]
Fernández-Gamba A, Leal MC, Morelli L, Castaño EM. Insulin-degrading enzyme: Structure-function relationship and its possible roles in health and disease. Curr Pharm Des 2009; 15(31): 3644-55.
[http://dx.doi.org/10.2174/138161209789271799] [PMID: 19925417]
[31]
Li HJ, Wu J, Zhu LF, et al. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer's disease: Possible mechanisms of IDE in T2D and AD. Bioscience Rep 2018; 38: BSR20170862.
[32]
Jayaraman A, Pike CJ. Alzheimer's disease and type 2 diabetes: Multiple mechanisms contribute to interactions. Curr Diab Rep 2014; 14(4): 476.
[http://dx.doi.org/10.1007/s11892-014-0476-2] [PMID: 24526623]
[33]
Mueller JC, Riemenschneider M, Schoepfer-Wendels A, et al. Weak independent association signals between IDE polymorphisms, Alzheimer's disease and cognitive measures. Neurobiol Aging 2007; 28(5): 727-34.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.009] [PMID: 16675064]
[34]
da Costa IB, de Labio RW, Rasmussen LT, et al. Change in INSR, APBA2 and IDE gene expressions in brains of Alzheimer's disease patients. Curr Alzheimer Res 2017; 14(7): 760-5.
[http://dx.doi.org/10.2174/1567205014666170203100734] [PMID: 28164769]
[35]
Zhang H, Liu D, Huang H, Zhao Y, Zhou H. Characteristics of insulin-degrading enzyme in Alzheimer's disease: A meta-analysis. Curr Alzheimer Res 2018; 15(7): 610-7.
[http://dx.doi.org/10.2174/1567205015666180119105446] [PMID: 29357797]
[36]
Reitz C, Cheng R, Schupf N, et al. Association between variants in IDE-KIF11-HHEX and plasma amyloid β levels. Neurobiol Aging 2012; 33(1): 199-e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.07.005] [PMID: 20724036]
[37]
Hamilton G, Harris SE, Davies G, et al. The role of ECE1 variants in cognitive ability in old age and Alzheimer's disease risk. Am J Med Genet B Neuropsychiatr Genet 2012; 159B(6): 696-709.
[http://dx.doi.org/10.1002/ajmg.b.32073] [PMID: 22693153]
[38]
Cook DG, Leverenz JB, McMillan PJ, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 2003; 162(1): 313-9.
[http://dx.doi.org/10.1016/S0002-9440(10)63822-9] [PMID: 12507914]
[39]
Vepsäläinen S, Parkinson M, Helisalmi S, et al. Insulin-degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population. J Med Genet 2007; 44(9): 606-8.
[http://dx.doi.org/10.1136/jmg.2006.048470] [PMID: 17496198]
[40]
Abraham R, Myers A, Wavrant-DeVrieze F, et al. Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease. Hum Genet 2001; 109(6): 646-52.
[http://dx.doi.org/10.1007/s00439-001-0614-1] [PMID: 11810277]
[41]
Boussaha M, Hannequin D, Verpillat P, Brice A, Frebourg T, Campion D. Polymorphisms of insulin degrading enzyme gene are not associated with Alzheimer's disease. Neurosci Lett 2002; 329(1): 121-3.
[http://dx.doi.org/10.1016/S0304-3940(02)00586-4] [PMID: 12161276]
[42]
Cheng H, Wang L, Shi T, Shang Y, Jiang L. Association of insulin degrading enzyme gene polymorphisms with Alzheimer's disease: A meta-analysis. Int J Neurosci 2015; 125(5): 328-35.
[http://dx.doi.org/10.3109/00207454.2014.941440] [PMID: 25105907]
[43]
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-degrading enzyme in the fight against Alzheimer's disease. Trends Pharmacol Sci 2018; 39(1): 49-58.
[http://dx.doi.org/10.1016/j.tips.2017.10.008] [PMID: 29132916]
[44]
Miners JS, Baig S, Tayler H, Kehoe PG, Love S. Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J Neuropathol Exp Neurol 2009; 68(8): 902-14.
[http://dx.doi.org/10.1097/NEN.0b013e3181afe475] [PMID: 19606063]
[45]
Zhang Y, Wang B, Wan H, Zhou Q, Li T. Meta-analysis of the insulin degrading enzyme polymorphisms and susceptibility to Alzheimer's disease. Neurosci Lett 2013; 541: 132-7.
[http://dx.doi.org/10.1016/j.neulet.2013.01.051] [PMID: 23416320]
[46]
Balcar VJ, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Single nucleotide polymorphism rs11136000 of CLU Gene (Clusterin, ApoJ) and the risk of late-onset Alzheimer's disease in a Central European Population. Neurochem Res 2021; 46(2): 411-22.
[http://dx.doi.org/10.1007/s11064-020-03176-y] [PMID: 33206315]
[47]
Hálová A, Janoutová J, Ewerlingová L, et al. CHAT gene polymorphism Rs3810950 is associated with the risk of Alzheimer's disease in the Czech population. J Biomed Sci 2018; 25(1): 1-9.
[48]
Šerý O, Hlinecká L, Povová J, et al. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index. J Neurol Sci 2016; 362: 27-32.
[http://dx.doi.org/10.1016/j.jns.2016.01.022] [PMID: 26944113]
[49]
Šerý O, Goswami N, Balcar VJ. CD36 gene polymorphisms and Alzheimer's disease.In: Martin CR, Preedy VR, Eds Genetics, Neurology, Behavior, and Diet in Dementia: The Neuroscience of Dementia. Massachusetts: Academic Press, Elsevier 2020; pp. 57-70.
[http://dx.doi.org/10.1016/B978-0-12-815868-5.00004-9]
[50]
Zeman T, Balcar VJ, Cahová K, et al. Polymorphism Rs11867353 of tyrosine kinase non-receptor 1 (TNK1) gene is a novel genetic marker for Alzheimer's disease. Mol Neurobiol 2021; 58(3): 996-1005.
[http://dx.doi.org/10.1007/s12035-020-02153-4] [PMID: 33070267]
[51]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[52]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[53]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[54]
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203-17.
[http://dx.doi.org/10.1016/j.cell.2006.07.031] [PMID: 16990141]
[55]
Morris JA, Gardner MJ. Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J (Clin Res Ed) 1988; 296(6632): 1313-6.
[http://dx.doi.org/10.1136/bmj.296.6632.1313] [PMID: 3133061]
[56]
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2018, Vienna, Austria. In: Available from:. https://www.R-project.org/
[57]
Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis 2015; 14(1): 1-9.
[http://dx.doi.org/10.1186/s12944-015-0123-1]
[58]
Grimm MOW, Mett J, Stahlmann CP, et al. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme. Biochem Cell Biol 2016; 94(6): 534-42.
[http://dx.doi.org/10.1139/bcb-2015-0149] [PMID: 27813426]
[59]
Beeri MS, Davidson M, Silverman JM, Noy S, Schmeidler J, Goldbourt U. Relationship between body height and dementia. Am J Geriatr Psychiatry 2005; 13(2): 116-23.
[http://dx.doi.org/10.1097/00019442-200502000-00005] [PMID: 15703320]
[60]
Russ TC, Kivimäki M, Starr JM, Stamatakis E, Batty GD. Height in relation to dementia death: Individual participant meta-analysis of 18 UK prospective cohort studies. Br J Psychiatry 2014; 205(5): 348-54.
[http://dx.doi.org/10.1192/bjp.bp.113.142984] [PMID: 25368359]
[61]
Larsson SC, Traylor M, Burgess S, Markus HS. Genetically-predicted adult height and Alzheimer's disease. J Alzheimer's Dis 2017; 60(2): 691-8.
[http://dx.doi.org/10.3233/JAD-170528] [PMID: 28869480]
[62]
Levin RA, Carnegie MH, Celermajer DS. Pulse pressure: An emerging therapeutic target for dementia. Front Neurosci-Switz 2020; 14: 669.
[63]
Stone J, Johnstone DM, Mitrofanis J, ORourke M. The mechanical cause of age-related dementia (Alzheimer's disease): The brain is destroyed by the pulse. J Alzheimer's Dis 2015; 44(2): 355-73.
[http://dx.doi.org/10.3233/JAD-141884] [PMID: 25318547]
[64]
Langenberg C, Hardy R, Kuh D, Wadsworth MEJ. Influence of height, leg and trunk length on pulse pressure, systolic and diastolic blood pressure. J Hypertens 2003; 21(3): 537-43.
[http://dx.doi.org/10.1097/00004872-200303000-00019] [PMID: 12640247]
[65]
Shia Q, Ge D, Yang Q, Wang L, Fu J. MicroRNA profiling of cerebrospinal fluid from patients with intracerebral haemorrhage. Front Lab Med 2018; 2(4): 141-5.
[66]
Priyanka P, Panagal M, Sivakumar P, et al. Identification, expression, and methylation of miR-7110 and its involvement in type 1 diabetes mellitus. Gene Rep 2018; 11: 229-34.
[http://dx.doi.org/10.1016/j.genrep.2018.03.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy