Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Clinical and Molecular Findings in a Turkish Family Who Had a (c.869- 1G>A) Splicing Variant in PSEN1 Gene with A Rare Condition: The Variant Alzheimer's Disease with Spastic Paraparesis

Author(s): Mustafa Doğan*, Recep Eröz, Mehmet Tecellioğlu, Alper Gezdirici, Betül Çevik and İbrahim Barış

Volume 19, Issue 3, 2022

Published on: 25 May, 2022

Page: [223 - 235] Pages: 13

DOI: 10.2174/1567205019666220414101251

Price: $65

Abstract

Background: Early-onset Alzheimer's disease (EOAD) is commonly diagnosed with an onset age of earlier than 65 years and accounts for 5–10% of all Alzheimer's disease (AD) cases. To date, although only 10-15% of familial EOAD cases have been explained, the genetic cause of the vast proportion of cases has not been explained. The variant Alzheimer's disease with spastic paraparesis (var- AD) is defined as a rare clinical entity characterized by early-onset dementia, spasticity of the lower extremities, and gait disturbance. Although the disease was first associated with variants in exon 9 of the PSEN1 gene, it was later shown that variations in other exons were also responsible for the disease.

Objective: The current study aims to raise awareness of varAD, which occurs as a rare phenotype due to pathogenic variants in PSEN1. In addition, we aimed to evaluate the spectrum of mutations in varAD patients identified to date.

Methods: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and co-segregation analysis of the family was done by Sanger sequencing. Also, a review of the molecularly confirmed patients with (varAD) from the literature was evaluated.

Results: We identified a heterozygous splicing variant (c.869-1G>A) in the PSEN1 gene, in a family with two affected individuals who present with varAD. We reported the clinical and genetic findings from the affected individuals.

Conclusion: We present the detailed clinical and genetic profiles of a Turkish patient with the diagnosis of varAD together with subjects from the literature. Together, we think that the clinical characteristics and the effect of the (c.869-1G>A) variant will facilitate our understanding of the PSEN1 gene in AD pathogenesis.

Keywords: Alzheimer's disease, Early-onset, familial, presenilin 1, PSEN1, whole exome sequencing, dementia, neurodegeneration, spastic paraparesis

[1]
Leyhe T, Reynolds CF III, Melcher T, et al. A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimers Dement 2017; 13(1): 59-71.
[http://dx.doi.org/10.1016/j.jalz.2016.08.007] [PMID: 27693188]
[2]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA Research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[3]
Alzheimer’s disease facts and figures. Alzheimers Dement 2021; 17(3): 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[4]
Wingo TS, Lah JJ, Levey AI, Cutler DJ. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol 2012; 69(1): 59-64.
[http://dx.doi.org/10.1001/archneurol.2011.221] [PMID: 21911656]
[5]
Tellechea P, Pujol N, Esteve-Belloch P, et al. Early- and late-onset Alzheimer disease: Are they the same entity? Neurologia 2018; 33(4): 244-53.
[http://dx.doi.org/10.1016/j.nrleng.2015.08.009] [PMID: 26546285]
[6]
Giau VV, Senanarong V, Bagyinszky E, An SSA, Kim S. Analysis of 50 neurodegenerative genes in clinically diagnosed early-onset Alzheimer’s disease. Int J Mol Sci 2019; 20(6): E1514.
[http://dx.doi.org/10.3390/ijms20061514] [PMID: 30917570]
[7]
Ayodele T, Rogaeva E, Kurup JT, Beecham G, Reitz C. Early-onset Alzheimer’s disease: What is missing in research? Curr Neurol Neurosci Rep 2021; 21(2): 4.
[http://dx.doi.org/10.1007/s11910-020-01090-y] [PMID: 33464407]
[8]
Bates KA, Verdile G, Li QX, et al. Clearance mechanisms of Alzheimer’s amyloid-beta peptide: Implications for therapeutic design and diagnostic tests. Mol Psychiatry 2009; 14(5): 469-86.
[http://dx.doi.org/10.1038/mp.2008.96] [PMID: 18794889]
[9]
Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer’s disease: Beyond APP, PSENs and APOE. Neurobiol Aging 2012; 33(3): 437-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.025] [PMID: 20594621]
[10]
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet Med 2016; 18(5): 421-30.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[11]
Uddin MS, Hasana S, Hossain MF, et al. Molecular genetics of early- and late-onset Alzheimer’s disease. Curr Gene Ther 2021; 21(1): 43-52.
[http://dx.doi.org/10.2174/1566523220666201123112822] [PMID: 33231156]
[12]
Bateman RJ, Aisen PS, De Strooper B, et al. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res Ther 2011; 3(1): 1.
[http://dx.doi.org/10.1186/alzrt59] [PMID: 21211070]
[13]
Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003; 348(14): 1356-64.
[http://dx.doi.org/10.1056/NEJM2003ra020003] [PMID: 12672864]
[14]
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105: 12-26.
[http://dx.doi.org/10.1016/j.semcdb.2020.02.005] [PMID: 32146031]
[15]
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 2016; 12(6): 733-48.
[http://dx.doi.org/10.1016/j.jalz.2016.01.012] [PMID: 27016693]
[16]
Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[17]
Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 2012; 33(9): 1340-4.
[http://dx.doi.org/10.1002/humu.22117] [PMID: 22581678]
[18]
Ryman DC, Acosta-Baena N, Aisen PS, et al. Dominantly inherited Alzheimer network. symptom onset in autosomal dominant Alzheimer disease: A systematic review and meta-analysis. Neurology 2014; 83(3): 253-60.
[http://dx.doi.org/10.1212/WNL.0000000000000596] [PMID: 24928124]
[19]
Barber IS, Garcia-Cardenas JM, Sakdapanichkul C, et al. Screening exons 16 and 17 of the amyloid precursor protein gene in sporadic early-onset Alzheimer's disease. Neurobiol Aging 2016; 39: 220e1-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.12.011]
[20]
Golan MP, Styczyńska M, Jóźwiak K, et al Early-onset Alzheimer’s disease with a de novo mutation in the presenilin 1 gene. Exp Neurol 2007; 208(2): 264-8.
[http://dx.doi.org/10.1016/j.expneurol.2007.08.016] [PMID: 17931627]
[21]
Lanoiselée HM, Nicolas G, Wallon D, et al. collaborators of the CNR-MAJ project. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14(3): e1002270.
[http://dx.doi.org/10.1371/journal.pmed.1002270] [PMID: 28350801]
[22]
Smith MJ, Kwok JB, McLean CA, et al. Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol 2001; 49(1): 125-9.
[http://dx.doi.org/10.1002/1531-8249(200101)49:1<125::AIDANA21>3.0.CO;2-1] [PMID: 11198283]
[23]
Tabira T, Chui DH, Nakayama H, Kuroda S, Shibuya M. Alzheimer’s disease with spastic paresis and cotton wool type plaques. J Neurosci Res 2002; 70(3): 367-72.
[http://dx.doi.org/10.1002/jnr.10392] [PMID: 12391599]
[24]
Jacquemont ML, Campion D, Hahn V, et al. Spastic paraparesis and atypical dementia caused by PSEN1 mutation (P264L), responsible for Alzheimer’s disease. J Med Genet 2002; 39(2): E2.
[http://dx.doi.org/10.1136/jmg.39.2.e2] [PMID: 11836371]
[25]
O’Riordan S, McMonagle P, Janssen JC, et al. Presenilin-1 mutation (E280G), spastic paraparesis, and cranial MRI white-matter abnormalities. Neurology 2002; 59(7): 1108-10.
[http://dx.doi.org/10.1212/WNL.59.7.1108] [PMID: 12370477]
[26]
Pettersen JA, Patry DG, St George-Hyslop PH, Curry B. Variant Alzheimer disease with spastic paraparesis: A rare presenilin-1 mutation. Can J Neurol Sci 2011; 38(4): 659-61.
[http://dx.doi.org/10.1017/S0317167100012233] [PMID: 21672709]
[27]
Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405-24.
[http://dx.doi.org/10.1038/gim.2015.30] [PMID: 25741868]
[28]
Perrone F, Bjerke M, Hens E, et al. BELNEU Consortium. Amyloid-β1-43 cerebrospinal fluid levels and the interpretation of APP, PSEN1 and PSEN2 mutations. Alzheimers Res Ther 2020; 12(1): 108.
[http://dx.doi.org/10.1186/s13195-020-00676-5] [PMID: 32917274]
[29]
Molinuevo JL, Blennow K, Dubois B, et al. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: A consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 2014; 10(6): 808-17.
[http://dx.doi.org/10.1016/j.jalz.2014.03.003] [PMID: 25150736]
[30]
Brooks WS, Kwok JB, Kril JJ, et al. Alzheimer’s disease with spastic paraparesis and ‘cotton wool’ plaques: Two pedigrees with PS-1 exon 9 deletions. Brain 2003; 126(Pt 4): 783-91.
[http://dx.doi.org/10.1093/brain/awg084] [PMID: 12615638]
[31]
Sato S, Kamino K, Miki T, et al. Splicing mutation of presenilin-1 gene for early-onset familial Alzheimer’s disease. Hum Mutat 1998; 11(S1)(Suppl. 1): S91-4.
[http://dx.doi.org/10.1002/humu.1380110131] [PMID: 9452052]
[32]
Qiang L, Fujita R, Yamashita T, et al. Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 2011; 146(3): 359-71.
[http://dx.doi.org/10.1016/j.cell.2011.07.007] [PMID: 21816272]
[33]
Le Guennec K, Veugelen S, Quenez O, et al. Deletion of exons 9 and 10 of the Presenilin 1 gene in a patient with Early-onset Alzheimer Disease generates longer amyloid seeds. Neurobiol Dis 2017; 104: 97-103.
[http://dx.doi.org/10.1016/j.nbd.2017.04.020] [PMID: 28461250]
[34]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[35]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[36]
Saura CA, Choi SY, Beglopoulos V, et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 2004; 42(1): 23-36.
[http://dx.doi.org/10.1016/S0896-6273(04)00182-5] [PMID: 15066262]
[37]
Wines-Samuelson M, Schulte EC, Smith MJ, et al. Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice. PLoS One 2010; 5(4): e10195.
[http://dx.doi.org/10.1371/journal.pone.0010195] [PMID: 20419112]
[38]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nat Neurosci 2012; 15(3): 349-57.
[http://dx.doi.org/10.1038/nn.3028] [PMID: 22286176]
[39]
Quintero-Monzon O, Martin MM, Fernandez MA, et al. Dissociation between the processivity and total activity of γ-secretase: Implications for the mechanism of Alzheimer’s disease-causing presenilin mutations. Biochemistry 2011; 50(42): 9023-35.
[http://dx.doi.org/10.1021/bi2007146] [PMID: 21919498]
[40]
Fiorini M, Bongianni M, Benedetti MD, Monaco S, Zanusso G. Reappraisal of Aβ40 and Aβ42 peptides measurements in cerebrospinal fluid of patients with Alzheimer’s disease. J Alzheimers Dis 2018; 66(1): 219-27.
[http://dx.doi.org/10.3233/JAD-180616] [PMID: 30282368]
[41]
Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006; 59(3): 512-9.
[http://dx.doi.org/10.1002/ana.20730] [PMID: 16372280]
[42]
Mattsson N, Lonneborg A, Boccardi M, Blennow K, Hansson O. Geneva Task Force for the Roadmap of Alzheimer’s B. Clinical validity of cerebrospinal fluid Abeta42, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52: 196-213.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.02.034] [PMID: 28317649]
[43]
Bignante EA, Heredia F, Morfini G, Lorenzo A. Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 2013; 34(11): 2525-37.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.04.021] [PMID: 23714735]
[44]
Struyfs H, Van Broeck B, Timmers M, et al. Diagnostic Accuracy of cerebrospinal fluid Amyloid-β isoforms for early and differential dementia diagnosis. J Alzheimers Dis 2015; 45(3): 813-22.
[http://dx.doi.org/10.3233/JAD-141986] [PMID: 25633670]
[45]
Jongbloed W, Bruggink KA, Kester MI, et al. Amyloid-β oligomers relate to cognitive decline in Alzheimer’s disease. J Alzheimers Dis 2015; 45(1): 35-43.
[http://dx.doi.org/10.3233/JAD-142136] [PMID: 25547634]
[46]
Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol 2020; 105: 27-42.
[http://dx.doi.org/10.1016/j.semcdb.2020.05.019] [PMID: 32616437]
[47]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s Disease: Causes and treatment. Molecules 2020; 25(24): E5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[48]
Guo T, Shaw LM, Trojanowski JQ, Jagust WJ, Landau SM. Alzheimer’s Disease Neuroimaging I. Association of CSF Abeta, amyloid PET, and cognition in cognitively unimpaired elderly adults. Neurology 2020; 95(15): e2075-85.
[http://dx.doi.org/10.1212/WNL.0000000000010596] [PMID: 32759202]
[49]
Mastrangelo P, Mathews PM, Chishti MA, et al. Dissociated phenotypes in presenilin transgenic mice define functionally distinct gamma-secretases. Proc Natl Acad Sci USA 2005; 102(25): 8972-7.
[http://dx.doi.org/10.1073/pnas.0500940102] [PMID: 15951428]
[50]
Kim YE, Cho H, Kim HJ, Na DL, Seo SW, Ki CS. PSEN1 variants in Korean patients with clinically suspicious early-onset familial Alzheimer’s disease. Sci Rep 2020; 10(1): 3480.
[http://dx.doi.org/10.1038/s41598-020-59829-z] [PMID: 32103039]
[51]
Perez-Tur J, Froelich S, Prihar G, et al. A mutation in Alzheimer’s disease destroying a splice acceptor site in the presenilin-1 gene. Neuroreport 1995; 7(1): 297-301.
[http://dx.doi.org/10.1097/00001756-199512000-00071] [PMID: 8742474]
[52]
Steiner H, Romig H, Grim MG, et al. The biological and pathological function of the presenilin-1 Deltaexon 9 mutation is independent of its defect to undergo proteolytic processing. J Biol Chem 1999; 274(12): 7615-8.
[http://dx.doi.org/10.1074/jbc.274.12.7615] [PMID: 10075646]
[53]
Woodruff G, Young JE, Martinez FJ, et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 2013; 5(4): 974-85.
[http://dx.doi.org/10.1016/j.celrep.2013.10.018] [PMID: 24239350]
[54]
Hiltunen M, Helisalmi S, Mannermaa A, et al. Identification of a novel 4.6-kb genomic deletion in presenilin-1 gene which results in exclusion of exon 9 in a Finnish early onset Alzheimer’s disease family: An Alu core sequence-stimulated recombination? Eur J Hum Genet 2000; 8(4): 259-66.
[http://dx.doi.org/10.1038/sj.ejhg.5200423] [PMID: 10854108]
[55]
Rovelet-Lecrux A, Charbonnier C, Wallon D, et al. CNR-MAJ collaborators. De novo deleterious genetic variations target a biological network centered on Aβ peptide in early-onset Alzheimer disease. Mol Psychiatry 2015; 20(9): 1046-56.
[http://dx.doi.org/10.1038/mp.2015.100] [PMID: 26194182]
[56]
Blauwendraat C, Wilke C, Jansen IE, et al. Pilot whole-exome sequencing of a German early-onset Alzheimer's disease cohort reveals a substantial frequency of PSEN2 variantsNeurobiol Aging 2016; 37: 208 e11-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.09.016]
[57]
Koriath C, Kenny J, Adamson G, et al. Predictors for a dementia gene mutation based on gene-panel next-generation sequencing of a large dementia referral series. Mol Psychiatry 2020; 25(12): 3399-412.
[http://dx.doi.org/10.1038/s41380-018-0224-0] [PMID: 30279455]
[58]
Crook R, Verkkoniemi A, Perez-Tur J, et al. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 1998; 4(4): 452-5.
[http://dx.doi.org/10.1038/nm0498-452] [PMID: 9546792]
[59]
Kwok JB, Taddei K, Hallupp M, et al. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer’s disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport 1997; 8(6): 1537-42.
[http://dx.doi.org/10.1097/00001756-199704140-00043] [PMID: 9172170]
[60]
Houlden H, Baker M, McGowan E, et al. Variant Alzheimer’s disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-beta concentrations. Ann Neurol 2000; 48(5): 806-8.
[http://dx.doi.org/10.1002/1531-8249(200011)48:5<806::AIDANA18>3.0.CO;2-F] [PMID: 11079548]
[61]
Sodeyama N, Iwata T, Ishikawa K, et al. Very early onset Alzheimer’s disease with spastic paraparesis associated with a novel presenilin 1 mutation (Phe237Ile). J Neurol Neurosurg Psychiatry 2001; 71(4): 556-7.
[http://dx.doi.org/10.1136/jnnp.71.4.556] [PMID: 11561050]
[62]
Moretti P, Lieberman AP, Wilde EA, et al. Novel insertional presenilin 1 mutation causing Alzheimer disease with spastic paraparesis. Neurology 2004; 62(10): 1865-8.
[http://dx.doi.org/10.1212/01.WNL.0000126447.91111.A1] [PMID: 15159497]
[63]
Matsubara-Tsutsui M, Yasuda M, Yamagata H, et al. Molecular evidence of presenilin 1 mutation in familial early onset dementia. Am J Med Genet 2002; 114(3): 292-8.
[http://dx.doi.org/10.1002/ajmg.10250] [PMID: 11920851]
[64]
Assini A, Terreni L, Borghi R, et al. Pure spastic paraparesis associated with a novel presenilin 1 R278K mutation. Neurology 2003; 60(1): 150.
[http://dx.doi.org/10.1212/01.WNL.0000040252.43269.83] [PMID: 12525746]
[65]
Raman A, Lin X, Suri M, Hewitt M, Constantinescu CS, Phillips MF. A presenilin 1 mutation (Arg278Ser) associated with early onset Alzheimer’s disease and spastic paraparesis. J Neurol Sci 2007; 260(1-2): 78-82.
[http://dx.doi.org/10.1016/j.jns.2007.04.013] [PMID: 17507029]
[66]
Uttner I, Kirchheiner J, Tumani H, et al. A novel presenilin1 mutation (Q223R) associated with early onset Alzheimer’s disease, dysarthria and spastic paraparesis and decreased Abeta levels in CSF. Eur J Neurol 2010; 17(4): 631-3.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02810.x] [PMID: 19912322]
[67]
Kowalska A, Forsell C, Florczak J, et al. A Polish pedigree with Alzheimer’s disease determined by a novel mutation in exon 12 of the presenilin 1 gene: Clinical and molecular characterization. Folia Neuropathol 1999; 37(1): 57-61.
[PMID: 10337065]
[68]
Dintchov Traykov L, Mehrabian S, Van den Broeck M, et al. Novel PSEN1 mutation in a Bulgarian patient with very early-onset Alzheimer’s disease, spastic paraparesis, and extrapyramidal signs. Am J Alzheimers Dis Other Demen 2009; 24(5): 404-7.
[http://dx.doi.org/10.1177/1533317509341464] [PMID: 19797784]
[69]
Dumanchin C, Tournier I, Martin C, et al. Biological effects of four PSEN1 gene mutations causing Alzheimer disease with spastic paraparesis and cotton wool plaques. Hum Mutat 2006; 27(10): 1063.
[http://dx.doi.org/10.1002/humu.9458] [PMID: 16941492]
[70]
Hattori S, Sakuma K, Wakutani Y, et al. A novel presenilin 1 mutation (Y154N) in a patient with early onset Alzheimer’s disease with spastic paraparesis. Neurosci Lett 2004; 368(3): 319-22.
[http://dx.doi.org/10.1016/j.neulet.2004.07.057] [PMID: 15364419]
[71]
Rogaeva EA, Fafel KC, Song YQ, et al. Screening for PS1 mutations in a referral-based series of AD cases: 21 novel mutations. Neurology 2001; 57(4): 621-5.
[http://dx.doi.org/10.1212/WNL.57.4.621] [PMID: 11524469]
[72]
Oksanen M, Hyötyläinen I, Trontti K, et al. NF-E2-related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin-1 mutated Alzheimer’s disease astrocytes. Glia 2020; 68(3): 589-99.
[http://dx.doi.org/10.1002/glia.23741] [PMID: 31670864]
[73]
Oikari LE, Pandit R, Stewart R, et al. Altered brain endothelial cell phenotype from a familial Alzheimer mutation and its potential implications for amyloid clearance and drug delivery. Stem Cell Reports 2020; 14(5): 924-39.
[http://dx.doi.org/10.1016/j.stemcr.2020.03.011] [PMID: 32275861]
[74]
Yasuda M, Maeda S, Kawamata T, et al. Novel presenilin-1 mutation with widespread cortical amyloid deposition but limited cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 2000; 68(2): 220-3.
[http://dx.doi.org/10.1136/jnnp.68.2.220] [PMID: 10644793]
[75]
Chelban V, Breza M, Szaruga M, et al. Spastic paraplegia preceding PSEN1-related familial Alzheimer’s disease. Alzheimers Dement (Amst) 2021; 13(1): e12186.
[http://dx.doi.org/10.1002/dad2.12186] [PMID: 33969176]
[76]
Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 2019; 15(10): 565-81.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[77]
Koriath CAM, Kenny J, Ryan NS, et al. Genetic testing in dementia - utility and clinical strategies. Nat Rev Neurol 2021; 17(1): 23-36.
[http://dx.doi.org/10.1038/s41582-020-00416-1] [PMID: 33168964]
[78]
Tariot PN, Lopera F, Langbaum JB, et al. Alzheimer’s Prevention Initiative. The Alzheimer’s Prevention initiative autosomal-dominant Alzheimer’s disease trial: A study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimers Dement (N Y) 2018; 4(1): 150-60.
[http://dx.doi.org/10.1016/j.trci.2018.02.002] [PMID: 29955659]
[79]
Wang G, Zhang DF, Jiang HY, et al. Mutation and association analyses of dementia-causal genes in Han Chinese patients with early-onset and familial Alzheimer’s disease. J Psychiatr Res 2019; 113: 141-7.
[http://dx.doi.org/10.1016/j.jpsychires.2019.03.026] [PMID: 30954774]
[80]
Hanafy AS, Schoch S, Lamprecht A. CRISPR/Cas9 Delivery potentials in Alzheimer’s Disease management: A mini review. Pharmaceutics 2020; 12(9): E801.
[http://dx.doi.org/10.3390/pharmaceutics12090801] [PMID: 32854251]
[81]
Hutton M, Busfield F, Wragg M, et al. Complete analysis of the presenilin 1 gene in early onset Alzheimer’s disease. Neuroreport 1996; 7(3): 801-5.
[http://dx.doi.org/10.1097/00001756-199602290-00029] [PMID: 8733749]
[82]
Prihar G, Verkkoniem A, Perez-Tur J, et al. Alzheimer disease PS-1 exon 9 deletion defined. Nat Med 1999; 5(10): 1090.
[http://dx.doi.org/10.1038/13383] [PMID: 10502791]
[83]
Hooli BV, Kovacs-Vajna ZM, Mullin K, et al. Rare autosomal copy number variations in early-onset familial Alzheimer’s disease. Mol Psychiatry 2014; 19(6): 676-81.
[http://dx.doi.org/10.1038/mp.2013.77] [PMID: 23752245]
[84]
Hsu S, Gordon BA, Hornbeck R, et al. Dominantly Inherited Alzheimer Network (DIAN). Discovery and validation of autosomal dominant Alzheimer’s disease mutations. Alzheimers Res Ther 2018; 10(1): 67.
[http://dx.doi.org/10.1186/s13195-018-0392-9] [PMID: 30021643]
[85]
Ataka S, Tomiyama T, Takuma H, et al. A novel presenilin-1 mutation (Leu85Pro) in early-onset Alzheimer disease with spastic paraparesis. Arch Neurol 2004; 61(11): 1773-6.
[http://dx.doi.org/10.1001/archneur.61.11.1773] [PMID: 15534188]
[86]
Murayama O, Tomita T, Nihonmatsu N, et al. Enhancement of amyloid beta 42 secretion by 28 different presenilin 1 mutations of familial Alzheimer’s disease. Neurosci Lett 1999; 265(1): 61-3.
[http://dx.doi.org/10.1016/S0304-3940(99)00187-1] [PMID: 10327206]
[87]
Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y. Recognition of the amyloid precursor protein by human γ-secretase. Science 2019; 363(6428): eaaw0930.
[http://dx.doi.org/10.1126/science.aaw0930] [PMID: 30630874]
[88]
Moehlmann T, Winkler E, Xia X, et al. Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Abeta 42 production. Proc Natl Acad Sci USA 2002; 99(12): 8025-30.
[http://dx.doi.org/10.1073/pnas.112686799] [PMID: 12048239]
[89]
Sannerud R, Esselens C, Ejsmont P, et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular aβ pool. Cell 2016; 166(1): 193-208.
[http://dx.doi.org/10.1016/j.cell.2016.05.020] [PMID: 27293189]
[90]
Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci USA 2017; 114(4): E476-85.
[http://dx.doi.org/10.1073/pnas.1618657114] [PMID: 27930341]
[91]
Bai XC, Yan C, Yang G, et al. An atomic structure of human γ-secretase. Nature 2015; 525(7568): 212-7.
[http://dx.doi.org/10.1038/nature14892] [PMID: 26280335]
[92]
Jiménez Caballero PE, Lladó A, de Diego Boguna C, Martin Correa E, Serviá Candela M, Marsal Alonso C. A novel presenilin 1 mutation (V261L) associated with presenile Alzheimer’s disease and spastic paraparesis. Eur J Neurol 2008; 15(9): 991-4.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02230.x] [PMID: 18637955]
[93]
Campion D, Flaman JM, Brice A, et al. Mutations of the presenilin I gene in families with early-onset Alzheimer’s disease. Hum Mol Genet 1995; 4(12): 2373-7.
[http://dx.doi.org/10.1093/hmg/4.12.2373] [PMID: 8634712]
[94]
Marrosu MG, Floris G, Costa G, et al. Dementia, pyramidal system involvement, and leukoencephalopathy with a presenilin 1 mutation. Neurology 2006; 66(1): 108-11.
[http://dx.doi.org/10.1212/01.wnl.0000191360.08881.12] [PMID: 16401857]
[95]
Ikeuchi T, Kaneko H, Miyashita A, et al. Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406W mutations. Dement Geriatr Cogn Disord 2008; 26(1): 43-9.
[http://dx.doi.org/10.1159/000141483] [PMID: 18587238]
[96]
Ringman JMDN, Signer R, Martinez-Agosto J, et al. P1-123: Very young onset autosomal dominant Alzheimer’s disease with spastic paraparesis due to a novel (F388S) PSEN1 mutation (poster abstract). Alzheimers Dement 2019; 15: P282.
[http://dx.doi.org/10.1016/j.jalz.2019.06.678]
[97]
Beck JA, Poulter M, Campbell TA, et al. Somatic and germline mosaicism in sporadic early-onset Alzheimer’s disease. Hum Mol Genet 2004; 13(12): 1219-24.
[http://dx.doi.org/10.1093/hmg/ddh134] [PMID: 15115757]
[98]
Taddei K, Kwok JB, Kril JJ, et al. Two novel presenilin-1 mutations (Ser169Leu and Pro436Gln) associated with very early onset Alzheimer’s disease. Neuroreport 1998; 9(14): 3335-9.
[http://dx.doi.org/10.1097/00001756-199810050-00034] [PMID: 9831473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy