Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Polymorphism Rs2421943 of the Insulin-Degrading Enzyme Gene and the Risk of Late-Onset Alzheimer’s Disease

Author(s): Omar Šerý*, Tomáš Zeman, Alice Hálová, Vladimír Janout, Jana Janoutová, Jan Lochman and Vladimir J. Balcar

Volume 19, Issue 3, 2022

Published on: 05 April, 2022

Page: [236 - 245] Pages: 10

DOI: 10.2174/1567205019666220302120950

Price: $65

conference banner
Abstract

Background: Insulin-degrading enzyme (IDE) is a widely distributed Zn2+-binding metalloprotease that cleaves multiple short and medium-sized peptides prone to form β-structures. These include insulin and amyloid-β peptides. Accumulation and fibrillation of amyloid-β peptides leading to the formation of amyloid plaques is a characteristic sign of Alzheimer’s disease (AD) pathology.

Objective: The study investigated the rs2421943 single nucleotide polymorphism (SNP) of the IDE gene as a risk factor for MCI (mild cognitive impairment) and AD.

Methods: Two independent groups of 1670 patients and controls were included. The AD group consisted of 595 patients and 400 controls; the MCI group involved 135 patients and 540 matched controls. PCR and restriction fragment length analysis were used to analyze the rs2421943 polymorphism. Using the miRBase and RNA22 prediction tools in silico indicated that the rs2421943 polymorphism is a potential target for a specific miRNA (hsa-miR-7110-5p).

Results: AG and GG genotypes of rs2421943 significantly increased the risk of AD, and the AG genotype increased the risk of MCI. It seems the G allele both increases the risk of AD and accelerates the transition through the MCI phase. In silico study revealed that rs2421943 is inside the sequence binding miRNA hsa-miR-7110-5p. The polymorphism could affect the rate of IDE pre-RNA (heterogeneous nuclear RNA, hnRNA) processing, resulting in slower translation, lower levels of IDE, deficient removal of amyloid-β fragments, and greater risk of and/or accelerated progression of AD.

Conclusion: GG and AG genotypes of the single nucleotide polymorphism rs2421943 of insulindegrading enzyme gene increase the risk of AD and MCI.

Keywords: Alzheimer’s disease, mild cognitive impairment, insulin-degrading enzyme, type-2 diabetes mellitus, amyloid-β peptide, single nucleotide polymorphisms.

[1]
Nelson PT, Head E, Schmitt FA, et al. Alzheimer's disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 2011; 121(5): 571-87.
[http://dx.doi.org/10.1007/s00401-011-0826-y] [PMID: 21516511]
[2]
Šerý O, Povová J, Balcar VJ. Perspectives in genetic prediction of Alzheimer's disease. Neuroendocrinol Lett 2014; 35(5): 359-66.
[PMID: 25275266]
[3]
Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer's disease: A review. Folia Neuropathol 2013; 51(1): 1-9.
[http://dx.doi.org/10.5114/fn.2013.34190] [PMID: 23553131]
[4]
Huq AJ, Fransquet P, Laws SM, et al. Genetic resilience to Alzheimer's disease in APOE ε4 homozygotes: A systematic review. Alzheimer's Dement 2019; 15(12): 1612-23.
[http://dx.doi.org/10.1016/j.jalz.2019.05.011] [PMID: 31506248]
[5]
Povová J, Ambroz P, Bar M, et al. Epidemiological of and risk factors for Alzheimer's disease: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156(2): 108-14.
[http://dx.doi.org/10.5507/bp.2012.055] [PMID: 22837131]
[6]
Šerý O, Hlinecká L, Balcar VJ, Janout V, Povová J. Diabetes, hypertension and stroke - Does Alzheimer protect you? Neuroendocrinol Lett 2014; 35(8): 691-6.
[PMID: 25702297]
[7]
Šerý O, Janoutová J, Ewerlingová L, et al. CD36 gene polymorphism is associated with Alzheimer's disease. Biochimie 2017; 135: 46-53.
[http://dx.doi.org/10.1016/j.biochi.2017.01.009] [PMID: 28111291]
[8]
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2019; 174: 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[9]
Bature F, Guinn BA, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer's disease: A systematic scoping review of literature from 1937 to 2016. BMJ Open 2017; 7(8): e015746.
[http://dx.doi.org/10.1136/bmjopen-2016-015746] [PMID: 28851777]
[10]
Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: A concept in evolution. J Intern Med 2014; 275(3): 214-28.
[http://dx.doi.org/10.1111/joim.12190] [PMID: 24605806]
[11]
Janoutová J, Šerý O, Hosák L, Janout V. Is mild cognitive impairment a precursor of Alzheimer's disease? Short review. Cent Eur J Public Health 2015; 23(4): 365-7.
[http://dx.doi.org/10.21101/cejph.a4414] [PMID: 26841152]
[12]
Gauthier S, Reisberg B, Zaudig M, et al. International Psychogeriatric Association Expert Conference on mild cognitive impairment. Lancet 2006; 367(9518): 1262-70.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[13]
Shimada H, Doi T, Lee S, Makizako H. Reversible predictors of reversion from mild cognitive impairment to normal cognition: A 4-year longitudinal study. Alzheimer's Res Ther 2019; 11: 24.
[14]
Reitz C. Alzheimer's disease and the amyloid cascade hypothesis: A critical review. Int J Alzheimer's Dis 2012; 2012: 369808.
[http://dx.doi.org/10.1155/2012/369808] [PMID: 22506132]
[15]
Puzzo D, Privitera L, Leznik E, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 2008; 28(53): 14537-45.
[http://dx.doi.org/10.1523/JNEUROSCI.2692-08.2008] [PMID: 19118188]
[16]
Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer's disease. Neurosci Bull 2014; 30(2): 317-30.
[http://dx.doi.org/10.1007/s12264-013-1422-z] [PMID: 24652457]
[17]
Hardy J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J 2017; 284(7): 1040-4.
[http://dx.doi.org/10.1111/febs.14004] [PMID: 28054745]
[18]
Jia L, Fu Y, Shen L, et al. PSEN1, PSEN2, and APP mutations in 404 Chinese pedigrees with familial Alzheimer's disease. Alzheimer's Dement 2020; 16(1): 178-91.
[http://dx.doi.org/10.1002/alz.12005] [PMID: 31914229]
[19]
Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid β clearance in Alzheimer's disease. Alzheimer's Res Ther 2013; 5(4): 33.
[http://dx.doi.org/10.1186/alzrt187] [PMID: 23849219]
[20]
Kurochkin IV, Guarnera E, Wong JH, Eisenhaber F, Berezovsky IN. Toward allosterically increased catalytic activity of insulin-degrading enzyme against amyloid peptides. Biochemistry 2017; 56(1): 228-39.
[http://dx.doi.org/10.1021/acs.biochem.6b00783] [PMID: 27982586]
[21]
Björk BF, Katzov H, Kehoe P, et al. Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiol Aging 2007; 28(9): 1374-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.017] [PMID: 16876916]
[22]
Blomqvist MEL, Chalmers K, Andreasen N, et al. Sequence variants of IDE are associated with the extent of beta-amyloid deposition in the Alzheimer's disease brain. Neurobiol Aging 2005; 26(6): 795-802.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.011] [PMID: 15718037]
[23]
Broh-Kahn RH, Mirsky IA. The inactivation of insulin by tissue extracts; the effect of fasting on the insulinase content of rat liver. Arch Biochem 1949; 20(1): 10-4.
[PMID: 18104390]
[24]
Tundo GR, Sbardella D, Ciaccio C, et al. Insulin-degrading enzyme (IDE): A novel heat shock-like protein. J Biol Chem 2013; 288(4): 2281-9.
[http://dx.doi.org/10.1074/jbc.M112.393108] [PMID: 23188819]
[25]
Bulloj A, Leal MC, Xu H, Castaño EM, Morelli L. Insulin-degrading enzyme sorting in exosomes: A secretory pathway for a key brain amyloid-beta degrading protease. J Alzheimer's Dis 2010; 19(1): 79-95.
[http://dx.doi.org/10.3233/JAD-2010-1206] [PMID: 20061628]
[26]
Bernstein HG, Lendeckel U, Bukowska A, et al. Regional and cellular distribution patterns of insulin-degrading enzyme in the adult human brain and pituitary. J Chem Neuroanat 2008; 35(2): 216-24.
[http://dx.doi.org/10.1016/j.jchemneu.2007.12.001] [PMID: 18226493]
[27]
Son SM, Cha MY, Choi H, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 2016; 12(5): 784-800.
[http://dx.doi.org/10.1080/15548627.2016.1159375] [PMID: 26963025]
[28]
Farris W, Mansourian S, Leissring MA, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 2004; 164(4): 1425-34.
[http://dx.doi.org/10.1016/S0002-9440(10)63229-4] [PMID: 15039230]
[29]
Stefanidis L, Fusco ND, Cooper SE, Smith-Carpenter JE, Alper BJ. Molecular determinants of substrate specificity in human insulin-degrading enzyme. Biochemistry 2018; 57(32): 4903-14.
[http://dx.doi.org/10.1021/acs.biochem.8b00474] [PMID: 30004674]
[30]
Fernández-Gamba A, Leal MC, Morelli L, Castaño EM. Insulin-degrading enzyme: Structure-function relationship and its possible roles in health and disease. Curr Pharm Des 2009; 15(31): 3644-55.
[http://dx.doi.org/10.2174/138161209789271799] [PMID: 19925417]
[31]
Li HJ, Wu J, Zhu LF, et al. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer's disease: Possible mechanisms of IDE in T2D and AD. Bioscience Rep 2018; 38: BSR20170862.
[32]
Jayaraman A, Pike CJ. Alzheimer's disease and type 2 diabetes: Multiple mechanisms contribute to interactions. Curr Diab Rep 2014; 14(4): 476.
[http://dx.doi.org/10.1007/s11892-014-0476-2] [PMID: 24526623]
[33]
Mueller JC, Riemenschneider M, Schoepfer-Wendels A, et al. Weak independent association signals between IDE polymorphisms, Alzheimer's disease and cognitive measures. Neurobiol Aging 2007; 28(5): 727-34.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.009] [PMID: 16675064]
[34]
da Costa IB, de Labio RW, Rasmussen LT, et al. Change in INSR, APBA2 and IDE gene expressions in brains of Alzheimer's disease patients. Curr Alzheimer Res 2017; 14(7): 760-5.
[http://dx.doi.org/10.2174/1567205014666170203100734] [PMID: 28164769]
[35]
Zhang H, Liu D, Huang H, Zhao Y, Zhou H. Characteristics of insulin-degrading enzyme in Alzheimer's disease: A meta-analysis. Curr Alzheimer Res 2018; 15(7): 610-7.
[http://dx.doi.org/10.2174/1567205015666180119105446] [PMID: 29357797]
[36]
Reitz C, Cheng R, Schupf N, et al. Association between variants in IDE-KIF11-HHEX and plasma amyloid β levels. Neurobiol Aging 2012; 33(1): 199-e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.07.005] [PMID: 20724036]
[37]
Hamilton G, Harris SE, Davies G, et al. The role of ECE1 variants in cognitive ability in old age and Alzheimer's disease risk. Am J Med Genet B Neuropsychiatr Genet 2012; 159B(6): 696-709.
[http://dx.doi.org/10.1002/ajmg.b.32073] [PMID: 22693153]
[38]
Cook DG, Leverenz JB, McMillan PJ, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 2003; 162(1): 313-9.
[http://dx.doi.org/10.1016/S0002-9440(10)63822-9] [PMID: 12507914]
[39]
Vepsäläinen S, Parkinson M, Helisalmi S, et al. Insulin-degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population. J Med Genet 2007; 44(9): 606-8.
[http://dx.doi.org/10.1136/jmg.2006.048470] [PMID: 17496198]
[40]
Abraham R, Myers A, Wavrant-DeVrieze F, et al. Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease. Hum Genet 2001; 109(6): 646-52.
[http://dx.doi.org/10.1007/s00439-001-0614-1] [PMID: 11810277]
[41]
Boussaha M, Hannequin D, Verpillat P, Brice A, Frebourg T, Campion D. Polymorphisms of insulin degrading enzyme gene are not associated with Alzheimer's disease. Neurosci Lett 2002; 329(1): 121-3.
[http://dx.doi.org/10.1016/S0304-3940(02)00586-4] [PMID: 12161276]
[42]
Cheng H, Wang L, Shi T, Shang Y, Jiang L. Association of insulin degrading enzyme gene polymorphisms with Alzheimer's disease: A meta-analysis. Int J Neurosci 2015; 125(5): 328-35.
[http://dx.doi.org/10.3109/00207454.2014.941440] [PMID: 25105907]
[43]
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-degrading enzyme in the fight against Alzheimer's disease. Trends Pharmacol Sci 2018; 39(1): 49-58.
[http://dx.doi.org/10.1016/j.tips.2017.10.008] [PMID: 29132916]
[44]
Miners JS, Baig S, Tayler H, Kehoe PG, Love S. Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J Neuropathol Exp Neurol 2009; 68(8): 902-14.
[http://dx.doi.org/10.1097/NEN.0b013e3181afe475] [PMID: 19606063]
[45]
Zhang Y, Wang B, Wan H, Zhou Q, Li T. Meta-analysis of the insulin degrading enzyme polymorphisms and susceptibility to Alzheimer's disease. Neurosci Lett 2013; 541: 132-7.
[http://dx.doi.org/10.1016/j.neulet.2013.01.051] [PMID: 23416320]
[46]
Balcar VJ, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Single nucleotide polymorphism rs11136000 of CLU Gene (Clusterin, ApoJ) and the risk of late-onset Alzheimer's disease in a Central European Population. Neurochem Res 2021; 46(2): 411-22.
[http://dx.doi.org/10.1007/s11064-020-03176-y] [PMID: 33206315]
[47]
Hálová A, Janoutová J, Ewerlingová L, et al. CHAT gene polymorphism Rs3810950 is associated with the risk of Alzheimer's disease in the Czech population. J Biomed Sci 2018; 25(1): 1-9.
[48]
Šerý O, Hlinecká L, Povová J, et al. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index. J Neurol Sci 2016; 362: 27-32.
[http://dx.doi.org/10.1016/j.jns.2016.01.022] [PMID: 26944113]
[49]
Šerý O, Goswami N, Balcar VJ. CD36 gene polymorphisms and Alzheimer's disease.In: Martin CR, Preedy VR, Eds Genetics, Neurology, Behavior, and Diet in Dementia: The Neuroscience of Dementia. Massachusetts: Academic Press, Elsevier 2020; pp. 57-70.
[http://dx.doi.org/10.1016/B978-0-12-815868-5.00004-9]
[50]
Zeman T, Balcar VJ, Cahová K, et al. Polymorphism Rs11867353 of tyrosine kinase non-receptor 1 (TNK1) gene is a novel genetic marker for Alzheimer's disease. Mol Neurobiol 2021; 58(3): 996-1005.
[http://dx.doi.org/10.1007/s12035-020-02153-4] [PMID: 33070267]
[51]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[52]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[53]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[54]
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203-17.
[http://dx.doi.org/10.1016/j.cell.2006.07.031] [PMID: 16990141]
[55]
Morris JA, Gardner MJ. Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J (Clin Res Ed) 1988; 296(6632): 1313-6.
[http://dx.doi.org/10.1136/bmj.296.6632.1313] [PMID: 3133061]
[56]
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2018, Vienna, Austria. In: Available from:. https://www.R-project.org/
[57]
Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis 2015; 14(1): 1-9.
[http://dx.doi.org/10.1186/s12944-015-0123-1]
[58]
Grimm MOW, Mett J, Stahlmann CP, et al. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme. Biochem Cell Biol 2016; 94(6): 534-42.
[http://dx.doi.org/10.1139/bcb-2015-0149] [PMID: 27813426]
[59]
Beeri MS, Davidson M, Silverman JM, Noy S, Schmeidler J, Goldbourt U. Relationship between body height and dementia. Am J Geriatr Psychiatry 2005; 13(2): 116-23.
[http://dx.doi.org/10.1097/00019442-200502000-00005] [PMID: 15703320]
[60]
Russ TC, Kivimäki M, Starr JM, Stamatakis E, Batty GD. Height in relation to dementia death: Individual participant meta-analysis of 18 UK prospective cohort studies. Br J Psychiatry 2014; 205(5): 348-54.
[http://dx.doi.org/10.1192/bjp.bp.113.142984] [PMID: 25368359]
[61]
Larsson SC, Traylor M, Burgess S, Markus HS. Genetically-predicted adult height and Alzheimer's disease. J Alzheimer's Dis 2017; 60(2): 691-8.
[http://dx.doi.org/10.3233/JAD-170528] [PMID: 28869480]
[62]
Levin RA, Carnegie MH, Celermajer DS. Pulse pressure: An emerging therapeutic target for dementia. Front Neurosci-Switz 2020; 14: 669.
[63]
Stone J, Johnstone DM, Mitrofanis J, ORourke M. The mechanical cause of age-related dementia (Alzheimer's disease): The brain is destroyed by the pulse. J Alzheimer's Dis 2015; 44(2): 355-73.
[http://dx.doi.org/10.3233/JAD-141884] [PMID: 25318547]
[64]
Langenberg C, Hardy R, Kuh D, Wadsworth MEJ. Influence of height, leg and trunk length on pulse pressure, systolic and diastolic blood pressure. J Hypertens 2003; 21(3): 537-43.
[http://dx.doi.org/10.1097/00004872-200303000-00019] [PMID: 12640247]
[65]
Shia Q, Ge D, Yang Q, Wang L, Fu J. MicroRNA profiling of cerebrospinal fluid from patients with intracerebral haemorrhage. Front Lab Med 2018; 2(4): 141-5.
[66]
Priyanka P, Panagal M, Sivakumar P, et al. Identification, expression, and methylation of miR-7110 and its involvement in type 1 diabetes mellitus. Gene Rep 2018; 11: 229-34.
[http://dx.doi.org/10.1016/j.genrep.2018.03.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy